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Abstract

Recognizing lexical entailment (RLE) always plays an im-
portant role in inference of natural language, i.e., identify-
ing whether one word entails another, for example, fox en-
tails animal. In the literature, automatically recognizing lex-
ical entailment for word pairs deeply relies on words’ con-
textual representations. However, as a “prototype” vector, a
single representation cannot reveal multifaceted aspects of
the words due to their homonymy and polysemy. In this pa-
per, we propose a supervised Context-Enriched Neural Net-
work (CENN) method for recognizing lexical entailment. To
be specific, we first utilize multiple embedding vectors from
different contexts to represent the input word pairs. Then,
through different combination methods and attention mecha-
nism, we integrate different embedding vectors and optimize
their weights to predict whether there are entailment relations
in word pairs. Moreover, our proposed framework is flexible
and open to handle different word contexts and entailment
perspectives in the text corpus. Extensive experiments on five
datasets show that our approach significantly improves the
performance of automatic RLE in comparison with several
state-of-the-art methods.

1 Introduction

Recognizing Textual Entailment (RTE) is an important task
in natural language processing, particularly for applications
such as text summarization, information retrieval, question
answering, paraphrasing and others (Androutsopoulos and
Malakasiotis 2010). RTE involves pairs of sentences, such
as the following (Turney and Mohammad 2015):

Text: George was bitten by a dog.
Hypothesis: George was attacked by an animal.

The objective of RTE is to develop algorithms that can de-
termine whether the text sentence entails the hypothesis sen-
tence. In many cases, to recognize the entailment between
sentences, we must first be able to recognize the entail-
ment between words (Geffet and Dagan 2005), which is
called Recognizing Lexical Entailment (RLE). In the exam-
ple above, if we are able to recognize that bitten entails at-
tacked and dog entails animal, we can conclude that the text
entails the hypothesis.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.∗Corresponding author.

The state-of-the-art methods for RLE rely on represent-
ing each word x with a “prototype” vector x of contextual
features, i.e., distribution of other words that tends to ap-
pear in its vicinity. Based on the vector representations of the
words, most works can be grouped into two parts: unsuper-
vised methods and supervised methods. The unsupervised
RLE methods mainly use asymmetric similarity functions
to measure the existence of the entailment relations in word
pairs (Santus et al. 2014; Kotlerman et al. 2010). Supervised
methods learn the asymmetric operator from a training set,
which thus can perform better. Those supervised methods
differ by the way they represent each candidate pair of words
(x, y), such as concatenation x⊕ y (Baroni et al. 2012) and
difference y − x (Fu et al. 2014). Recently, more sophisti-
cated representations have also been tested (Turney and Mo-
hammad 2015).

However, due to the homonymy and polysemy of words,
capturing the semantics of a word with a single vector can
be an unattainable goal (Reisinger and Mooney 2010; Hua
et al. ). For instance, the word club is similar to both bat and
association, but these two words are not similar to each other
in general contexts. Thus only a single “prototype” vector
cannot reveal multifaceted aspects of a word.

To overcome the shortcomings of single representation
of a word, in this paper, we propose a supervised Context-
Enriched Neural Network (CENN) method for RLE. Specif-
ically, we use multiple word embeddings with different con-
texts to represent words and word pairs, which can capture
much more aspects of the language. Then we use differ-
ent combination methods to integrate the multiple seman-
tic information and neural network structure with attention
mechanism to determine the importance of the information
from different contexts for learning the entailment relations.
Our design makes CENN flexible and adaptable to differ-
ent entailment perspectives in the text corpus. The extensive
evaluations show that our method significantly improves the
performance of automatic RLE in comparison with several
state-of-the-art methods. To the best of our knowledge, this
is the first work using neural network to integrate multiple
language embeddings for the task of automatic RLE.

2 Preliminary and Problem Statement

In this section, we formulate the RLE task with multiple con-
textual information as a supervised classification problem.
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Figure 1: The CENN Structure. Notations: 1) (X,Y ): the one-hot representation of a word pair. 2) Wk: the contextual em-
bedding/representation matrix, k = {1, 2, · · · ,K}. 3) P : the embedding/representation dimension.

First of all, the input for automatic RLE, (X,Y ), contains
the one-hot representation vectors of a word pair (x, y), i.e.,
Xd = 1 if x is the d-th word in vocabulary, Xd = 0 other-
wise. Y is defined in the same way.

Then in the existing work of RLE, each word x is rep-
resented by a single vector. In this paper, we use multiple
contextual embeddings Wk ∈ R

P×D, k ∈ {1, 2, · · · ,K},
to represent the words. Here, K is the number of represen-
tation contexts. D is the total number of words, and P is the
representation vector’s dimension. The contexts of words are
the distribution of other words that tend to appear in target
word’s vicinity, e.g., Bag-of-Words context is the distribu-
tion of a specific number of words that appear in the both
sides of target words (Mikolov et al. 2013). Section 4 will
provide a detailed description.

In the supervised setting of automatic RLE, we have train-
ing data {(x, y, label)}, where x and y represent the words.
For the label, if x entails y, label is 1, otherwise, label is 0.
Please note that, generally (x, y) and (y, x) are two different
word pairs. Thus the respective labels can be different, i.e.,
there might be an entailment relation in (x, y), but not in (y,
x). Taking (fox, animal) as an example, we can infer animal
from fox, but we cannot infer fox from animal.

Our task in this paper is to learn an accurate classification
model, to predict the label given a word pair (x, y). To this
end, we propose a supervised neural network based model
to tackle this issue.

3 The Context-Enriched Neural Network

In this section, we formally introduce the structure and tech-
nical details of the supervised Context-Enriched Neural Net-
work (CENN) model for RLE.

The overall structure of CENN is shown in Fig.1. First,
the input of CENN is (X,Y ), containing the one-hot repre-
sentation vectors of a word pair. Second, we multiply the
one-hot representation vectors of words by different em-

bedding matrices Wk to get the corresponding contextual
representations. Third, we arrange the representations of
x and y by different combinations. Finally, we use atten-
tion mechanism (gate unit) to determine the contribution
of each contextual vector and estimate the output function
P (label|X,Y ). More details are given as follows.

Multiple Contextual Embeddings. We multiply the one-
hot vectors X and Y by the embedding matrices Wk to get
the contextual representations in the embedding spaces:

xek = Wk ·X, yek = Wk · Y . (1)

Intuitively, each embedding matrix can compress the vo-
cabulary into a low-dimensional space (Li et al. 2015;
Lv et al. 2016). However, because the multiple embedding
spaces are constructed based on different contexts in the text
corpus, the embedding spaces are different from each other.
Thus they together can reveal multifaceted aspects of the
words and the word pairs for entailment learning.

Concatenation, Difference, and Binding. The next layer
after the contextual representations is designed to arrange
the information in the embeddings xe and ye. To quantify
the relationship in the word pair (x, y), we need to combine
their information in an appropriate way. Thus we compute
the concatenation and the difference in this layer:

xck = xek ⊕ yek, xdk = yek − xek . (2)

We use these operations based on the following reasons:
xe⊕ye can retain all the information of words from the con-
text and measure the antecedent and consequent expressions
in word pairs (Baroni et al. 2012). However, word pairs are
non-symmetry, which means (x, y) and (y, x) are two differ-
ent pairs. Concatenation cannot deal with it. As suggested
by (Weeds et al. 2014), ye − xe can capture the degree of
distributional inclusion on each embedding dimension and
the overall difference may capture the direction of the en-
tailment (Weeds et al. 2014).
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We further bind each concatenation xc and difference xd

together using a context specific weight αk, which is learned
during the model training:

x
′
k = (αk · xck)⊕ ((1− αk) · xdk) . (3)

Gate Unit. By utilizing attention mechanism, the gate
unit layer modulates the flow of information inside the con-
textual units (Chung et al. 2014) and is the key component
of the model. Indeed, vectors from different contexts repre-
sent different aspects of words. However, more information
may not lead to better performance. If we just sum all these
contexts up without differentiation, some irrelevant contexts
may comprise the performance. Thus we utilize gate unit
to calculate the weights of different contexts, so that the
model can focus on relevant contexts. The weights can be
optimized by the learning algorithm of CENN. In this way,
if one context is more relevant to the given RLE task, its
weight will be bigger, which means it will get more atten-
tion. Specifically, we define:

ck = σ(Gk · x′
k + bgk) , (4)

here, ck is the scalar weight of the k-th context passing the
gate unit. Gk and bgk denote the weights and bias of the k-th
gate unit. σ(·) is the sigmoid function.

Combination and Probability. In the last step of CENN,
we combine all contexts’ representation vectors together for
predicting the entailment relations in word pairs and calcu-
late the probability of entailment relation existing under the
condition of a word pair (x, y). The formulas are as follows:

P (label|X,Y ) = σ(M ·
K∑

k=0

(ck · x′
k) + bm) , (5)

here, M and bm are the weights and bias of σ function.
We highlight the superiority of our proposed CENN model
in the following two aspects:
• Our model is context-enriched with multiple constant em-

bedding matrices Wk for k = {1, 2, · · · ,K}. Represent-
ing words by multiple vectors from different contexts, it
can reveal multifaceted aspects of the words due to their
homonymy and polysemy. The objective of CENN is to
unify the necessary information to predict the entailment
relations in word pairs.

• By utilizing the attention mechanism, CENN can pay
more attention to the preferable contexts for the word
pairs. CENN optimally computes the weights of different
contexts instead of simply adding all the contexts naively
as done by other methods.

Learning Algorithm

In this subsection, we introduce the learning algorithm of
CENN, including its loss function, the initialization of the
model and the updating method of parameters.

Loss Function and Parameters. The loss function of
CENN is the cross-entropy as follows:

L = −1

d

n∑

i=0

(label · log(P (label|X,Y ))) +

(1− label) · log(1− P (label|X,Y )) . (6)

As the overall architecture has been proposed, the pa-
rameters of CENN are: {M , bm,G, bg, α}. To initialize the
model, we randomly set the weights M in Eq.(5) and G in
Eq.(4) following the uniform distribution in the range be-
tween −√6/(nin+ nout) and

√
6/(nin+ nout) as sug-

gested by (Orr and Müller 2003). bm in Eq.(5) and bg in
Eq.(4) are the bias of sigmoid functions. We initialize both
of them to 0. α in Eq.(3) is set as 0.5, meaning that the oper-
ations are equal at the beginning. P, denoting the dimension
of word embeddings, is set as 300.

Updating Method. After all the parameters are initial-
ized, BP algorithm is used to train the model, where the loss
function is minimized through stochastic gradient descent
(SGD) (Bottou 2010). To be specific, we use “mini-batch”
to speed up the training process, in which the batch size can
be set from 100 to 300. At the back propagate stage, the
learning rate is initialized with one value from 1 to 2. Due to
the different characteristics of the datasets, their respective
batch size and learning rate might be different. Moreover, in
order to avoid overfitting, the learning rate is dynamically
updated after a period of iterations (usually 100). We halve
the learning rate for every specific number of batches until it
reaches the user-specified minimum threshold.

4 Experiments

In this section, we first introduce datasets, different contexts,
baselines, as well as the performance metrics for RLE. Then
we compare CENN with several baselines, and give a de-
tailed analysis about the experiments.

Datasets Description and Pre-processing. We use 5 la-
beled datasets for evaluation. In the datasets, each data entry
contains a word pair (x, y) and a label indicating whether x
entails y. Note that each dataset was created with a slightly
different goal in mind, affecting word-pair generation and
annotation. For example, both Bless2011 and Baroni2012
datasets were designed to capture hypernyms, while others
tried to capture broader entailment relations (e.g. causal-
ity) (Levy et al. 2015). Table 1 provides statistics of each
dataset. From Table 1, we can find that positive and negative
examples in both Baroni2012 and Turney2014 datasets are
balanced, while the rest datasets are extremely unbalanced.
This phenomenon will affect the performance of models.

Please note that, there is a problem called lexical memo-
rization, i.e., the classifier learns that a specific word in a
specific slot is a strong indicator of the label (Levy et al.
2015). For example, if a model finds plenty of positive ex-
amples when word y is bird, it may treat any examples pos-
itive where y is bird due to memorizing the word bird. This
leads the model overfitting. In order to overcome this prob-
lem, we first randomly split the vocabulary into “train” and
“test” words. The word pairs, whose words are only “train”
words or “test” words, are called train-only or test-only
pairs. Then we extract train-only and test-only subsets of
each dataset following (Levy et al. 2015). After this proce-
dure, word overlap between training and test set is avoided,
which means memorizing the specific words is useless. Thus
the lexical memorization problem is overcome.
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Table 1: Summary statistics of five datasets.
Dataset #Instances #Positive #Negative

Kotlerman2010 2,940 880 2,060
Bless2011 14,547 1,337 13,210

Baroni2012 2770 1,385 1,385
Turney2014 1,692 920 772
Levy2014 12,602 945 11,657

Word Representations. The key idea of this study is to
use multiple contextual word embeddings to enhance the
performance of automatic RLE. Specifically, we use four
contexts as follows:
• Bag-of-Words. Uses original word2vec (Mikolov et al.

2013) implementation. With the commonly used setting,
the topical window size is 5, i.e., 5 tokens to each side of
the target word (10 context words in total). The negative-
sampling parameter is 15, and the words and contexts that
appeared less than 100 times are discarded.

• Dependency-based. First tags the corpus with parts-of-
speech using Stanford Tagger (Toutanova et al. 2003)
and then parses the tagged corpus into labeled depen-
dencies (Goldberg and Nivre 2012; Levy and Goldberg
2014). The words and contexts that appeared less than 100
times are discarded.

• Domain-space. The contextual patterns are simply the
first noun to the left of the given n-gram (if there is one)
and the first noun to the right (if there is one). As studied
by (Turney 2012; Ran et al. 2015), these nouns character-
ize the domain or topic of a target word.

• Function-space. The function (or role) of a word is char-
acterized by the syntactic context that relates it to the
nearby verbs. Following (Turney 2012; Ran et al. 2015),
we use 6 contextual patterns to construct the function
space and generate the tagged phrases.
We should note that our CENN model is a general and

open framework to handle different word contexts and dif-
ferent entailment perspectives.

Baseline. As the classic methods, SVM and LR have
achieved brilliant performance in various tasks (Turney and
Mohammad 2015). What’s more, the effectiveness of com-
bination methods and gate unit layer in CENN are worthy of
study too. Thus, we design the sNN and sCENN as baseline
methods. The details are shown as follows.

• SVM. The words in pair (x, y) are represented by a single
“prototype” vector respectively as the input. We test two
combinations for representing the word pair as a feature
vector: concat (x ⊕ y) (Baroni et al. 2012) and diff (y −
x) (Roller, Erk, and Boleda 2014). For each composition,
we train SVM with a linear kernel or RBF kernel, tuning
hyperparameters with a validation set.

• LR. We choose the same word representations and combi-
nations which we did in the experiment of SVM to repre-
sent (x, y) in LR. For each composition, we train LR with
L1 or L2 regularization.

• sNN. We design a simple neural network to integrate the
multiple vector representations of x and y. As is shown

P
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Probability
( |( , ))
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… …P P P P P

P P

Figure 2: The sNN structure.

in Fig.2, it merges multiple vectors from different con-
texts of x and y respectively, and then concatenates the
combined x and y. Compared with CENN, sNN does not
have the different combined methods and gate unit layer
for integrating multiple vectors of words.

• sCENN. In order to measure the effectiveness of gate
unit layer, we design a sCENN model as another base-
line. This model also utilizes multiple vector representa-
tions as the input. The main difference between sCENN
and CENN is that CENN has the gate unit layer, which
is shown in Fig.1, to weight the contexts precisely, while
sCENN just treats them as a simply weighted sum.

Performance Metrics. We apply the fitted model on test-
ing data and compute following performance metrics. Here,
cij means the number of word pairs that are actually in class
i and predicted in class j. Prel, Recl, F l are the precision,
recall and F1-value of the class l where i, j, l ∈ {0, 1}

w0 = (c00 + c01)/(c00 + c01 + c10 + c11) ,

w1 = (c11 + c10)/(c00 + c01 + c10 + c11) ,

P re = w0 · Pre0 + w1 · Pre1 , (7)
Rec = w0 ·Rec0 + w1 ·Rec1 ,

F1 = w0 · F10 + w1 · F11 .

Different from (Levy et al. 2015), we take both positive
(label = 1) and negative (label = 0) instances into con-
sideration, which will be helpful to avoid model overfitting.
Thus we set the average F1-value (Turney and Mohammad
2015) as the evaluation standard in our experiment. With this
evaluation standard, we can get a more appropriate evalua-
tion of CENN on RLE task.

Results and Analysis

In this section, we give a detailed analysis about the results
and discuss the sensitiveness of parameters and contexts.

Overall Results. The overall experimental results are
summarized in Table 2. We can see that CENN outperforms
the other models in four of the five datasets. As we ex-
pected, CENN not only utilizes a variety of representations
for words to capture as many aspects of words as possible,
but also pays close attention to the contexts which are cru-
cial to the inference of word pairs. By taking advantage of
attention mechanism, CENN can learn to recognize lexical
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Table 2: Overall performance on RLE task with F1-value

Methods
Kotlerman

2010
Bless
2011

Baroni
2012

Turney
2014

Levy
2014

LR
concat 62.9 74.4 52.9 53.4 83.9

diff 63.7 84.0 62.1 53.1 81.6

SVM
concat 60.4 91.3 71.8 69.6 72.4

diff 55.8 92.5 77.4 66.3 69.5
sNN 56.8 74.0 60.6 41.6 88.4

sCENN 64.1 93.0 71.3 66.8 88.7
CENN 65.7 94.3 78.6 69.4 89.6

Improvement +1.6 +1.3 +1.2 -0.2 +0.9

entailment precisely, which also proves that the relations in
word pairs always depend on their appropriate contexts.

Compared with CENN, SVM and LR just utilize one as-
pect of words. Thus they cannot handle the homonymy and
polysemy of words. E.g., book has the meanings “a collec-
tion of sheets of papers” and “to reserve (something) for fu-
ture use”, which are far different from each other. sNN just
puts all contexts information together without differentiat-
ing, so that it cannot pick up the proper contexts for RLE.
As for sCENN, whose architecture is similar to CENN’s,
preforms better than other methods except CENN. These re-
sults illustrate that the concatenation, difference and binding
layer is effective. However, due to the lack of gate unit layer,
sCENN cannot pay attention to the important contexts as
precisely as CENN does.

As mentioned before, the convergence conditions of five
datasets are the same, which is performing best in validate
sets. However, we find that our model does not perform well
in Turney2014 dataset, i.e., not performing well in test set.
After further analysis, we find that there are too many types
of semantic relations and few instances in this dataset, which
causes the model more iterations and may lead the model a
little overfitting. Furthermore, we observe that almost all the
models do not perform well in Turney2014 dataset, which
means the dataset may not be suitable for RLE task.

Sensitivity of Parameters. There is one parameter in
CENN to be determined: the threshold θ, which is used to
predict whether the input is positive or negative. To be spe-
cific, we evaluate the Precision, Recall and F1-value (Tur-
ney and Mohammad 2015) with different values of θ on each
dataset. The results are shown in Fig.3. For Fig.3(a), 3(b)
and 3(c), we can find that with the increasing of threshold θ,
the trend of F1-value is increasing since these three datasets
are unbalanced. The proportions of positive and negative ex-
amples in Bless2011 and Levy2014 datasets are even 1:10.
As a result, when threshold θ is increasing, we can determine
the input a negative example with higher probability.

In Fig.3(d) and 3(e), the trend of F1-value increases at
first then decreases. It reaches the highest point when thresh-
old θ is close to 0.5. As mentioned before, both of these two
datasets are balanced. The difference between them is that
Turney2014 has more types of relations than Baroni2012. As
a result, we can find that the precision of Turney2014 dataset
has a very abnormal changing trend, i.e., when the threshold
θ gets higher, the precision is also becoming higher, which
may also indicate that Turney2014 dataset is not suitable for

recognizing lexical entailment task.
Sensitivity of Contexts. The experimental results in Ta-

ble 2 indicate that simply increasing the number of types
of the word contexts does not improve the performance for
RLE, so that the impact of number of the context types on
CENN needs to be further discussed. A qualitative way of
analyzing this problem is to check the weights of contexts
learned in CENN. Thus we measure the weights that gate
unit layer has calculated. Fig.4 shows the weights of con-
texts in each dataset.

These contexts induce different aspects of words. As we
can see, all of the contexts contribute to the task, while
their proportions may be different. For the contexts that
have obviously larger weights, we call it the dominate con-
text. Among all the datasets, we observe that Bless2011
has dominate contexts dependency and function-space, and
Levy2014’s is function-space. We want to figure out whether
CENN can get proper results with only dominate contexts.
Thus, we make additional experiments with only dominate
contexts to verify this problem. The result of the F1-value
with only dominate contexts is 93.7% in Bless2011 dataset
and is 88.7% in Levy2014 dataset, which are a little worse
than overall results. These phenomena prove that all of the
contexts are very important though the degree of impor-
tance is different. In order to explain this phenomenon more
clearly, we pick up one word pair for case study.

Case Study. We choose the word pair (chicken, solid,
True) from Baroni2012 dataset for case study. We can
find that Bag-of-Words contexts and Domain-space contexts
have higher weights than the rest contexts from Fig.5. At
the first sight, we may believe that there is no relation be-
tween chicken and solid. Fortunately, we find that solid has
an explanation that “food which is not liquid-based”, where
chicken has the meaning: “The flesh of a chicken used for
food”. Therefore, there is the entailment relation between
the word pair under the topical measurements, and CENN
does find this kind of relation by paying more attention to
Bag-of-Words contexts and Domain-space contexts. Thus,
CENN has actually learned to recognize lexical entailment.

5 Related work
The related work in this section can be classified into two
parts: the methods about RLE and typical applications of
neural network in RTE tasks.

Recognizing Lexical Entailment. To the best of our
knowledge, the first RTE Challenge (Dagan, Glickman, and
Magnini 2006) took place in 2005 and it had been a reg-
ular event since then. Nowadays, most of the RTE sys-
tems have included a module for RLE (Dagan et al. 2010;
Herrera, Penas, and Verdejo 2006). The early RLE solu-
tions depended on symmetric similarity measures. However,
it was understood that entailment is inherently asymmetric
and any symmetric measure could make only a rough ap-
proximation (Geffet and Dagan 2005).

Due to the drawbacks of symmetric similarity measures,
methods with specific assumptions were proposed. Weeds et
al. (2003) introduced a balanced combination of the asym-
metric APinc measure (Kotlerman et al. 2010) and the sym-
metric LIN measure (Lin 1998). Another typical approach
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Figure 3: Performance (F1-value) of CENN with different threshold parameters.
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Figure 4: Weight of each context in five datasets

Bag-of-Words contexts yield broad topical measurements of the words

Dependency-based contexts: yield more functional measurements of a cohyponym nature
Domain-space contexts: measure the domains associated with a target word
Function-space contexts: measure the functions of a target word

Figure 5: Weights of contexts of the word pair

was called ConVecs algorithm (Baroni et al. 2012). Even
though these methods could sometimes achieve better per-
formance, they deeply depended on assumptions, which
meant they were not flexible enough to a general situation.

Hence, methods based on word context were proposed.
In (Turney and Mohammad 2015), two different word-
context matrices i.e., a domain matrix D and a function ma-
trix F (Turney 2012), were involved to generate a larger
and more varied set of features for supervised learning al-
gorithms. Unfortunately, Levy et al. (2015) suspected that
these state-of-the-art methods above did not actually learn
to recognize the relation between two words based on their
investigating. Moreover, we also find that almost all previ-
ous methods preferred to represent a word with only one
vector, while single vector representation is problematic be-

cause of words’ polysemous (Reisinger and Mooney 2010;
Huang et al. 2012), e.g., the word blue can represent a color
as well as an emotion. Thus, context based methods still
need to be further improved.

Neural Network Methods for RTE Tasks. Neural net-
works, especially deep neural networks have become attrac-
tive models in RTE. Bowman et al. (2015) provide a large
annotated corpus for RTE, which attracted researchers’ at-
tention. Then plenty of works for RTE have been done on
this dataset, such as LSTM encoders (Bowman et al. 2016),
Tree-based CNN encoders (Mou et al. 2016), and LSTMN
with deep attention fusion (Cheng, Dong, and Lapata 2016).
These successful applications indicate that neural networks
are powerful and robust in modeling text with complicated
relationships in a deep level, while few of them are used to
deal with RLE. Thus the method of integrating multi-context
by neural network for RLE is worthy of studying.

6 Conclusion and Future Work

In this paper, we propose a Context-Enriched Neural Net-
work (CENN) model for RLE. In order to capture as much
information about the words as possible for entailment
learning, we utilize multiple representations from different
contexts for a word pair, and we use attention mechanism to
optimize the weights of the information from different con-
texts to predict the entailment relations in the word pairs.
We also illustrate that CENN is a flexible and open frame-
work applicable to datasets with different number of con-
texts. Experimental results on five real-world datasets indi-
cate that our approach could effectively recognize lexical en-
tailment with significantly improved performances in com-
parison with state-of-the-art methods.

In the future, we will adopt more different context-based
embeddings for the representations of words, so that CENN
can obtain ample information about the words and become
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much more effective for recognizing lexical entailment.
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