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ABSTRACT
P2P lending is an emerging wealth-management service for
individuals, which allows lenders to directly bid and invest on
the loans created by borrowers. In these platforms, lender-
s often pursue multiple objectives (e.g., non-default prob-
ability, fully-funded probability and winning-bid probability)
when they select loans to invest. How to automatically as-
sess loans from these objectives and help lenders select loan
portfolios is a very important but challenging problem. To
that end, in this paper, we present a holistic study on portfo-
lio selections in P2P lending. Specifically, we first propose to
adapt gradient boosting decision tree, which combines both
static features and dynamic features, to assess loans from
multiple objectives. Then, we propose two strategies, i.e.,
weighted objective optimization strategy and multi-objective
optimization strategy, to select portfolios for lenders. For
each lender, the first strategy attempts to provide one opti-
mal portfolio while the second strategy attempts to provide
a Pareto-optimal portfolio set. Further, we design two algo-
rithms, namely DPA and EVA, which can efficiently resolve
the optimizations in these two strategies, respectively. Fi-
nally, extensive experiments on a large-scale real-world data
set demonstrate the effectiveness of our solutions.
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1. INTRODUCTION
Recent years have witnessed the rapid development of on-

line P2P lending platforms, e.g., Prosper1, Lendingclub2. As
a new emerging wealth-management service for individuals,
P2P lending allows individuals to borrow and lend money
directly from one to another without going through any tra-
ditional financial intermediaries. Indeed, P2P lending has
become a fast growing investment market which attracts
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many users (i.e., borrowers and lenders) and generates mas-
sive lending transactions. For instance, the total loan is-
suance amount of Lendingclub had reached more than $13.4
billion at the end of 2015.

The prevalence of P2P lending and the availability of trans-
action data have attracted many researchers’ attentions, which
mainly focused on risk evaluation [23, 11], social relation
analysis [20, 13] and fully-funded analysis [28, 25]. Recently,
authors in [34] proposed to study loan recommendations for
lenders. However, due to the specific working mechanism of
P2P lending, the problem of loan/investment recommenda-
tions in these platforms is still largely underexplored.

In P2P lending, there are mainly two kinds of roles: the
borrowers who want to borrow money from others and the
lenders who lend money to borrowers. Trading in these mar-
kets follows the Dutch Auction Rule3 [17, 31]. Specifically,
for borrowing money, a borrower will first create a listing
to solicit bids from lenders by describing herself, the rea-
son of lending (e.g., for wedding), the required amount (e.g.,
$1,000) and the maximal interest rate (e.g., 10%). Then, if
a lender wants to lend to this loan within its soliciting du-
ration (e.g., one week), a bid is created by describing both
how much money she wants to lend (e.g., $50) and the min-
imum interest rate (e.g., 9.5%). If this listing receives more
than its required amount in its soliciting duration, those bids
with lower rates will succeed/win, and other bids with high-
er rates will be outbid/fail. In contrast, if this listing can’t
receive enough bids in time, it would be expired and all the
previous bids would also fail [34, 6]. Based on this trading
rule, a rational lender Alice may have the following two con-
siderations while selecting loans to bid. Multi-objective.
While selecting loans, Alice may evaluate a loan from the
probability of this loan being fully funded, the probability of
winning the bid, as well as the loan risk (i.e., default prob-
ability) [4]. Portfolio. To be a successful lender, Alice also
has the portfolio [24] perspective in her mind, i.e., she usual-
ly wants to select more than one loan (i.e., a portfolio) to bid
in each investment. Indeed, some platforms (e.g., Prosper)
already instruct lenders to diversify their money on multiple
loans to reduce risk. However, it is difficult and boring for
lenders to select dozens of loans in each time. Thus, devel-
oping an automatic approach to recommend portfolios for
lenders is very needed.

In this paper, we present a holistic approach to help P2P
lenders select investment portfolios, which can satisfy lender-

3
There exists another kind of trading rule in P2P lending, in which

the platform determines posted rates for loans [31]. This trading can
be treated as a special case of our studied scenario.
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Table 1: Mathematical notations.
Notation Description

V A = {v1, ..., v|V A|} the set of being-auctioned loans currently
UA = {u1, ..., u|UA|} the set of current active lenders
x = (x1, ..., x|V A|) a selected loan portfolio

Reui lender ui’s preference on rate expectation
Revj loan vj ’s declared interest rate in auction

Pj = [Rj , Tj , Cj ] loan vj ’s assessed profile
αi = (αi1, αi2, αi3) lender ui’s personalized weighted vector

s’ interest rate expectations, minimize investment risk (i.e.,
default probabilities) and maximize trading efficiency (i.e.,
fully-funded probabilities and winning-bid probabilities) si-
multaneously. Specifically, we first identify active lenders
in current market, i.e., the lenders who are most likely to in-
vest in the following period, as our target users. Second, we
assess each being-auctioned loan from multi-objective views,
i.e., the non-default probability, fully-funded probability and
winning-bid probability. Here, different from previous work-
s which only used static features in assessments, we also
extract dynamic features of loans, and adapt an ensemble
method (i.e., Gradient Boosting Decision Tree) to combine
both static features and dynamic features to improve the
prediction performances. Finally, given the identified ac-
tive lenders and assessed loans, we attempt to select port-
folios for each active lender. As we described above, the
selection should take into account multiple economic fac-
tors/objectives, and the recommendation for each lender
should also be portfolios rather than single loans. Specif-
ically, we propose two strategies, i.e., weighted objective op-
timization strategy and multi-objective optimization strategy
to solve portfolio selections. Weighted objective strategy
combines three objectives into a single objective based on
a weighted objective vector, and provides each lender with
an optimal portfolio. Multi-objective optimization strategy
optimizes three objectives simultaneously and gets a Pareto-
optimal solution set (portfolios) for each lender. For these
two strategies, two efficient algorithms, i.e., DPA (dynamic
programming) and EVA (evolutionary algorithm), are de-
signed to solve the optimization problems respectively. The
contributions of this paper can be summarized as follows.

• To the best of our knowledge, this is the first work
on assessing loans from a multi-objective perspective
in P2P lending. Furthermore, we also propose to ex-
tract dynamic features from both bidding lenders and
auctions, which are very helpful for loan assessments.

• With our two portfolio selection strategies, we attempt
to recommendation portfolios rather than single loan-
s for lenders. Especially in the multi-objective opti-
mization strategy, for each lender, we get a Pareto-
optimal (skyline) portfolio set. These distinguish our
study from other recommendation works very much.

• We develop two algorithms, DPA and EVA, which can
select portfolios in two strategies effectively. Particu-
larly, EVA optimizes for all lenders one by one with a
special inherited initialization, which is more effective
and efficient than conventional algorithms.

• We construct extensive experiments on a real-world da-
ta set. The experimental results clearly demonstrate
the effectiveness of our solutions.

2. PRELIMINARIES AND ASSESSMENTS
In this section, we first introduce the preliminaries of port-

folio selections. Then, we identify the active lenders and
learn their preferences on rate expectation. Finally and most
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Figure 1: Flowchart of portfolio selections.

importantly, we introduce how to assess being-auctioned loan-
s from multiple objectives. For better illustration, Table 1
lists some mathematical notations used in this paper.

2.1 Preliminaries
Problem Statement. Formally, given the lenders’ his-

torical bidding records, and current being-auctioned loans
V A = {v1, ..., v|V A|} in market, our goal is to select loan
portfolios from VA for each active lender. Active lenders
UA = {u1, ..., u|UA|} are those who are most likely to lend in
the following period. A portfolio x = (x1, ..., x|V A|) is an op-
timal combination of multiple loans, if xj = 1, the j-th loan
in VA is selected and put into the portfolio. For each lender
ui ∈ UA, the selected portfolios should satisfy her prefer-
ence on rate expectation Reui with minimum risk (maximal
non-default probability) and maximum transaction efficien-
cy (fully-funded probability, winning-bid probability).

Framework Overview. For tackling the above problem,
we propose a solution framework which is show in Figure 1.
There are three major steps (brown backgrounds): (1) i-
dentifying the active lenders UA and learning their prefer-
ences on rate expectation Reui , i ∈ {1, ..., |UA|}; (2) assessing
each being-auctioned loan vj ∈ V A on multiple objectives,
(i.e., Non-default probability Rj , Fully-funded probability
Tj , Winning-bid probability Cj); and (3) selecting portfolios
for all active lenders.

We identify active lenders online (green arrows) and learn
lenders’ preferences on rate expectation from their historical
investment records. For assessing being-auctioned loans, we
train multiple assessment models using the historical loans
offline (purple arrows). Given the identified active lenders
and the assessed loans, we propose two strategies to select
portfolios. Weighted objective optimization strategy pro-
vides an optimal portfolio and multi-objective optimization
strategy provides a Pareto-optimal (skyline) portfolio set for
each lender. In these two strategies, two algorithms, namely
DPA and EVA, are designed. This portfolio selection step is
also achieved online. The first two steps will be introduced
in the rest of this section, and the portfolio selections will be
introduced in the next section.

2.2 Active Lenders and Rate Preferences
According to the data analysis and observation, we find

that, in a certain period of time, only a small part of lenders
(usually less than 10%) rather than all lenders will bid on
current loans. We call these lenders who are most likely to
bid in the following period active lenders. Identifying active
lenders in advance can achieve accurate service of portfolio
selection, also improve the service efficiency and user experi-
ence. Indeed, most lenders often bid periodically, and invest
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Algorithm 1: ALI: Active lenders identification.

Input: Lenders U = {u1, ..., u|U|},
Time threshold TR,
Current time CT ;

Output: Active Lenders UA = {u1, ..., u|UA|},
Rate expectation preference Reui of ui ∈ UA;

Initialize: UA = φ;
for each ui ∈ U do

if ui’s latest bid time in the range of TR before CT then
UA = UA ∪ {ui},
Compute Reui according to Equation (1);

return UA and Reu = {Reu1 , ..., Re
u
|UA|}.

in a series of loans continuously. Thus, the lenders who bid
in recent days have higher probabilities to invest in the fol-
lowing period than other lenders. In our study, we select
the lenders who have bidding behaviors in a time range TR
(e.g., 10 days) before current time CT as our current target
users, i.e., active lenders.

In investment, lender’s preference is mainly reflected in
her return expectation. In P2P lending, the interest rate of
a loan declared before auction is often treated as the return
[23, 34]. Thus, we can get a lender’s preference on return
rate through her historical investments. Specifically, lender
ui’s preference Reui on rate expectation can be calculated as:

Reui =
1

|V Ui|
∑

vj∈V Ui

Revj , (1)

where V Ui is the loan set that lender ui invested in the
past, Revj is the declared interest rate of loan vj . Algorithm
1 shows the process of identifying active lenders and the
calculation of their preferences on rate expectation.

2.3 Multi-objective Assessments for Loans
In this subsection, we show the way of assessing the profiles

of being-auctioned loans on multiple objectives. According
to the previous study [4], there are three major economic
factors that lenders take into account when deciding to bid
on a loan: lenders’ belief about the probability of a loan be-
ing fully funded, the probability of winning the bid, as well
as the interest rate. Similarly, we also formalize the loan
assessment from a multi-objective view. In our study, we
assess a loan vj on the following three objectives.
Non-default Probability(Rj). Since the loan interest rate
Revj is given explicitly in market and often taken as a search-
ing criterion by many lenders, we take the rate expectation
as one important constraint, and formalize another widely-
used assessment metric: Risk, i.e., default probability [23,
19, 34]. For consistency, we maximize loans’ non-default
probabilities rather than minimizing default probabilities on
risk assessment. Formally, non-default probability is the es-
timated probability that one loan may repay the principal
and interest to lenders in time.
Fully-funded Probability(Tj). Fully-funded probability
is the estimated probability that one loan may receive e-
nough bids in its auction. According to the trading rule, the
T ransactions are valid only if the corresponding loan can re-
ceive enough bids. Thus, fully-funded probability is another
important aspect to assess loans [14, 4].
Winning-bid Probability4(Cj). Winning-bid probability
is the estimated probability that a lender’s bid on this loan
under current loan status will finally success or participate
after the loan’s entire auction. Since some popular loans may
receive more bids than their required amount, Competition

4
This objective doesn’t exist on the loans with posted rates [31].

Table 2: Feature examples.
Name Description Class

Bor Rat the maximum interest rate the borrower is
willing to pay

Loan
(static)

Category borrowing purpose
Cre Dat the created date of the listing of this loan
... ...
Deb Inc debt to income ratio of the borrower

Borrower
(static)

Credit credit grade of the borrower
... ...
Am Rem the amount which remains to be funded

Auction
(dynamic)

Auc Pro time interval from Cre Date to current CT
... ...
Def Per lenders’ past default loan percent

Lender
(dynamic)

Fun Per lenders’ past fully-funded loan percent
... ...

among bids on a loan will take place and some bids will fail.
Thus, winning-bid probability reflects the biding competi-
tion on a loan [4, 18].

Non-default probability Rj mainly affects lenders’ profits,
while fully-funded probability Tj and winning-bid probabil-
ity Cj mainly affect the investment efficiency, i.e., helping
avoid invalid bids. In summary, for each being-auctioned
loan vj , we can adopt a three-element vector Pj = [Rj , Tj , Cj ]

to denote its profile. Next, we will introduce how to estimate
these profile terms on specific objectives for given loans.

2.3.1 Features for Assessments
Here, we introduce extracting features for loan assess-

ments. In previous works, researchers explored some clas-
sification or regression models on some single objective as-
sessment tasks, e.g., default [29, 9, 34], fully-funded [14, 28].
However, these studies only explored the static features from
both loan (e.g., rate, amount, purpose,) and borrower (e.g.,
credit, debt). In [23], authors evaluated a loan by the char-
acteristics extracted from the bidding lenders, i.e., average
and variance of the past real returns of bidding lenders. In-
deed, a loan receives bids from lenders one by one during
its auction. Thus, the features extracted from the lenders
who have bid on this loan are dynamic. Besides, we can
also extract some dynamic features from loan auctions, e.g.,
auction phase/time, percent fund. These dynamic features in
auction reflect the popularity of a loan directly. In summary,
in this paper, we explore both static features and dynamic
features for better multi-objective loan assessments.
Static Features. Static features are given explicitly before
auction, which are extracted from the loan’s properties and
the associated borrower’s properties. These static features
directly reflect the basic properties of loans and borrowers.
For example, borrowers with high credits are more likely to
repay in time than borrowers with poor credits.
Dynamic Features. Dynamic features are extracted from
the temporal auction and incremental bidding lenders of a
loan, which are changing from time to time during an auc-
tion. Dynamic features can reflect the popularity of a loan.
For example, popular loans may receive massive bids rapidly,
thus, are more likely to be fully funded. Further, the dynam-
ic features extracted from lenders reflect the lenders’ views,
such that, loans received many bids from experienced lender-
s (lenders whose investments success frequently and default
rarely) may be better than other loans. Especially, dynamic
features, Def Per, Fun Per, Win Per, extracted from the in-
cremental bidding lenders’ historical investments in line with
our three assessment objectives, will have great help to the
prediction performances on corresponding objectives.

We represent all the features as numerics. For temporal
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features, such as Cre Dat, we convert raw features to a se-
rial date number, which represents the whole and fractional
number of days from a fixed preset date [6]. For categorical
features, such as Category and Credit, we convert a vari-
able with n categories into a n-dimensional binary vector,
in which only the value in the corresponding category is set
to one. All features are normalized for comparability. For
example, Def Per represents the fraction of all default loans
of bidding lenders to their total bidding number in the past.
Please note that, for non-default objective and fully-funded
objective, we extract dynamic features every day, while for
winning-bid objective, we extract dynamic features every bid
(i.e., the features for winning-bid objective are constructed
according to the latest bid on this loan at current). Thus,
the training instance numbers are different on different ob-
jectives but the feature dimensions are same on all objec-
tives. In summary, we use a total of 26 features (i.e., 9 loan
features, 4 borrower features, 7 auction features and 6 lender
features) in our study and some examples of these features
are shown in Table 2.

2.3.2 Loan Assessments
After the feature extraction and preparation, in this part,

we introduce the assessment models. Specifically, we adopt
the gradient boosting decision tree (GBDT ) [10, 12] to assess
loans, which has been used to predict P2P lending transac-
tion in [6]. The reason for choosing GBDT is as follows.
First, we should evaluate the being-auctioned loans with nu-
merical or ranking output which is the foundation in the
following portfolio selection formalization. GBDT can esti-
mate the probabilities (non-default probability, fully-funded
probability and winning-bid probability) for each loan. More
importantly, GBDT is an ensemble method where an indi-
vidual learner is a decision tree which only uses one variable
at each node when it is trained/constructed as well as when
it is applied to test data. This characteristic prevents us
from worrying about heterogeneity in the features we gener-
ated [6]. What’s more, compared with conventional machine
learning models, the performances of ensemble methods are
significantly better and well demonstrated [10, 32, 15, 1].

Suppose we have n training instances {(z1, y1), ..., (zn, yn)}
for a specific task (e.g., non-default objective), where zi is
the feature vector of loan instance vi, and yi is the label of vi
on this objective (e.g., if vi repay in time, yi=1; otherwise,
yi=0) . We train GBDT (G(z)) with M weak learners, each
is a decision tree h(z) with a weight coefficient γm,

G(z) =
M∑
m=1

γmhm(z). (2)

Similar to other boosting algorithms, GBDT builds the ad-
ditive model in a forward stage-wise fashion. At each stage
the decision tree hm(z) is chosen to minimize the loss func-
tion L given the current model Gm−1 and its fit Gm−1(zi).

Gm(z) =Gm−1(z) + γmhm(z),

=Gm−1(z) + arg min
h

n∑
i=1

L(yi, Gm−1(zi)− h(zi)).
(3)

GBDT attempts to solve this above minimization problem
numerically via steepest descent, whose direction is the neg-
ative gradient of the loss function evaluated at the current
model Gm−1,

Gm(z) = Gm−1(z) + γm

n∑
i=1

5GL(yi, Gm−1(zi)), (4)

the weight coefficients γm is calculated by:

γm = arg min
γ

n∑
i=1

L(yi, Gm−1(zi)− γ
∂L(yi, Gm−1(zi))

∂Gm−1(zi)
). (5)

Repeat this building trees process until hM (z), and then

Ĝ(z) = GM (z). After we get the models GBDT i, i ∈ {1, 2, 3},
on three objectives. For each being-auctioned loan vj , we
can get its estimations on three objectives, i.e., the terms
in profile Pj by the model output probabilities on positive
classes of these objectives.

V A, {v1, ..., v|V A|}
GBDT i

−−−−−−−−→
i∈{1,2,3}

{(R1, T1, C1), ...,

(R|V A|, T|V A|, C|V A|)}.
(6)

For the scale consistency of different objectives, we re-
process the values in each dimension of Pj by their relative
values, e.g., inverse ranking values in all the being-auctioned
loans. For example, Pj = [101, 111, 51] means loan vj outper-
forms other 100, 110, 50 loans on three objectives respec-
tively. Now, we assessed the being-auctioned loans on three
objectives, in the following, we will make our main effort to
help active lenders select portfolios.

3. PORTFOLIO SELECTIONS
In this section, we introduce the detailed information of

portfolio selections. Generally, portfolio is a famous theo-
ry in finance that attempts to maximize portfolio expected
return for a given amount of portfolio risk, or equivalently
minimize risk for a given level of expected return, by careful-
ly choosing the proportions of various assets [24]. Similarly,
in our study, we maximize the formalized multiple objec-
tives of portfolio for a given level of expected return (Reui ).
In P2P lending, for a given lender, her bidding amount on
specific loans are not significantly different, which are often
the smallest allowed amount (i.e., $25) or integer multiple of
smallest amount (e.g., $50). Thus, when selecting portfolios,
we don’t care about the investment amount of a lender and
we mainly focus on solving a discrete selection optimization
problem. Meanwhile, we also assume “lenders are experi-
enced and rational”, which is one of the most fundamental
assumptions in economics [24, 26].

Specifically, given the active lenders UA with their rate
expectation preferences Reui , i ∈ {1, ..., |UA|} and the pro-
files of being-auctioned loans i.e., Pj , j ∈ {1, ..., |V A|}, we
propose two strategies, i.e., weighted objective optimization
strategy and multi-objective optimization strategy to help
lenders select loan portfolios. The first strategy combines
the three objectives into one single objective via a prede-
fined weighted vector and provides one optimal portfolio for
each lender through a dynamic programming algorithm that
we designed, i.e., DPA. Further, the multi-objective op-
timization strategy optimizes all objectives simultaneously,
and provides all the Pareto-optimal portfolios for each lender
through a novel evolutionary algorithm, i.e., EVA.

3.1 Weighted Objective Strategy
Weighted objective strategy supposes there is a weight vec-

tor αi = (αi1, αi2, αi3) from lender ui to balance the impor-
tance of three objectives. This setting is practical since some
famous platforms, e.g., Prosper or Lendingclub allows users
to preset some criteria, e.g., their expected interest rates,
before searching. The weight vector can also be integrated
into the user profiles.
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Through the multi-objective assessments in section 2.3, we
get the profile terms of each loan, i.e., Pj . Thus, for lender
ui, we can obtain a single weighted objective on all being-

auctioned loans VA: f(x) =
∑|V A|
j=1 αTi Pjxj , where xj is the

boolean selecting label of loan vj . In this case, the portfolio
selection problem for lender ui can be formalized as:

max
x

f(x) =

|V A|∑
j=1

αTi Pjxj ,

s.t.
1

||x||0

|V A|∑
j=1

Revjxj ≥ Reui ,

K ≥ ||x||0,

(7)

where x = (x1, ..., x|V A|) is the selection vector and xj=1
means the j-th loan in VA is selected and put into ui’s port-
folio. K is the portfolio size which is given by lender ui

5. The
objective of this function is to maximize the weighted single
objective, i.e., f(x). The first constraint means that the s-
elected portfolio should satisfy the lender ui’s preference on
rate expectation Reui . This formalization is a discrete con-
strained optimization problem, which is NP-hard and will
need

∑K
i=1

(|V A|
i

)
computations in the worst case.

This problem is difficult to solve directly by convention-
al algorithms since there are two constraints. In this study,
we design a dynamic programming algorithm, namely DPA,
with two main loops to obtain the optimal solution. First,
we convert the declared rate value Revj of each loan in-
to a positive integer representation, e.g., 10.50% → 1050
(Revj is a percentage with two decimal places in our data),
and denote the largest rate value as Rmax, (i.e., Rmax =

maxj∈{1,...,|V A|}Re
v
j ). The weighted objective value of each

loan vj is donated as Prj (i.e., Prj = αTi Pj). DPA is shown
in Algorithm 2, in which D[p][q] denotes weighted objective
of the portfolio with p loans and q summation of rate.

In DPA, the first loop only considers the second con-
straint in problem (7) and can get all the optimal selections
under any p and q, and the computational complexity is
O( 1

2
|V A|K2Rmax). Further, the second loop gets the final

optimal solution by satisfying the first constraint, and the
computational complexity is O(K2Rmax). Please note that,
only the second loop takes the lender’s rate expectation into
consideration, thus the optimal selections provided by the
first loop are the same for all lenders. If we want to get the
final solutions for all lenders, we need to compute for all of
them in the second loop, and thus, the overall computational
complexity is O(max{ 1

2
|V A|K2Rmax, |UA|K2Rmax}).

Through DPA, we can get an exact optimal portfolio for
each lender. However, in many cases, for most lenders, they
are ambiguous or not sensitive about the weights on the mul-
tiple objectives. Thus, we propose another strategy, multi-
objective optimization, to solve portfolio selections.

3.2 Multi-objective Optimization Strategy
Different from the weighted objective optimization strat-

egy, multi-objective optimization strategy does not need a
weight vector and it optimizes the multiple objectives simul-
taneously and obtains a Pareto-optimal portfolio set instead
of a single portfolio for each lender. In this strategy, the
three objective functions on being-auctioned loans VA can

5
Lenders may have different portfolio size K. In practice, we group

lenders based on their K values. At each time, DPA precess all
lenders in a group together with a same K, which is the same in EVA.

Algorithm 2: DPA: Dynamic programming algorithm.

Input: A given lender ui, with her rate expectation Reui ,
All being-auctioned loans VA, and each loan vj ∈VA,
with its declared rate Revj and objective profit Prj ;

Output: Portfolio selection vector x,
Maximum objective profit f(x);

Initialize: x, xj = 0, j = 1, ..., |V A|;
D[0][0] = 0, other D[p][q] = −1;
All G[p][q] = φ;

for j = 1 to |VA| do
for p = K-1 down to 0 do

for q = p*Rmax down to 0 do
if (D[p][q] ≥ 0)∧ (D[p][q] +Prj > D[p+ 1][q+Revj ])

then
D[p+ 1][q + Revj ] = D[p][q] + Prj ,

G[p+ 1][q + Revj ] = G[p][q] ∪ {j};

maxD=0,maxp=maxq=0;
for p = 1 to K do

for q = 0 to K*Rmax do
if q/p ≥ Reui ∧D[p][q] > maxD then

maxD = D[p][q],
maxp=p, maxq=q;

for j ∈ G[maxp][maxq] do
xj = 1;

return x, and f(x) = maxD.

be respectively defined by their corresponding profile terms,
i.e., Pj = [Rj , Tj , Cj ], j ∈ {1, ..., |V A|}. Thus,

f1(x) =

|V A|∑
j=1

Rjxj , f2(x) =

|V A|∑
j=1

Tjxj , f3(x) =

|V A|∑
j=1

Cjxj . (8)

Pareto-optimal portfolio set (A* ). Suppose x and x′

are two feasible solutions/portfolios in the solution space Ω.
x is said to dominate x′ (denoted as x ≺ x′) if and only
if ∀e ∈ {1, 2, 3}, fe(x) ≥ fe(x

′) and ∃e ∈ {1, 2, 3}, fe(x) >
fe(x

′). Thus, a solution x∗ ∈ Ω is Pareto-optimal if there
is no other x ∈ Ω dominates x∗ , i.e., ¬∃x ∈ Ω,x ≺ x∗.
The set A* of all Pareto-optimal solutions/portfolios in the
decision space is called Pareto-optimal or skyline portfolio
set, and each of those solutions can be treated as a specific
trade-off among these contradictory objectives.

In fact, Pareto optimality is a state of allocation or selec-
tion in which it is impossible to make any objective better
off without making at least one objective worse off. Each
selection portfolio in Pareto-optimal set is assessed under
multiple objectives and no other option can categorically
outperform any of the members in this Pareto-optimal set.
In the multi-objective optimization strategy, we try to get
the Pareto-optimal portfolio set as the recommendation can-
didates to each lender. The multi-objective optimization
problem for lender ui can be formalized as follows:

max
x

F(x) =(f1(x), f2(x), f3(x)),

s.t.
1

||x||0

|V A|∑
j=1

Revjxj ≥ Reui ,

K ≥ ||x||0.

(9)

This formalized problem is much more complicated than
the weighted optimization problem (7). Getting the exact
Pareto-optimal solution set for this problem is unpractical.
Inspired by previous studies on multi-objective optimization
[7, 8, 33], evolutionary algorithms are well-suited to solve
multi-objective optimization problems because their inher-
ent parallelism allows them to find a set of Pareto-optimal
solutions in a single run. Being population-based stochas-
tic search approaches, evolutionary algorithms use concepts
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of population and of recombination inspired by Darwinian
evolution. An iterative process is executed, initialized by a
randomly chosen population (portfolios) which is also called
chromosome (i.e., x in our study, which also conforms bi-
nary encoding). In each generation, new solutions or off-
springs are generated through recombination and mutation.
Besides, selection operation in each generation leads the evo-
lutionary process according to the defined fitness function.
For multi-objective problems, fitness functions are often de-
signed based on Pareto domination, e.g., [8, 16]. Evolution-
ary algorithms are often used to solve many complicated
problems with providing approximate solutions efficiently.

However, the conventional multi-objective evolutionary al-
gorithms, e.g., NSGA-II [8], MOEA/D [33], were designed
for one multi-objective optimization problem rather than a
series of similar problems, e.g., portfolio selections for al-
l lenders in our study. Thus, the conventional algorithms
have to run |UA| times independently for all active lenders
in our problem which will take much computation cost. In
fact, for many lenders, their selection problems are similar,
and the only difference is the rate expectation preference
Reui in the second constraint. Especially for some lenders
with similar preferences, their final optimal selections may
also be very similar. Thus, there is no need to reprocess from
beginning for all lenders. In this study, we propose a new
evolutionary algorithm, namely EVA, to solve these series of
optimizations for all active lenders more effectively.
EVA first ranks all active lenders in descending order ac-

cording to their rate expectation preferences Reui . Then, we
have the following theorem:

Theorem 1. If A∗i is the Pareto-optimal solution set for
lender ui, each solution x ∈ A∗i must be a feasible solution
(satisfy constraints) for each lender ui′ , i

′ ∈ {i + 1, ..., |UA|},
and A∗i is a good approximation of the Pareto-optimal solu-
tion set of ui’s next neighbor lender, i.e., ui+1.

Considering Theorem 1, we can simplify and speed up
the convergence processes for lenders ui+1, i ∈ {1, ..., |UA|}
by taking ui’s Pareto-optimal set as initialization. Besides,
EVA adopts a random greedy strategy to repair the infea-
sible individual solutions during evolution. Suppose x is an

infeasible individual, (i.e., 1
||x||0

∑|V A|
j=1 Revjxj < Reui , or K <

||x||0), in each repair, determine an objective e ∈ {1, 2, 3}
randomly, and select j′ ∈ {1, ..., |V A|} such that:

j′ = arg min
j∈{1,...,|V A|}

(fe(x)− fe(xj−))Revj , (10)

where xj− is different from x only in the position j, and
xj−j = 0. Set xj′ = 0, and repeat repairing until x is feasi-
ble. What’s more, EVA selects population in each generation
according to their dominations, which is same with [8, 16].
The whole process of EVA is shown in Algorithm 3.

In each iteration, the computational complication isO(N2)
(N is the population size) since EVA adopts the same selec-
tion operation with that in [8]. Thus, the whole computa-
tional complication is O(|UA|GN2) (G is the iteration gen-
erations). In fact, the iteration times for lenders ui+1, i ∈
{1, ..., |UA|} are much less than that for u1 because of the
special initialization approach in EVA.

Each solution in the Pareto-optimal set is the best under
a certain tradeoff of multiple objectives. After getting the
Pareto-optimal portfolio set, a lender can select one portfolio
from this set autonomously or randomly.

Algorithm 3: EVA: Evolutionary algorithm.

Input: Active lenders UA = {u1, ..., u|UA|},
their preferences on rate expectation {Reu1 , ..., Re

u
|UA|};

All being-auctioned loans VA; and each vj ∈VA,
with its declared rate Revj and assessed profile Pj ;

Output: Pareto-optimal portfolio selections
A∗i = {x1, ...,xi, ...} for lender ui, i ∈ {1, ..., |UA|};

Initialize: Rank UA according to Reui in descending order;
for i from 1 to |UA| do

if i==1 then

Initialize N solutions A1 = {x1, ...,xN} randomly;
Go to Evolution;

else

Initialize N − |Ai−1| solutions {x1, ...,xN−|Ai−1|}
randomly, Ai = A∗i−1 ∪ {x

1, ...,xN−|Ai−1|};
Evolution:
for x ∈ Ai do

Repair x according to Equation (10);

Reproduction:
for j from 1 to N do

Select two individuals randomly from Ai;
Generate one offspring x, repair x, and Ai = Ai ∪ {x};

Select N x from Ai according to their dominations;
Stopping Criterion:
If stopping criterion is not satisfied, go to Reproduction;
Post-processing:
Remove the dominated solutions from Ai, and get A∗i ;
return A∗i .

In summary, for portfolio selections, we first identify the
active lenders in market and get their preferences on rate ex-
pectation, and meanwhile, assess the being-auctioned loans
on multiple objectives. Further, we propose two strategies
to help active lenders select portfolios. Weighted objective
strategy works efficiently and provides an optimal portfolio
for each lender, which depends on a weighted vector from
lenders. Multi-objective optimization strategy can automat-
ically provide an approximate Pareto-optimal portfolio set
for each lender. From the formalizations of these two strate-
gies, we can see that both of them can easily expand to
other or more objectives. We will evaluate the advantages
and disadvantages of these two strategies in experiments.

4. EXPERIMENTS
In this section, we will construct extensive experiments on

a large-scale real-world data set. First, we make data anal-
ysis and explore the lenders’ bidding behaviors from multi-
objective and portfolio perspectives. Second, we evaluate
the performances of multi-objective assessments. Finally,
we evaluate our portfolio selections holistically.

4.1 Experimental Data and Analysis
The experimental data set is collected from one famous

P2P lending platform in America, i.e., Prosper6. This data
contains the transaction records in this platform of almost 6
years. We mainly use three tables of this data set. Listing
table contains the loan temporal status on auction and some
basic credit features of borrowers. This table is mainly used
to extract static features. Bid table contains the specific time
and some information of bid, e.g., bid amount of money, and
the bidding result of each lender on a certain loan. These
investment records are the basis to construct dynamic fea-
tures. Loan table is used to evaluate the performances of a
loan, e.g., default and fully-funded.

We partition the data into five groups, and take four group-
s as training data and the remaining one group as test data.

6
https://www.prosper.com/tools/DataExport.aspx
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Table 3: Experimental data statistics.
#Loan #Lender #Tr1 #Tr2 #Tr3 #VA #UA
387,848 62,782 19,311 310,159 5,355,873 2,233 4,800

In experiments, we adopt five-fold cross-validation and al-
l results are the average of five test rounds. The number
of training instances for GBDT i is denoted as Tri, and the
number of test instances (being-auctioned loans) is denoted
as Te (i.e.,VA). In the test process or portfolio selections, we
select portfolios for lenders every a certain period, e.g., two
weeks, instead of every day. This is because loans being auc-
tioned on neighbor days are almost completely overlapped.
Table 3 shows the basic statistics of the experimental data.

4.1.1 Analysis from Multi-objective Perspective
In this part, we analyze the lenders’ bidding behaviors

from the multi-objective perspective. Figure 2(a) shows the
lender distribution on risk, where the X-axis represents the
non-default loan percent in one lender’s past investments and
Y-axis represents the lender percent. The blue bars are raw
results and red line is fitting curve by Gauss distribution.
Figure 2(b) shows the lender distribution on fully-funded
objective, in which the lender distribution is not uniform.
Figure 2(c) shows the lender distribution on winning-bid
objective. We can see that, only small part of lenders’ bid-
s perform well. In other words, many lenders often suffer
from risk and investment failure. Our goal is to help lenders
select loan portfolios with higher probabilities on all objec-
tives. Figure 2(d) shows the lender distribution on lenders’
rate expectations (Reui ) which is treated as a personalized
restrict in portfolio selections. We can see that most lenders
prefer medium and similar rates, e.g., 0.1-0.15, rather than
highest rates. This characteristic of similar rate expectation
is taken used when designing DPA and EVA.

4.1.2 Analysis from Portfolio Perspective
In this part, we analyze lenders’ bidding behaviors from

portfolio perspective. We randomly select 10 lenders with
more than 100 bidding records. Firstly, we obtain individu-
al loans for each lender, besides, we partition each lender’s
bidding loans into different portfolios based on the time in-
tervals between two neighbor bids, i.e., if the interval of two
neighbor bids is more than 30 days, we partition them in-
to different portfolios. Thus, we get the loan portfolios for
each lender, and we compute the average rate of loans in one
portfolio as this portfolio’s rate. Figure 4 shows the rates of
lenders using box plot, in which the blue boxes represent the
rates of single loans and green boxes represent the rates of
portfolios of lenders. We can see that, different lenders have
different rate preferences; furthermore, for a specific lender,
portfolio rates are much more stable and focused than sin-
gle loan rates. In other word, rate expectation constraint or
preference based on portfolio is more reasonable than that
based on single loans. In fact, in an investment, a lender
may bid several loans whose rates may be quite different,
but the portfolio rate or average rate of these loans is stable
and personalized. This finding demonstrates the rationality
of portfolio recommendation in our study rather than con-
ventional single loan recommendation.

4.1.3 Result of Active Lender Identification
In this part, we report the result of identifying active

lenders. Figure 5 shows the statistical result of active lender
identification. We select the lenders who have lending be-

Lenders
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Figure 4: Rate v.s. single loan and portfolio.

haviors in the previous cumulative days (i.e., TR) before
current time CT in each test round, and get their bidding
results in the following auctions. We can see that, identi-
fied small part of lenders (blue bars) contribute the most
bids (red line), e.g., 6% lenders contribute 85% bids. Thus,
in portfolio selections, we mainly take the lenders who have
bids in previous 10 days before current time CT as the cur-
rent active lenders.
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Figure 5: Lender/bid percent v.s. TR.

4.2 Evaluations of Loan Assessments
In this subsection, we evaluate the performances of multi-

objective assessments for loans. Specifically, we evaluate
both the utilities of dynamic features and the effectiveness
of GBDT models on different objectives.

4.2.1 Setups and Baselines
We denote the GBDT models using all features as GBDT,

and GBDT models only using static features as GBDT S.
We also adopt two comparison models, e.g., Logistic Regres-
sion and Decision Tree, which have been used in previous
studies on P2P lending [9, 34, 22]. Similarly, we denote the
comparison models as LR, LR S, DT, DT S respectively.
All these models get their best performances and parame-
ters through training and validation processes. We adopt
two widely-used metrics, i.e., ROC curve and AUC [2] (area
under ROC curve) to evaluate the assessment results.

4.2.2 Assessment Results
The assessment results are shown in Figure 3. We can see

that, on three objectives, extracted dynamic features can im-
prove the performances of all models significantly, especial-
ly on the fully-funded objective prediction, i.e., about 10%
improvements on AUC of all models. On the other hand,
GBDT models, i.e., GBDT and GBDT S, outperform other
models on all three assessment tasks, especially on the non-
default objective with more than 10% improvements. Thus,
in portfolio selections, we adopt GBDT with all features to
assess the being-auctioned loans.

2081



Non-default Loan Percent of Lender's Investments
0 0.2 0.4 0.6 0.8 1

L
e

n
d

e
r 

P
e

rc
e

n
t 

(%
)

0

1.71

3.42

5.13

6.84

(a)

Fully-funded Loan Percent of Lenders' Investments
0 0.2 0.4 0.6 0.8 1

Le
nd

er
 P

er
ce

nt
 (

%
)

3.4

6.8

(b)

Winning-bid Percent of Lenders' Investments
0 0.2 0.4 0.6 0.8 1

Le
nd

er
 P

er
ce

nt
 (

%
)

0

0.49

0.98

1.48

1.97

(c)
Average Rate (Rate Expectation)

0.05 0.1 0.15 0.2 0.25 0.3

Le
nd

er
 P

er
ce

nt
 (

%
)

0.98

1.97

2.96

(d)
Figure 2: Lender distributions/percents v.s. different objectives.
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Figure 3: Prediction performances of assessments.

Besides, we also show the Pearson correlations of assessed
loans’ profile values on different objectives in Figure 3(d).
This figure tells us that the correlations between loans’ esti-
mated profile values on different objectives are not significant
(i.e., values are less than 0.5). Thus, we can’t get the op-
timal loans on all objectives by recommending or selecting
loans through conventional one-objective techniques.

4.3 Evaluations of Portfolio Selections
In this subsection, we evaluate our portfolio selection ap-

proaches holistically.

4.3.1 Experimental Setups
In EVA, the population size is set as 100; the generations

are set as 150 for first lender and 30 for other lenders; the
crossover rate is set as 0.5; and the mutation rate is set as
50K/|V A|. The portfolio size K is given by each lender. In
selections, actually, we can remove some individual loans in
advance that are dominated by many (i.e., 50) other loan-
s before selecting, since they are almost impossible to be
chosen into any portfolios.

Baseline Methods. To the best of our knowledge, there
are not relevant works on portfolio selections from multi-
ple objectives in P2P lending or other domains. Thus, in
this experiment, we compare DPA, EVA and their variants.
Specifically, we set the comparison methods as follows.
DPA series. For DPA, we adopt multiple different param-
eters α, (i.e., (0.5, 0.3, 0.2),(0.3, 0.4, 0.3),(0.3, 0.5, 0.2),(0.2,
0.6, 0.2)), and the corresponding algorithms are denoted as
DPA1, DPA2, DPA3, DPA4.
EVA series. Since EVA provides a portfolio set rather than
a single portfolio for each lender, for comparison, we respec-
tively select the portfolios with maximum non-default objec-
tive, fully-funded objective and winning-bid objective from
the Pareto-optimal candidate set as the final selections. The
corresponding methods are denoted as EV A1, EV A2 and
EV A3. Besides, we can also select a portfolio randomly
from the Pareto-optimal portfolio set as the final result, and
this method is denoted as EV AR.
EVAR series. As a variant of EVA, EVAR is a conven-
tional evolutionary algorithm similar to EVA, which always

adopts random initializations and needs 150 generations for
all lenders. The other setups in EVAR are the same with
these in EVA. Similar to EVA series, we also get EV AR1,
EV AR2, EV AR3, and EV ARR.
SELF . We also get the results selected by lenders them-
selves or recommending by criteria match, e.g., rate match,
in Prosper, which are denoted as SELF .

Metrics. We adopt the real percents of loans with posi-
tive labels on different objectives (Non-default, Fully-funded,
Winning-bid) in the selected portfolio as our evaluation met-
rics. Besides, we simulate the bidding and repayment pro-
cesses of selected portfolios, i.e., a good loan means this loan
can be fully funded, a lender bid at current will success after
its auction and this loan will repay in time. Thus, through
simulation, we can compute the average return rates of port-
folios for lenders theoretically, which can be treated as an
overall metric considering three objectives. In our data, for
repayment, we only know the default boolean labels without
knowing the specific installments. Thus, when computing
the simulative average return rates, we suppose the default-
ing borrowers will default a certain percent principal amount,
which is set as 30% and 60% respectively, (i.e., Return-0.3
and Return-0.6 are our two overall metrics).

4.3.2 Experimental Results
The selecting results are shown in Table 4. We can see

that, DPA series can get good results with some certain
tradeoffs on different objectives and EVA series perform best,
i.e., EV A1, EV A2, EV A3 perform best on Non-default,
Fully-funded, Winning-bid metrics respectively. Compara-
tively, EVAR series also perform well and a little worse than
EVA series in most cases. However, EVAR needs much more
time cost than EVA which will be reported later. Even the
random selections, i.e., EV AR, from Pareto-optimal set are
much better than the lenders’ own selections on all three
metrics. On the two overall metrics, i.e., Return-0.3 and
Return-0.6, most methods will improve lenders’ returns to
varying degrees. Further, EV A3 and EV A1 can provide the
highest average return rates, i.e., 11.5% and 10.3% return-
s, respectively. In other words, EV A could provide lenders
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Figure 6: Solutions found by different algorithms.

with more economic profits. SELF and several method-
s with low performances on non-default objective even get
negative return rates on Return-0.6.

Figure 6 visualizes the solutions getting from different
methods for a random lender, in which one point represents a
portfolio. X-axis represents the non-default assessment val-
ues (relative values mapping into 0-1), Y-axis represents the
fully-funded assessment values and the color represents the
winning-bid assessment values. We can see that, DPA se-
ries get one portfolio selection while EVA (and EVAR) gets
a Pareto-optimal portfolio set firstly. In fact, DPA with
a certain parameter α is a specific tradeoff on three objec-
tives. Further, the Pareto-optimal portfolio set getting via
EVA is a little better than EVAR’ since the point skyline
or envelope surface of EVA dominates EVAR’. That may
be because EVA adopts the special initialization strategy
which can lead to faster convergence and is more conducive
to inherit the good individuals/solutions.

We also compare the efficiency results of different algo-
rithms. Since DPA only provides one solution for each
lender while EVA gets a solution set, for comparison, we
also report the results of DPA running 50 (Pareto set size)
times, which is denoted as DPAP. The running time results
of seconds (in log scale) are shown in Figure 7. We can see
that DPA and DPAP are most efficient. EVA needs more
time than DPAP does. EVAR takes much more time costs
compared with EVA since it needs more evolutionary gener-
ations. These comparisons of EVA and EVAR demonstrate
the effectiveness and efficiency of EVA.
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Figure 7: Running time results.

5. RELATED WORK
To the best of our knowledge, there are few existing works

on portfolio selections in P2P lending. However, there are
some relevant studies in the P2P lending domain, e.g., loan
risk assessment [9, 23], bidding behavior analysis [4, 18].

Risk assessment and fully-funded prediction are two hot

research topics in P2P lending. For assessing the loan risk or
credit, some conventional classification models were adopt-
ed, such as Logistic Regression [9, 34] and Neural Network
[3]. Fully-funded probability is another important aspect to
assess loans in P2P lending. Herzenstein et al. [14] stud-
ied both the borrower-related determinants and loan loan-
related determinants of funding success in Prosper. Their re-
sults indicated that borrower-related financial determinants
affected funding the most, while loan-related variables me-
diate affected the likelihood of funding success. Ryan et al.
[28] proposed two regression models combining personal and
social determinants and financial determinants for funded
percent and number of bids respectively. These works fo-
cused on a certain objective assessments, e.g., risk or fully-
funded, and none of them adopted or combined the dynamic
features extracted from lenders and auctions.

Bidding analysis especially herding [4, 18], and social com-
munity [13, 6] were also well studied in previous studies. In
[6], authors found lender team was an important community
to help lenders make decision and promoted lending activ-
ities in P2P lending. In [5], authors predicted how likely
a given lender would fund a new loan through a gradien-
t boosting tree method. In [34], authors proposed to rec-
ommend single personalized loans to lenders by considering
both lender preference and loan risk. However, there are few
studies in P2P lending from the multi-objective assessments
or select/recommend portfolios to lenders in P2P lending.

In addition to the studies in P2P lending, works on recom-
mendation may be also relevant to our portfolio selections
to some extent. Recommender system provides suggestions
of items that may interest users and aims to predict users’
preferences with high accuracy [21, 27]. However, in P2P
lending or other financial domains, accuracy may be not as
important as in the traditional recommendations, e.g., elec-
tronic commerce. In [35, 30], portfolio theory was used on
recommendation and information retrieval, but these works
still aim to get single items rather than combination items
like loan portfolios in our study.

6. CONCLUSIONS
In this paper, we proposed a holistic study on portfolio se-

lections in P2P lending. First, we assessed loans on multiple
objectives by a gradient boosting decision tree. We extracted
dynamic features from lenders and auctions for better assess-
ment performances. Then, to help lenders select portfolios,
we proposed two strategies, i.e., weighted objective optimiza-
tion strategy and multi-objective optimization strategy. The
first strategy provided an optimal portfolio and the multi-
objective optimization strategy provided a Pareto-optimal
portfolio set for each lender. In two strategies, two selection
algorithms, i.e., DPA and EVA were designed respectively.

For evaluating our approach, we constructed extensive ex-
periments on Prosper data. The analysis and experimental
results demonstrated the significance of our study and the
effectiveness of our solutions. Specifically, the extracted dy-
namic features and GBDT models significantly improved the
assessment performances. Further, the portfolio selections,
especially the multi-optimization strategy and EVA algorith-
m provided lenders with more economic profits by selecting
Pareto-optimal portfolios both effectively and efficiently.
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