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Abstract. Community Question Answering (CQA) sites such as Yahoo!
Answers provide rich knowledge for people to access. However, the qual-
ity of answers posted to CQA sites often varies a lot from precise and
useful ones to irrelevant and useless ones. Hence, automatic detection
of low-quality answers will help the site managers efficiently organize
the accumulated knowledge and provide high-quality contents to users.
In this paper, we propose a novel unsupervised approach to detect low-
quality answers at a CQA site. The key ideas in our model are: (1) most
answers are normal; (2) low-quality answers can be found by checking
its “peer” answers under the same question; (3) different questions have
different answer quality criteria. Based on these ideas, we devise an un-
supervised learning algorithm to assign soft labels to answers as quality
scores. Experiments show that our model significantly outperforms the
other state-of-the-art models on answer quality prediction.
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1 Introduction
In the last decade, many community question answering (CQA) sites such as
Yahoo! Answers and Baidu Knows have emerged and accumulated a large num-
ber of questions, answers, and users. The quality of answers may be high in the
sense that the answers are precise and useful. However, it may be low in the
sense that the answers are irrelevant to the topic and thus useless. It becomes
an important problem how to detect low-quality answers in order to improve the
experience of user when he browses a question and its answers (a QA thread).

One way to improve user experience in CQA is to provide the best answer for
each QA thread. Many studies have been conducted along this line [7, 21, 23, 18].
However, we have found that many non-factoid questions do not have single best
answers, especially those asking for reasons, instructions or opinions. Therefore,
selection of one best answers may not satisfy the user needs in such cases. In
the meantime, the existence of low-quality answers can seriously decrease user
satisfaction. Therefore, there is a clear need to detect low-quality answers, which
is the problem we want to address in this paper.



There are three main challenges in low-quality answer detection. (1) Manually
labeled datasets are costly and hard to obtain, which is one of the bottlenecks
of existing methods, since they are mainly based on supervised learning. (2)
Existing methods usually focus on relevance measures between questions and
answers. However, a low-quality answer usually uses the same key words with the
question but talks on totally different and irrelevant topics. In this case, it is very
hard to say that they are useless answers. (3) The answer quality criteria may
vary on different questions. For example, for non-factoid questions long answers
are quite common, while for factoid questions short answers are often sufficient.
Existing supervised learning methods usually favor long answers because long
answers tend to have good human judged labels in training datasets.

Table 1 shows an example1 of a question with a low-quality answer. We find
that most answers can answer the question and the high-quality ones (A3-A6)
are quite similar. While, A1 is marked as the best answer in Yahoo! Answers,
but it makes an impolite joke and has no similarities in terms of content to
other answers. Thus, we can pick A1 as low-quality answer from the others by
comparing the differences among them. From this example, we can infer that
low-quality answers are usually outliers from all the other answers.

In this paper, we propose a new method for low-quality answer detection, on
the basis of unsupervised learning. There are three assumptions in our method:
(1) Most answers are normal answers and only a few answers are of low-quality.
(2) Low-quality answers can be found by checking whether they are significantly
different from its peer-answers, i.e. the other answers under the same QA thread.
(3) Different questions should have different answer quality criteria.

Our method takes three solutions based on the three assumptions to tackle
the three challenges. (1) Inspired by outlier detection algorithms, we propose
a novel unsupervised optimization approach to detect low-quality answers by
minimizing the data variance and maximizing the number of normal answers.
(2) We incorporate a set of features which can capture the content differences
between the answer and its peer-answers. (3) We apply the optimization model
on each question individually, rather than on all questions at once.

We conduct experiments with three datasets. We make use of two benchmark
datasets for answer quality prediction: an English dataset with 3,229 question-
s and 20,162 answers, and an Arabic dataset with 1,700 questions and 8,501
answers. We also label a third dataset sampled from Yahoo! Answer with 636
questions and 3,723 answers to test the performances on the popular CQA site.
Experimental results on three datasets show that our method significantly out-
performs other state-of-the-art methods.

Our contributions in this paper are of three-fold:(1) a proposal for an unsu-
pervised optimization model for low-quality answer detection; (2) a proposal of
using a set of features for capturing content differences among peer-answers; (3)
empirical verification of the efficacy of the proposed method on two benchmark
datasets and another dataset from a popular CQA site.

1 https://answers.yahoo.com/question/index?qid=20090408172834AArbCtu



Table 1. An example of a question thread.

Question

What 2 colors make green?

Description

I was painting a mission so I needed green paint for the grass but I run out.

Answers

A1*: You know there is something called google right?

A2: If you are mixing pigments it is blue and green. Things work differently on a computer

and in some photo stuff. If you are mixing paint/pigments lookup RBG color wheel.

A3: Yellow, blue, mix em together.

A4: Blue and yellow.

A5: Blue and yellow, but more yellow than blue.

A6: Blue and yellow?

*: A1 is marked as the best answer.

2 Related Work
Although there have been many studies on CQA, to our best knowledge, no work
has been done aiming at detecting low-quality answers based on the content
differences among answers in a QA thread before. The related work can be
broadly categorized into three threads.

Answer Quality Prediction. In previous studies, there are no commonly
agreed definitions of answer quality in CQA. Jeon, et al. [7] define that a good
answer tends to be relevant, informative, objective, sincere and readable. Sakai,
et al. [20] propose a new evaluation methods based on graded-relevance metrics.
Recently, two workshops of answer quality prediction are hold for SemEval-
2015&2016 Task 3 [15, 16]. The organizers publish large manually judged English
and Arabic datasets where answers are labeled in three levels: good, potential
useful, and bad. And bad answers are subdivided into four categories: Irrelevant,
Dialogue, Non-English and Others. We conduct our experiments on the two
datasets published in SemEval-2015 Task 3.

Despite the lack of agreement on the answer quality definitions, researchers
have made great progress in answer quality prediction these years. In the be-
ginning, many works focus on the methods based on non-textual features. Jeon,
et al. [7] use the maximum entropy approach and kernel density estimation to
predict answer quality scores based on statistics of question and answer. Shah,
et al.[21] propose a supervised method based on additional user information,
which is considered as one of the state-of-the-art methods who use only non-
textual features. Recently, a workshop in SemEval-2015 Task 3 [15] starts to
target on semantically oriented solutions using rich language representations.
Tran, et al. [23] and Nicosia, et al. [18] win on English and Arabic datasets
respectively by using supervised methods with various of lexical, syntactic and
semantic similarity measures. We take the methods of Shah, et al. [21], Tran, et
al. [23] and Nicosia, et al. [18] as three baselines in this paper.

Review Spam detection. Review spam detection are also related to our work.
Crawford, et al. [4] categorize review spams into three groups in their survey:
untruthful reviews, reviews only on brands and non-reviews. By representing a
review using a set of features of reviews, reviewers and products, classification
techniques are used to assign spam labels to reviews [8, 11].

However, our work on low-quality answer detection is clearly different from
review spam detection on three aspects. (1) Target: our work only detects irrel-



evant and useless answers. While as suggested by Crawford, et al. [4], a good
review spam detection system should be able to identify whether a review is fake
or untruthful. (2) Feature: a bunch of features representing the relevance between
question-answer pair can be used in our work. While review comments can only
refer to product names, thus features may heavily rely on review content. (3)
Candidates: a question only have seven answers on average (See Section 4), while
a popular product may have thousands of review comments.

Anomaly Detection. Anomaly detection (also known as outlier detection),
referring to the problem of finding patterns in data that do not conform to
expected behavior, is also related to our work. Hodge, et al. [6] indicate in
their survey that techniques in unsupervised mode do not require training data,
and thus are most widely applicable on this problem. Unsupervised methods
make the implicit assumption that normal instances are far more frequent than
anomalies [3]. Based on this assumption, many optimization models are proposed
based on minimizing a customized loss function of data variance, where variables
are classification labels of 0(anomaly) or 1(normal), and parameters are features.
And techniques like soft labels [12] and gradient descent method [25] are proved
useful when solving the optimization problems.

Our work still makes a difference with classical anomaly detection methods
on the scope of similarities between instances. In anomaly detection, instances
usually share lower similarities. For example, in review spam detection, reviews
are often on a wide range of topics. While in CQA, questions, especially factoid
questions, usually have very specific information needs, which narrow the topics
and contents of answers. Thus, similarities in answers tend to be higher than in
reviews. We take advantage of this characteristic in our optimization model.

3 Our Method of Low-Quality Answer Detection

In this section, we first formally present the problem of low-quality answer de-
tection, and then illustrate our three key assumptions, and then devise a unsu-
pervised method, and finally propose a set of features.

3.1 Problem

Given a question q and a set of its n answers {a1, a2, · · · , an}. Each answer ai
is represented by an m-dimensional feature vector xi = {xi1, xi2, . . . , xim}⊤. All
answers {ai} construct a m× n feature matrix X = {x1,x2, . . . ,xn}.

Our goal is to learn a label vector y = {y1, y2, . . . , yn}⊤ with yi ∈ {0, 1},
where yi = 0 means the corresponding answer ai is low-quality, and yi = 1
means ai is a normal one and should be kept.

3.2 Assumptions

The first assumption is based on the observations in Table 1. In fact, most
unsupervised anomaly detection methods have the same implicit assumption [3].
And the labeled datasets in Table 3 verify that it is true. And it helps to construct
the second factor of our loss function in Formula (1).



Assumption 1 Most answers under a question are normal ones and only a few
of them are low-quality answers.

Secondly, a question usually has specific information needs, which makes
answers tend to have similar content. Then if an answer is significantly different
with its peer-answers, it is likely to be low-quality. The second assumption helps
to construct the first factor of Formula (1), and also inspires us to design features
to capture the content differences between an answer and its peer-answers.

Assumption 2 Whether an answer is low-quality or not can be known by check-
ing its peer-answers.

Moreover, different questions should judge answers in different quality crite-
ria. For example, non-factoid questions favor long answers, and general questions
expect yes/no, and factoid questions accept short noun-phrase, etc. Based on this
observation, we have the third assumption, and apply our unsupervised model on
each question instance, rather than on overall questions like supervised models.

Assumption 3 Questions should have different answer quality criterion.

3.3 Method

We propose an unsupervised learning approach to detect low-quality answers by
minimizing the data variance and maximizing the number of kept answers.

Let X · y denotes average weighted vector 1
n

∑n
i=1 yi · xi. According to As-

sumption 3, we consider the optimization problem for each question instance:

argmin
y={yi}

1

mn

n∑
i=1

||yi · xi −X · y||2 − α

n

n∑
i=1

yi (1)

s.t. yi ∈ {0, 1}, 1 6 i 6 n

Where 1
mn

∑n
i=1 ||yi·xi−X · y||2 comes from Assumption 2, representing the data

variance averaged on feature count. It will lead answers to have same labels, and
those significantly different with other answers to have label 0. And −α

n

∑n
i=1 yi

comes from Assumption 1, helping to maximize number of answers with label 1,
and α denotes the trade-off for the number of kept answers.

Formula (1) is novel in anomaly detection methods [12]. As described in Sec-
tion 2 and Assumption 2, questions have specific information needs thus narrow
topics, then answers tend to be more similar than instances in classical anoma-
ly detection, such as reviews. We use variance with average weighted vector:
||yi · xi − X · y||2, instead of using variance with prediction: ||f(xi) − yi||2, or
variance with average vector: ||xi − x||2. In this way, the negative influence of
low-quality answers is removed by labeling them 0, and the similarities between
high-quality answers are highlighted since their feature values are similar.

This is an 0-1 programming problem, and thus it is NP-hard. To solve it, we
adopt the soft label technique [12] and soften the label constraints to interval [0,
1]. By this means, it becomes a probabilistic constraint solving problem, and the
learned distribution can represent the probabilities to be high-quality answers.
By denoting as L({yi}), we have a new optimization problem:



argmin
{yi}

L({yi}) = argmin
{yi}

1

mn

n∑
i=1

m∑
j=1

(yi · xij −
1

n

n∑
k=1

yk · xkj)
2 − α

n

n∑
i=1

yi (2)

s.t. 0 6 yi 6 1, 1 6 i 6 n

We employ a coordinate descent method to solve Problem (2) by taking yi
as a variable and fix other labels in each iteration. We calculate the partial
derivative of L({yi}) with respect to yi, and set the result to be 0, we have

∂L
∂yi

=
2(n− 1)

mn2
||xi||2 · yi −

2

mn2

n∑
k=1,k ̸=i

x⊤
i · xk · yk − α

n
= 0

s.t. 0 6 yi 6 1

By defining the solution as ŷi, we have:

ŷi =
2
∑n

k=1,k ̸=i x
⊤
i · xk · yk + αmn

2(n− 1)||xi||2

Then the optimal solution of Problem (2) is:

y∗i =

{
0, if ŷi < 0,
ŷi, if 0 6 ŷi 6 1,
1, if ŷi > 1.

The procedure ends when the Euclidean distance of two label vectors in
consecutive iterations is less than ϵ or iteration number exceeds N2. The final
{y∗1 , y∗2 , . . . , y∗n} represents the possibilities of being normal answers. A threshold
µ ∈ [0, 1] is used for classification, if y∗i < µ, then ai is a low-quality answer.

3.4 Features

Given a question q, and its description d and n answers {a1, a2, · · · , an}, we have
173 features for each answer ai. We choose these features because they represent
nearly all aspects of a question-answer pair.

Table 2 clusters them into five groups. Group 1,2 and 3 are widely used and
proved to be effective [23, 18, 21]. And Group 4 is a simple expansion of Group 3.
We propose the last group, which seems to be new for answer quality prediction,
as far as we know, although the idea is quite simple. All features are normalized
to interval of [0, 1] in our unsupervised models.

Question Features: features with prefix “Q” (denoted as {f1(q)}, and its
feature index set is denoted as FQ) are obtained from statistics of question’s and
asker’s information. Although all ai share the same feature values (normalized
0 or 1) in this group, {f1(q)} can still be proved to be useful: in Formula (2), if
t answers are classified as 1, the contribution of {f1(q)} in the first factor is:

1

mn

n∑
i=1

∑
j∈FQ

(yi · xij −
1

n

n∑
k=1

yk · xkj)
2 =

t(n− t)

mn2

∑
j∈FQ

x2
1j (3)

2 We set ϵ = 0.00001 and N = 200 in our experiments



Table 2. Features of low-quality answer detection

Feature #∗ Description [23] [18] [21]

Q len 2 Word # of q and d. ⃝

Q category 1

The q’s category. This feature is discretized to c boolean dimen-

sions, where c equals to # of categories. ⃝
Q ans# 1 # of answers for the q. ⃝
Q u post# 2 # of total questions and answers of the asker. ⃝ ⃝

Q u other 5

Other features of the asker: points, level, # of best answers, # of

resolved questions and star count. ⃝
A len 1 Length of the ai. ⃝
A rank 1 Reciprocal rank of the ai in the answer list. ⃝

A symbol 2

Two booleans to identify whether the ai contains some special

strings (question marks, laugh symbols), and words which are only

frequent in bad answers. ⃝
A u same 1 A boolean to indicate whether answerer is the asker. ⃝
A u post# 2 # of total questions and answers of the answerer. ⃝ ⃝

A u other 5

Other feature of the answerer: points, level, # of best answers, #

of resolved questions and star count. ⃝
QA word 1 Cosine similarity of bag-of-word vectors of qa pair ⃝

QA ngram 20

5 similarity measures for n-grams(n ∈ {1, 2, 3, 4}) of qa pair:

greedy string tiling[24], long common subsequence, Jaccard index,

word containment[13] and cosine similarity. ⃝
QA pos 1 Cosine similarity of bag-of-POS[22] tags vectors of qa pair ⃝

QA noun 1

Cosine similarity of bag-of-noun vectors of qa pair. Noun are words

containing “NN” in POS tags. ⃝

QA tfidf 2

Sum of tf-idf[17] scores in answer collection of intersect subset of

unigrams/bigrams between q and ai. ⃝

QA dep 1

Cosine similarity of of bag-of-word-dependency vectors of qa pair.

We parse sentences to dependency trees[10] and regard dependency

arcs (like “pre:buy-for”) as words. ⃝
QA meteor 1 Alignment score from Meteor Toolkit[5] between q and a. ⃝
QA lda 1 Cosine similarity of LDA[2] topic vectors of qa pair. ⃝

QA w2v 1

Alignment score between q word vectors and to ai word vectors

from pre-trained word2vec model[14]. (See details in [23]) ⃝

QA trans 1

Translation probability[1] from q to a by utilizing pre-trained trans-

lation model. (See details in [23]) ⃝
DA repeat 30 For each method in {f3(a, q)}, get f3(d, ai) as feature.

QDA repeat 30 For each method in {f3(a, q)}, get f3(q + d, ai) as feature.

AP repeat 60

For each method in {f3(a, q)}, get maxp̸=i(f3(ai, ap)) and
1

n−1

∑
p̸=i(f3(ai, ap)) as features.

*: The second column represents the actual feature count.

When
∑

j∈FQ
x2
1j ̸= 0, Formula (3) have minimum value when t = 0 or t = n.

And influenced by −α
n

∑n
i=1 yi, t will approach n.

Answer Features: features (denoted as {f2(a)}) with prefix “A” are obtained
from the statistics of answer ai and the answerer’s information.

Question-to-Answer Features: features (denoted as {f3(q, a)}) with prefix
“QA” are obtained from contents of question-answer pair. The relevance of q
and ai are measured by various similarities on lexical, syntactic and semantic
levels. Many of the state-of-the-art methods focus on this part.

Description-to-Answer Features: features (denoted as {f4(d, q, a)}) in DA repeat
and QDA repeat are obtained from contents of question, description and answer.
DA repeat take the same feature calculation methods in {f3(q, a)} to measure
the relevance between d and ai. QDA repeat does the same way by concatenating
question and description.



Table 3. Labeling guideline and label distribution

Label Description Qatar Fatwa Yahoo

Good

The answer directly responds to the question with relevant

and useful content. 49.3% 20.2% 66.3%

Potential The answer is potentially useful to the question. 10.0% 22.5% 11.3%

Bad

The answer is bad or irrelevant that the asker does not ex-

pect to receive. 40.7% 57.3%∗ 22.4%

- Irrelevant The answer is totally irrelevant to the question. 17.9% - 12.5%

- Dialogue

The answer does not directly respond to the question but

hold an irrelevant chat, such as expressing gratitude or ask-

ing questions. 22.3% - 8.0%

- Non-English Irrelevant non-English answer. 0.5% - 1.5%

- Other Other irrelevant answer, such as advertisements. 0.0% - 0.4%

*: Bad answers in Fatwa are manually added as noise data, so the proportion is large.

Answer-to-Peer Features: features (denoted as {f5(a, ap)}) in AP repeat are
obtained from answer ai and its peer-answers {ap|1 6 p 6 n, p ̸= i}. They
consist of two basic values: maximum and average of the similarities between ai
and peer-answers {ap} by repeating the feature methods in {f3(q, a)}. According
to Assumption 2, we propose these features to capture the differences between
bad answers and peer-answers.

The time complexity of our method consists of two parts: feature calculation
and coordinate descent method. In feature calculation, the time complexity is
O((lQ+ld)lamn2), where lQ, ld, la the maximum length of questions, description-
s and answers, respectively, and m,n are the feature count and answer count,
respectively. In coordinate descent method, it is O(Nmn2), where N is the max-
imum iteration count. How to improve the efficiency of the process is still an
interesting topic for future research that we will not address at this time. One
possibility is to calculate the features off-line and store them in database.

4 Experiment

4.1 Experimental Setup

Datasets Preparation. We conduct experiments on three datasets: two public
datasets from a workshop for SemEval-2015 Task 33 and our labeled dataset from
Yahoo! Answers, and their statistics are given in Table 4.

Qatar Corpus: The workshop provides an large English dataset from Qatar
Living website. Each question contains a description, several answers and aliases
of askers and answerers. Each answer is labeled with one of six labels: “Good”,
“Potential”, “Irrelevant”, “Dialogue”, “Non-English”, “Other”. The last four are
regarded as “Bad” answers. See Table 3 for labeling guidelines and distribution-
s. The task provides a split: Train, Dev and Test, for training model, tuning
parameters and testing performances, respectively.

Fatwa Corpus: The workshop also provides an Arabic dataset from The Fatwa
website. Each question has five answers, some of them are carefully answered
by knowledgeable scholars in Islamic studies, while some are answers to other
questions. Each answer is labeled with one of three labels: “Good”, “Potential”
and “Irrelevant”. The task also provides a split: Train, Dev and Test.

3 http://alt.qcri.org/semeval2015/task3



Table 4. Overview of three CQA datasets

Qatar Fatwa Yahoo

Train Dev Test Train Dev Test Train Test

# of question 2,600 300 329 1,300 200 200 419 217

# of description 2,599 300 329 1,300 200 200 367 175

# of answer 16,541 1,645 1,976 6,500 1,000 1,001 2,407 1,316

# of answer per question 6.3 5.5 6.0 5.0 5.0 5.0 5.7 6.1

# of good answer 8,069 875 997 1,300 200 215 1,582 888

# of potential answer 1,659 187 167 1,469 222 222 278 144

# of bad answer 6,813 583 812 3,731* 578* 564* 547 284

- # of irrelevant answer 2,981 269 362 - - - 305 160

- # of dialogue answer 3,755 312 435 - - - 196 101

- # of non-English answer 74 2 15 - - - 36 18

- # of other answer 3 0 0 - - - 10 5

*: Bad answers in Fatwa are manually added as noise data, so the number is large.

Yahoo Corpus: In order to evaluate our methods on popular CQA site, we
also label a dataset from Yahoo! Answer. Specifically, we crawl 6.4M questions
associated with descriptions, answers and users’ information4 from Yahoo! An-
swer using a public API5. We then sampled 636 questions for labeling. Two
expert labelers are invited to give each answer one of six labels with guideline in
Table 3. If the judges disagree on an answer, we invited a third expert to make
the final decision. We provide a split by ratio 2:1: Train and Test, for tuning
parameters by cross validation, and testing performances, respectively.

Preprocessing. We illustrate the preprocessing method on each corpus. (1) We
prepare an initial collection {q, d, {ai}} consisting of questions with descriptions
and answers, where words are stemmed and stopwords are removed. (2) We
prepare a concatenated collection {qd, {ai}} by concatenating q and d. (3) We
prepare a document collection of qd and ai to train a LDA model and a Word2vec
model. (4) We prepare a mapping collection where qd is source and ai is target
to train a translation model.

The tools we used are: Stemmers(English/Arabic) in Lucene system6 for
word stemming, stopword lists(English/Arabic) from the Ranks website7 for
stopword removal, GibbsLDA++8 for training LDA models, Word2vec tool9 for
training word2vec models, GIZA++10 for training translation models, Stanford
Tagger11 and Parser 12(English/Arabic) for part-of-speech tagging and depen-
dency parsing, and Meteor System13(English/Arabic) for translation alignment
score evaluation.

Evaluation Measure. We use four widely used measures to evaluate the per-
formances: accuracy, precision, recall and F1-score.

4 Features of Q u other and A u other in Table 2 are only traceable in Yahoo dataset.
5 http://developer.yahoo.com/answers
6 http://lucene.apache.org/
7 http://www.ranks.nl/stopwords
8 http://gibbslda.sourceforge.net/
9 https://code.google.com/archive/p/word2vec/

10 http://www.statmt.org/moses/giza/GIZA++.html
11 http://nlp.stanford.edu/software/tagger.shtml
12 http://nlp.stanford.edu/software/lex-parser.shtml
13 http://www.cs.cmu.edu/ alavie/METEOR/



Table 5. Low-quality answer detection results on Qatar, Fatwa and Yahoo datasets

Corpus Measures SS [21] SU NS [18] NU TS [23] TU AS AU OS OU

Qatar

Precision 50.0 49.6 54.3 55.0 64.6 69.8∗ 64.7 70.1∗ 67.0# 73.6∗

Recall 76.5 72.7 71.2 67.8 79.2 71.7 80.3 72.3 80.5 75.3

F1-score 60.5 57.7 61.6 60.7 71.2 70.7 71.6 71.2 73.1# 74.4

Accuracy 58.9 56.2 63.5 64.0 73.6 75.6∗ 73.9 75.9∗ 75.7# 78.8∗

Fatwa

Precision 56.7 56.8 80.9 79.4 84.3 84.7 84.5 84.8 87.3# 89.4∗

Recall 84.9 91.8∗ 87.8 90.4∗ 88.3 90.4∗ 89.3 89.9 90.1 90.5

F1-score 68.0 70.2∗ 84.2 84.6 86.3 87.5 86.8 87.3 88.7# 90.0

Accuracy 54.9 56.0∗ 81.4 81.4 84.1 85.4∗ 84.7 85.2 87.0# 88.6∗

Yahoo

Precision 51.4 54.0∗ 47.6 49.3 59.8 65.7∗ 63.5 69.1∗ 66.4# 73.6∗

Recall 64.1 56.2 66.2 52.0 76.2 67.4 78.8 73.2 79.2 75.5

F1-score 57.1 55.1 55.4 50.6 67.0 66.5 70.3 71.1 72.2# 74.5∗

Accuracy 79.2 80.2 77.0 78.1 83.8 85.4 85.6 87.1 86.9 88.9∗

Bold: the highest performance in terms of the measure.

*,#: statistically significant improvement of our models (two-sided sign-test, p < 0.05).

Baselines and Our Methods. We consider four state-of-the-art baselines:
Tran, et al. [23] and Nicosia, et al. [18] use feature-rich supervised models and
win first place on the Qatar and the Fatwa datasets respectively, denoted as TS

and NS . Method of Shah, et al. [21] is another state-of-the-art method among
supervised methods using only non-textual features, denoted as SS . We create
another supervised baseline by utilizing all above features plus DA repeat and
QDA repeat features, denoted as AS . Features of baselines are listed in Table 2.

To evaluate the effectiveness of answer-to-peer features, we create a super-
vised model by utilizing all features in Table 2, denoted as OS .

Last, and most importantly, to evaluate the effectiveness of our unsupervised
method, five comparison models are considered. They are the unsupervised mod-
els based on the same features from TS , NS , SS , AS and OS , denoted as TU ,
NU , SU , AU and OU respectively.

Parameter Tuning. There are three parameters in supervised models and two
parameters in unsupervised models need to be tuned.

We train SVM classification models for supervised methods by the tool of
SVMLight [9]. There are three parameters {c, j, b}14. The ranges are: c in {0.001,
0.002, 0.005, 0.01, · · · , 50}, j in {0.5, 1, 1.5, · · · , 8}, and b in {1, 0}. For Qatar
and Fatwa datasets, we train models on Train sets, and choose the combinations
with best F1-score on Dev sets. And for Yahoo dataset, we conduct four-fold
cross validation on Train set and choose the one with the best F1-score.

In unsupervised methods, there are two parameters: the tradeoff weight α
and decision threshold µ. The ranges are: α in {0, 0.1, 0.2, · · · , 1}, and µ in {0,
0.01, 0.02, · · · , 1}. We choose the combinations with best F1-scores on Dev sets
for Qatar and Fatwa and on Train set for Yahoo.

4.2 Main Results
Table 5 shows the results on Qatar(English), Fatwa(Arabic) and Yahoo(English).
The experimental results show that: (1) Our unsupervised model OU outper-

14 c: trade-off between training error and margin. j: cost-factor of training errors dif-
ference between positive and negative examples. b: use biased hyperplane or not.



forms all baseline methods on three datasets for nearly all metrics. (2) And our
supervised model OS outperforms other supervised methods on three datasets
for all metrics. Most of the improvements are statistically significant by two-
sided sign-test (p < 0.05). The results indicate that our methods are effective
for low-quality answer detection.

4.3 Analysis Based on Models

We investigate the main reasons of the improvements of our unsupervised method.
(1) Supervised models do not take advantage of the fact that only minority

are low-quality answers. Therefore, more answers are tended to be classified
as bad answers. That is why supervised models often have high recall but low
precision on this problem. This is particularly serious when the question is short.
Specifically, for short questions, feature values are usually small on relevance
measures. Then answers will have low SVM score and tend to be classified as bad
answers. For example, we observe that TS misclassifies all six correct answers
under question “Write 5/2 as a percent?”, since all the answers do not have
common words with the question. While our unsupervised method TU only
misclassifies one, which increases the precision.

(2) Answers in supervised models share the same quality criteria. For exam-
ple, it can be inferred from the labeled datasets that longer answers tend to be
“Good”. Thus, the supervised models have a bias on short answers. This bias
causes misclassification when short answers are also acceptable. For example,
for question “What is your favorite poptart flavor?”, six in eight are one-word-
answer “strawberry”. We observe that TS misclassifies them to be bad. While
our unsupervised method TU applies on each question instance, and is able to
capture the high similarities between these answers. TU results in the safest
solution by assigning them all “Good”, which increases the precision again.

4.4 Analysis Based on Features

In Table 5, our unsupervised model OU effectively improves supervised model
OS , while others with less features are not the same. For example, AU is only
comparable with AS , and SU is even worse than SS on Qatar and Yahoo. Since
feature utilization is the only difference between unsupervised models, an inter-
esting question is: what features are effective or useless in unsupervised models?

(1) We study on the effective features for unsupervised models. Notice that by
bringing in extra answer-to-peer features, both OS and OU outperform AS and
AU , and OU is even better then OS , while AU and AS have similar performances.
We investigate the main reason of effectiveness of answer-to-peer features.

Many baselines focus on the relevance between question and answer, but over-
look the difference between answer and its peer-answers. In fact, normal answers
in a question usually share words that bad answers do not have. For example, for
question “Where can I buy carrot cake?”, most normal answers contain the same
shop names but do not contain “carrot cake”. While one bad answer expresses
his dislike on carrot cake, which is useless to the question but contains “car-
rot cake”. AS gives out totally opposite wrong classifications. On the contrary,
answer-to-pear features in OS provide more clues for identifying normal answers,
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then less normal answers are predicted to be bad, which increases the precision
indeed. Moreover, OU uses the strategy of operating on each question instance,
then the effects of answer-to-peer features are larger in a single question than in
the whole dataset, which makes OU has better performances than OS .

(2) Then, we investigate on the useless features for unsupervised model. A
feature is useless if it is uncorrelated with human labels. Specifically, we assign
2, 1 and 0 to “Good”, “Potential” and “Bad” answers, respectively. By this
means, each feature has two vectors in a dataset, one is the vector of feature
values, the other one is the assigned label vector, both dimensions are the size of
dataset. We then calculate the Pearson correlation coefficient for the two vectors
to represent the correlation between a feature and human labels.

Fig. 115 (left) counts the features according to correlation coefficients. All
values turn out to be in range of [-0.3,0.3]. We divide them into five groups by
thresholds {-0.1, -0.01,0.01,0.1}. We find that: 20% of features are highly positive
correlated with quality, such as QA w2v, QDA trans, QDA w2v, etc.; 25% are
median positive, such as QA tfidf, DA lda, QDA meteor, etc.; 4% are highly
negative, such as A u same, A len; 20% are median negative, which include most
of answer-to-peer features. While 32% have near-zero coefficient, we treat them
as uncorrelated with human labels, such as A rank, A symbol, etc.

To test the effectiveness of uncorrelated features, we conduct another experi-
ment for OS and OU by removing uncorrelated features, denoted as OS

− and OU
−.

Fig. 1 (right) shows their performances on Qatar dataset: OS
− drops apparently

from OS in supervised scope, while OU
− drops slightly from OU in unsupervised

scope. There are two reasons for these changes. Firstly, features are normalized
in unsupervised methods but not normalized in supervised methods. Therefore,
those features uncorrelated in unsupervised models may be correlated in su-
pervised models. Secondly, features have global influences in supervised models,
since all feature weights will change if any feature is removed. While uncorrelated
features may have limited influences in unsupervised models since it is operating
on each question instance. Take feature A symbol as an example. In fact, only a
few answers with special symbols and words inside are influenced by this feature.

15 To save space we only report the results on Qatar dataset. The results in terms of
Fatwa and Yahoo have similar trends.



4.5 Analysis Based on Data Sources

It is interesting to notice that, Fatwa dataset has more bad answers than other
answers (see Table 3), which seems inconsistent with Assumption 1, but its
performance scores are even higher than in Qatar and Yahoo (see Table 5).
In fact, the Fatwa dataset is quite different. As we described in Section 4.1,
bad answers in Fatwa are manually inserted as noise data. Thus, organizers can
create as many bad ones as they want. That is why Fatwa has more bad answers.
Moreover, all answers in Fatwa are carefully answered to the original questions.
This means they are normal originally. Therefore, it is easier to distinguish a
bad answer from other answers in Fatwa since they have totally different topics.

In order to confirm our guess, we investigate the divergences between bad
and normal answers on each dataset. Specifically, (1) for each feature, we get the
min and max among all answers. (2) Then we split the region [min,max] into
100 slots, and count bad/normal answers on each slots, and then divide by total
bad/normal answer count to get a discrete distribution. Thus, for each feature
we have a distribution of bad answers and a distribution of normal answers. (3)
We calculate a Jensen-Shannon divergence for the two distributions. (4) Finally,
we count divergences in three slots [0, 0.1], (0.1, 0.3) and [0.3, 1].

Fig. 2 shows the results on three datasets. 61% of features in Fatwa have big
divergences ([0.3, 1]), which is much larger than Qatar’s 16% and Yahoo’s 10%.
It means that in Fatwa bad answers are more different from normal answers,
making it easier to detect bad answers. Meanwhile, 65% of features in Yahoo
have small values ([0, 0.1]). It means that in Yahoo bad answers are more am-
biguous with normal answers, making it more difficult to detect bad answers.
That explains why Yahoo has the lowest performance scores.

4.6 Analysis Based on Answer Labels

We study the effectiveness on different answer types. Models of AS , OS and OU

are used to see the gradual changes, where OS uses extra answer-to-peer features
to improve AS , and OU uses unsupervised model to improve OS . We study on
Qatar dataset since it is the largest one with full labels.

Figure 3 shows the number of correct and wrong predictions on each answer
type16. (1) It is interesting to notice that OS improves AS mainly by reducing
false predicted “Good” answers. It indicates that answer-to-peer features help to
reduce false detections in supervised model, which also confirms the statements
in Section 4.4. (2) It is also interesting that the “Potential” answers have exactly
fifty-percent precision, well proving that they are potentially useful or useless.
(3) OU classifies less answers to be low-quality based on Assumption 1. There-
fore, precision on “Good” answers is significantly improved, while the recall of
“Irrelevant” answers also drops. (4) The performances on “Dialogue” answers is
steady since some features are too strong, such as A u same, A u symbol, etc.
For example, nearly all answers are labeled by “Dialogue” if their answerers are
identical with the askers, or they contain special words like “thank”.

16 “Non-English” and “Other” answers are categorized into “Irrelevant” answers.
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4.7 Analysis Based on User Experience

As we discussed in Section 1, the target of detecting low-quality answers is to
improve the user experience when he browses a question page. A user usually
browse answers from top-ranked to lower-ranked on question page. A top-ranked
low-quality answer will reduce the user experience.

We conduct a re-ranking experiment to study whether user experience can be
improved by our method. Specifically, (1) re-rank the answers according quality
scores by descending order. (2) then evaluate user experience by precision at top
positions (Precision@1,2,3) [19] and mean reciprocal rank (MRR) [19] methods.
We report the results on Yahoo Test data since we can only get the original rank
from Yahoo! Answer.

Fig. 4 shows the result of original rank (denoted as “Org”) and the re-ranking
results of three different models AS , OS and OU . We can see that the user ex-
perience is improved by answer quality prediction methods from original rank
results, which means some low-quality answers are correctly removed from the
top positions by re-ranking methods. Moreover, the better method in classifica-
tion generates better result in re-ranking. For example, OU has better classifi-
cation result than OS in Table 5, and OU also has better re-ranking result than
OS in Fig. 4. It is easy to understand that classification performance is highly
correlated with re-ranking performance.

5 Conclusion

In this paper, we have investigated the problem of low-quality answer detection
in community question and answering. We propose an unsupervised learning
method based on three assumptions that most answers under a question are
normal ones, and low-quality answers are different from other answers under
the same question, and questions have different quality criteria. We propose a
set of features to describe the difference from answers by taking advantage of
the state-of-the-art methods. We empirically study the efficacy of the proposed
unsupervised learning method as well as supervised methods on three datasets
from the websites of Qatar Living, the Fatwa and Yahoo! Answer. The evalu-
ation results show that our unsupervised method can significantly improve the
supervised method on low-quality answer prediction.
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