
Question Difficulty Prediction for
READING Problems in Standard Tests

Zhenya Huang,† Qi Liu,†∗, Enhong Chen,† Hongke Zhao,†

Mingyong Gao,‡ Si Wei,‡ Yu Su,� Guoping Hu‡
†School of Computer Science and Technology, University of Science and Technology of China

{huangzhy, zhhk}@mail.ustc.edu.cn, {qiliuql, cheneh}@ustc.edu.cn
‡iFLYTEK Research, {mygao2, siwei, gphu}@iflytek.com

�School of Computer Science and Technology, Anhui University, yusu@iflytek.com

Abstract

Standard tests aim to evaluate the performance of exami-
nees using different tests with consistent difficulties. Thus,
a critical demand is to predict the difficulty of each test ques-
tion before the test is conducted. Existing studies are usually
based on the judgments of education experts (e.g., teachers),
which may be subjective and labor intensive. In this paper, we
propose a novel Test-aware Attention-based Convolutional
Neural Network (TACNN) framework to automatically solve
this Question Difficulty Prediction (QDP) task for READ-
ING problems (a typical problem style in English tests) in
standard tests. Specifically, given the abundant historical test
logs and text materials of questions, we first design a CNN-
based architecture to extract sentence representations for the
questions. Then, we utilize an attention strategy to qualify the
difficulty contribution of each sentence to questions. Consid-
ering the incomparability of question difficulties in different
tests, we propose a test-dependent pairwise strategy for train-
ing TACNN and generating the difficulty prediction value.
Extensive experiments on a real-world dataset not only show
the effectiveness of TACNN, but also give interpretable in-
sights to track the attention information for questions.

1 Introduction

In the widely used standard test, such as TOEFL or SAT, ex-
aminees are often allowed to retake tests and choose higher
scores for college admission (Zhang and Yanling 2008). This
rule brings an important requirement that we should select
test papers with consistent difficulties to guarantee the fair-
ness. Therefore, measurements on tests have attracted much
attention (Boopathiraj and Chellamani 2013).

Among the measurements, one of the most crucial de-
mands is predicting the difficulty of each specific test ques-
tion, i.e., the percentage of examinees who answer the ques-
tion wrong (Hontangas et al. 2000). Unfortunately, the ques-
tion difficulty is not directly observable before the test is
conducted, and traditional methods often resort to exper-
tise, such as manual labeling or artificial tests organiza-
tion (Fuchs et al. 1992). Obviously, these human-based so-
lutions are limited in that they are subjective and labor in-
tensive, and the results could also be biased or misleading
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(TD) Larry was on another of his underwater expeditions but this 
time, it was different. He decided to take his daughter along with 
him. She was only ten years old.[...]Dangerous areas did not prevent 
him from continuing his search. Sometimes, he was limited to a 
cage underwater but that did not bother him. [...]Already, she 
looked like she was much braver than had been then. This was the 
key to a successful underwater expedition.

(TQ)
Q1:In what way was this expedition different for Larry?

A. His daughter had grown up.
B. He had become a famous diver.
C. His father would dive with him.
D. His daughter would dive with him.

(TQ)
Q2:Why did Larry have to stay in a cage underwater sometimes?

A. To protect himself from danger.
             B. To dive into the deep water.
             C. To admire the underwater view.

D. To take photo more conveniently.
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Figure 1: Two questions of READING problem in tests.

(we will illustrate this discovery experimentally). Therefore,
it is an urgent issue to automatically predict question diffi-
culty without manual intervention. Fortunately, with abun-
dant tests recorded by automatic test paper marking sys-
tems, test logs of examinees and text materials of questions,
as the auxiliary information, become more and more avail-
able, which benefits a data-driven solution to this Question
Difficulty Prediction (QDP) task, especially for the typical
READING problems. For example, Figure 1(a) shows an ex-
ample of a READING problem with 2 questions, and each
question contains the corresponding materials of document
(TD), question (TQ) and options (TO).

Actually, there are some efforts on text understanding for
READING problems, e.g., machine comprehension (Yin,
Ebert, and Schütze 2016; Sachan et al. 2015). However,
these works could not be directly applied to QDP in stan-
dard tests due to the unique challenges in this task. First,
READING problems contain multiple parts of text materi-
als (i.e., TD, TQ and TO in Figure 1(a)), which requires an
unified way to understand and represent them from a seman-
tic perspective. Second, it is necessary to distinguish the im-
portance of text materials to a specific question, because dif-
ferent questions concern different parts of texts. For exam-
ple, Q1 in Figure 1(a) concentrates more on the highlighted
“blue” sentences while Q2 focuses more on the “green”
ones. Third, as shown in Figure 1(b), question (Q1, Q2) dif-
ficulties are obviously different in different tests (T1 to T8).
This evidence indicates that different questions are incom-
parable in different tests. E.g., we cannot conclude that Q2

with difficulty 0.6 in T1 is more difficult than Q1 with 0.37
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in T2, because the examinees are also different. Thus, it is
necessary to take these difficulty biases into consideration
for QDP.

To solve QDP with addressing the challenges above, we
propose a novel Test-aware Attention-based Convolutional
Neural Network (TACNN) framework to automatically pre-
dict question difficulty for READING problems before the
test is conducted. Specifically, given the historical test logs
and text materials of questions, we first design an unified
CNN-based architecture to exploit the semantic representa-
tions for all text materials (i.e., TD, TQ and TO), so that the
multiple parts of texts for each question can be modeled in a
common comparable space. Then, we qualify the difficulty
contribution of each sentence to one question by utilizing an
attention strategy. Next, for training TACNN and generating
the difficulty prediction value of each question, we propose
a test-dependent pairwise strategy to wipe out the difficulty
biases in different tests. Finally, extensive experiments on a
large-scale real-world dataset validate both effectiveness and
explanatory power of our proposed framework. To the best
of our knowledge, this is the first comprehensive data-driven
solution to QDP task in standard tests.

2 Related Work
Generally, the related work can be classified into the follow-
ing two categories, i.e., question difficulty studies in educa-
tional psychology and text understanding in NLP field.

Question Difficulty in Educational Psychology. Ques-
tion difficulty has been studied for a long time in the field
of educational psychology. Some prior works focused on
evaluating the possible factors contributed to question dif-
ficulty. For example, Beck et al. (1997) held that both ques-
tion attributes and examinees’ abilities affected question dif-
ficulties. Kubinger et al. (2007) found that some attributes
were relevant to question difficulty, such as question types,
question structures and knowledge depth. Another direction
made attempts to leverage examinees’ feedbacks from tests
for question evaluation and formed some psychological the-
ories, e.g., classic test theory (CTT) (Alagumalai and Curtis
2005) and cognitive diagnosis assessment (CDA) (DiBello,
Roussos, and Stout 2006; Wu et al. 2015). CTT evaluated
question difficulty from a statistical perspective while CDA
considered it as a parameter obtained from examinees’ re-
sponses modeled by a logistic-like function. For predicting
question difficulty in practice, traditional solutions often re-
sort to expertise, which heavily relies on manual-labeling for
test preparations (Fuchs et al. 1992).

The common limitation of these works is the requirement
of manual intervention, which takes a lot of human efforts
and expertise. Differently, our study is a complete solution
from a data-driven modeling perspective.

Text Understanding in NLP Field. One of the most cru-
cial steps in our framework is the understanding and repre-
sentations of all text materials (Hua et al. 2015; Cui et al.
2016), which aims at extracting textual difficulties for ques-
tions in READING problems. This is relevant to many re-
searches in nature language process (NLP), such as question
selection (Yu et al. 2014), textual entailment (Bowman et al.
2015) and machine comprehension (Yin, Ebert, and Schütze

2016; Sachan et al. 2015). Generally, existing methods could
be classified into two categories: language modeling (Smith
et al. 2015) and neural network (NN) (Hermann et al. 2015).
In language modeling, some representative works put much
emphasis on exploiting syntactic and semantic structures of
each question including sentence structures (Bilotti et al.
2007) and lexical grammars (Wang, Smith, and Mitamura
2007). In contrast, NN-based models tried to automatically
transform questions into semantic representations. For ex-
ample, Hermann et al. (2015) proposed a two-layer deep
LSTM model for learning text contexts of each question as
dynamic ones over the documents. Yin et al. (2016) incorpo-
rated attention methods into CNN to model questions from
words, phrases to sentences views.

However, all these solutions focused on how hard the ma-
chines could choose answers rather than predicting diffi-
culties in standard tests. Therefore, existing solutions could
hardly be directly applied to QDP task.

Table 1: A toy example of test logs.
TestId ExamineeId QuestionId Score
T1 U1 Q1 1
T1 U1 Q2 1
T1 U2 Q1 0
T1 U2 Q2 1
T2 U4 Q3 1
T2 U5 Q3 1
T2 U6 Q3 0
. . . . . . . . . . . .

3 TACNN Framework

In this section, we first formally introduce the QDP task, and
then we introduce the technical details of TACNN. At last,
we propose the test-dependent pairwise training strategy.

Problem and Study Overview

In this paper, we focus on QDP for READING problems in
standard tests, while some other types of problems, such as
LISTENING, WRITING and SPEAKING, will be discussed
and studied in the future.

Definition 1 (PROBLEM DEFINITION). Formally, given a
set of questions of READING problems with corresponding
text materials including document (TD), question (TQ) and
options (TO), and each question Qi has a difficulty attribute
Pi (e.g.,0.6) obtained from test logs (see Table 1), our goal is
to leverage the combined instances of question Qi available
(see Table 2) to train a prediction model M (i.e., TACNN),
which can be used to estimate the difficulties for questions
in the newly-conducted tests.

As shown in Figure 2, our solution is a two-stage frame-
work, which contains a training stage and a testing stage:
1) In the training stage, given test logs of examinees as
well as text materials of questions (see Table 2), we pro-
pose TACNN to understand and represent all text materials
of each question Qi as corresponding predicted textual dif-
ficulty P̃i. Then considering the difficulty biases shown in
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Table 2: Examples of question instances combined with test logs and question materials.
Text Materials

Difficulty (P) QuestionId (Q) TestId (T) Document (TD) Question (TQ) Options (TO)
0.4276 Q1 T1 Larry was on... In what way... His daughter had... He had become... His father... His daughter...
0.4827 Q2 T1 Larry was on... Why did Larry... To protect himself... To dive into... To admire the... To take photo...
0.5494 Q3 T1 Larry was on... What can be... Larry had some... Larry liked the... Divers had to... Ten-year-old...

? Q4 T2 Are you... Why do people... They eat too... They sleep too... Their body... The weather...

TACNN

c

Test logs

Test-dependent Loss

Model
TACNN

Model

c

PredictionT t d

(TD) Larry was on another of his underwater expeditions but this time, it 
was different. He decided to take his daughter along with him. She was 
only ten years old. [...].

(TQ)
Q1:In what way was this expedition different for Larry?
              A. His daughter had grown up.
              B. He had become a famous diver.
              C. His father would dive with him.
              D. His daughter would dive with him. Text 

Materials

Training

Testing

   B
      C

 D
(TO)

Figure 2: The flowchart overview of our work.

Figure 1(b), we propose a test-dependent pairwise strategy
for training TACNN. 2) In the testing stage, after obtaining
the trained TACNN, for each new question without test logs,
we could estimate its difficulty with the available text mate-
rials.

Components of TACNN

In this subsection, we will introduce the technical details of
TACNN, which learns to represent text materials of ques-
tions as predicted difficulties. As shown in Figure 3, TACNN
mainly consists of four components, i.e., Input Layer, Sen-
tence CNN Layer, Attention Layer and Prediction Layer.
Specifically, Sentence CNN Layer and Attention Layer are
the most critical techniques, i.e., the former aims at learning
all text materials of each question from a sentence semantic
perspective, which is further illustrated in Figure 4; while
the latter learns attention representations for each question
by qualifying the contributions of its text materials.
Input Layer. The input to TACNN is all text materials of a
question Qi, i.e., document (TDi), question (TQi) and op-
tions (TOi). Intuitively, TDi is formalized with a sequence
of sentences TDi = {s1, s2, . . . , sM} where M is the se-
quence length. TQi and each option in TOi are all individ-
ual sentences. Moreover, each sentence is combined with a
sequence of words s = {w1, w2, . . . , wN} where wi ∈ R

d0

is initialized by d0-dimensional pre-trained word embedding
and N is the length of sentence. As a result, the document is
depicted by a tensor TDi ∈ R

M×N×d0 , and question TQi

or each option in TOi is a matrix s ∈ R
N×d0 .

Sentence CNN Layer. The second layer is Sentence CNN
Layer, where we target at learning each sentence repre-
sentation from word level. Here, we select CNN-based ar-
chitecture with the following reasons: 1) By leveraging

convolution-pooling operations, CNN is more suitable for
capturing dominated information of each sentence from lo-
cal to global views (Yin, Ebert, and Schütze 2016). This is
consistent with the common reading habit that examinees
usually understand each sentence by some local key words.
2) CNN can exploit the interactions between words at larger
scales and learns the deep comparable semantic representa-
tions for sentences. 3) Compared with other deep learning
structures, e.g., DNN or RNN, CNN leverages shared con-
volution filters for training, which reduces the model com-
plexity (Ma, Lu, and Li 2015).

As illustrated in Figure 4, Sentence CNN Layer is a vari-
ant of the traditional one (Collobert et al. 2011) that al-
ternates several layers of convolution and p-max pooling,
where each sentence is gradually summarized to a fixed
length vectorial representation in final. Here, we introduce
the first convolution-pooling operation in detail, and the fol-
lowing deeper ones are defined in the similar way.

Concretely, as shown in Figure 4, given the sentence ma-
trix input s ∈ R

N×d0 , the wide convolution operates on a
sliding window of every k words with a kernel k × 1. For-
mally, given the input sentence s = {w1, w2, . . . , wN}, the
first convolution operation is set to obtain a new hidden se-
quence, i.e., hc = {�hc

1, . . . ,
�hc
N+k−1}, where:

�hc
i = σ(G · [wi−k+1 ⊕ · · · ⊕ wi] + b), (1)

here, G ∈ R
d×kd0 ,b ∈ R

d are the convolution parameters,
and d is the output dimension. σ(x) is a nonlinear activation
function ReLU(x) = max(0, x). “⊕” is the operation that
concatenates k word vectors into a long vector.

With the convolution process, the sequential k words are
composed to a local semantic representation. Then, we ex-
ploit p-max pooling operation to merge the features from
convolution sequence hc into a new global hidden sequence,
i.e., hcp = {�hcp

1 , . . . ,�hcp
�(N+k−1)/p�}, where

�hcp
i =

⎡
⎣max

⎡
⎣h

c
i−p+1,1

· · ·
hc
i,1

⎤
⎦ , · · · ,max

⎡
⎣h

c
i−p+1,d

· · ·
hc
i,d

⎤
⎦
⎤
⎦ . (2)

After that, more layers of convolution-pooling processes
are set to gradually summarize the global interactions of
words in a sentence and finally reach a vectorial represen-
tation one s ∈ R

d1 , where d1 is the output dimension of
Sentence CNN Layer.

As a result, the document is transformed into a matrix
TDi ∈ R

M×d1 with M sentence representations, and texts
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Figure 3: TACNN framework. The numbers in TACNN are the dimensions of corresponding feature vectors.
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Figure 4: Sentence CNN, which contains several layers of
convolution and p-max pooling.

of question TQi and each option in TOi are all sentence
semantic vectors s ∈ R

d1 , which is shown in Figure 3.
Attention Layer. After obtaining sentence representations
from Sentence CNN Layer, Attention Layer aims at de-
tecting difficulty attention representations for each question.
As shown in Figure 1(a), Q1 pays more attention to the
highlighted “blue” sentences while Q2 focuses more on the
“green” ones. This evidence suggests that the same texts
(i.e., document) should have different representations based
on the given questions. Therefore, it is necessary to qualify
the contributions of text materials to a specific question and
learn the attention representations for it.

Methodology-wise, the attention representations are mod-
eled as vectors by a weighted sum aggregated result of
the sentence representations from both document-level and
option-level perspectives. Formally, for a specific question
Qi, the document-level attention vector DAi is as follows:

DAi =

M∑
j=1

αjs
TDi
j , αj = cos(sTDi

j , sTQi), (3)

where sTDi
j is the j-th sentence in TDi, sTQi is the sentence

representation of question material TQi; Cosine similarities
αj are denoted as the attention scores for measuring the im-
portance of sentence sj in document TDi for question Qi.

Similar to the document-level attention vector DAi, the
option-level attention vector OAi for question Qi could also
be modeled as the form of Eq. (3).

Particularly, the attention scores αj greatly enhance the
explanatory power of TACNN. It enables us to extract sen-
tences with high scores as dominant information for a spe-
cific question, which is helpful for visualizing the model. In
the experiments, we will conduct a deep analysis on atten-
tion results to a specific question.
Prediction Layer. The last layer is Prediction Layer, where
we target at predicting difficulty P̃i of question Qi leveraged
by the document-attention DAi, the option-attention OAi

and the sentence representation sTQi itself. Specifically, we
first aggregate them by concatenation operation, then utilize
a classical full-connected network (Hecht-Nielsen 1989) to
learn the overall difficulty representation oi and finally pre-
dict the difficulty P̃i by logistic function:

oi = ReLU(W1 · [DAi ⊕OAi ⊕ sTQi ] + b1),

P̃i = Sigmoid(W2 · oi + b2), (4)

where W1, b1, W2, b2 are parameters to tune the network.

Test-dependent pairwise training strategy

In this subsection, we propose a pairwise training strategy
for TACNN. As shown in Figure 2, after obtaining the pre-
dicted textual difficulty from text materials of each question
via TACNN, we need to define a proper loss function to
make our learning possible in training. In the following, we
first straightforwardly define a test-independent loss func-
tion and then introduce the test-dependent loss function.
Test-independent loss function. Since the question diffi-
culty is not directly observable, we obtain the real difficulty
of each question followed by the definition in (Hontangas et
al. 2000) from the test logs. For example, in Table 1, the real
difficulty of question Q1 could be P1 = (1 + 0)/2 = 0.5.
Therefore, we could formulate the QDP task in a supervised
way. Intuitively, if we ignore the test characteristics, given
all question instances (as shown in Table 2), we could simply
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Table 3: The statistics of the dataset.
Statistics Values

# of test logs 28,818,047
# of examinees 1,019,415

# of tests 4,085
# of READINGs 8,220

# of questions 30,817
Average questions per test 14.167
Average tests per question 1.877

formulate the test-independent objective function by mini-
mizing the least square loss with a l2-regularization term:

J (Θ) =
∑
Qi

(Pi −M(Qi))
2 + λΘ||ΘM||2, (5)

where M represents the TACNN that transforms text ma-
terials of question Qi into predicted difficulty P̃i (Eq. (4)).
ΘM denotes all parameters in TACNN and λΘ is the regu-
larization hyperparameter.

However, as mentioned in Figure 1(b), these calculated
difficulties of questions are test-dependent, which means
different questions in different tests are incomparable. For
example, in Table 1, the difficulty of Q1 is 0.5 and the diffi-
culty of Q3 is 0.33, we cannot get the conclusion that Q1 is
more difficult than Q3 because they are in different tests (dif-
ferent TestId) with different examinees. Therefore, if we di-
rectly adopt the test-dependent objective function (Eq. (5)),
it may introduce some biases into the optimization.

Fortunately, we realize that difficulties of questions in
same tests are comparable, e.g., Q1 is more difficult than Q2

in Table 1 because they are both in test T1. Motivating by
this, we can model and optimize the difficulty comparison
for a pair of questions in same tests by a pairwise strategy.
Test-dependent pairwise loss function. Formally, we first
construct our test-dependent training triples {(Tt, Qi, Qj)},
as shown in Figure 2, which denotes two different questions
Qi and Qj in the same test Tt. Then the objective function
turns to the test-dependent one as:

J (Θ) =
∑

(Tt,Qi,Qj)

((P
t
i −P

t
j )−(M(Qi)−M(Qj)))

2
+λΘ||ΘM||2, (6)

where P t
i and P t

j denote the real difficulties of question Qi

and Qj in test Tt, respectively. In this way, we can learn the
model, i.e., TACNN, by directly minimizing the function JΘ

using AdaDelta (Zeiler 2012).
Then, given M, we could estimate question difficulties of

new READING problems only based on the given text ma-
terials. Please note that, though we design a test-dependent
pairwise strategy for model training, TACNN can be directly
adopted for estimating the “absolute difficulty values” (e.g.,
0.6) of each new question, since the difficulties of ques-
tions are now reflected from the text perspective, such as the
words used in the texts. After estimating the difficulties of
all the questions in a new test paper, we can decide whether
to choose this test paper into the standard test or not.
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Figure 5: Statistics of observed records.

4 Experiments

In this section, we first compare the performance of TACNN
against the baseline approaches on QDP task. Then, we
make experts comparisons to valid the practical significance
of TACNN. At last, we conduct a case study to visualize the
explanatory power of TACNN.

Dataset Description

The experimental dataset supplied by IFLYTEK is collected
from real-world standard tests for READING problems,
which contains nearly 3 million test logs of thousands of
Chinese senior high schools from the year 2014 to 2016.
For preprocessing, we filter the questions without any test
log because we cannot obtain their difficulties, and Table 3
shows the basic statistics of the dataset after pruning.

Experimental Setup

Word Embedding. The word embeddings in Input Layer
are trained on a large-scale gigaword corpus using public
word2vec tool (Mikolov and Dean 2013) with the dimen-
sion 200. Words from READING problems which are not
presented in the pre-trained words are initialized randomly.
TACNN Setting. In TACNN, we set the maximum length
M (N ) of sentences (words) in documents (sentences) as 25
(40) (zero padded when necessary) according to our obser-
vation in Figure 5, i.e., 95% documents (sentences) contains
less than 25 (40) sentences (words). Four layers of convolu-
tion (three wide convolutions, one narrow convolution) and
max-pooling are employed for the Sentence CNN Layer to
accommodate the sentence length N , where the numbers of
the feature maps for four convolutions are (200, 400, 600,
600) respectively. Also, we set the kernel size k as 3 for all
convolution layers and the pooling window p as (3, 3, 2, 1)
for each max pooling, respectively.
Training Setting. We follow (Orr and Müller 2003) and
randomly initialize all matrix and vector parameters in
TACNN with uniform distribution in the range between
−√

6/(nin+ nout) and
√
6/(nin+ nout), where nin

and nout are the numbers of input and output feature sizes of
the corresponding matrices, respectively. During the training
process, all parameters in TACNN are tuned. Moreover, we
set mini batches as 32 for training and we also use dropout
(with probability 0.2) in order to prevent overfitting.
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Figure 6: Overall performance on the task of QDP.

Table 4: TACNN v.s. Experts on QDP task with PCC metric.
Test TACNN EpAvg Ep1 Ep2 Ep3 Ep4 Ep5 Ep6 Ep7
T1 0.41 0.21 0.18 0.13 0.38 -0.08 -0.04 0.01 0.14
T2 0.63 0.68 0.45 0.32 0.52 -0.01 -0.44 0.53 0.37
T3 0.78 0.70 0.52 0.63 0.28 0.44 -0.29 0.45 0.52
T4 0.63 0.40 -0.09 0.07 0.31 0.48 -0.40 0.58 -0.08
T5 0.53 0.56 0.39 0.32 0.29 0.29 0.43 0.51 0.47
T6 0.47 0.22 0.21 0.01 0.27 -0.23 0.10 0.24 0.17
T7 0.81 0.73 0.58 0.29 0.72 0.72 0.70 0.59 0.69
T8 0.77 0.45 0.35 0.45 0.24 0.14 0.19 0.45 0.64
T9 0.81 0.55 0.25 0.54 0.35 0.53 0.13 0.32 0.36
T10 0.76 0.57 0.49 -0.13 0.72 0.25 0.22 0.32 0.60
T11 0.90 0.77 0.44 0.57 0.59 0.41 0.36 0.08 0.83
T12 0.60 0.62 0.59 0.73 0.60 0.54 0.48 0.62 0.54
Avg 0.68 0.54 0.36 0.33 0.44 0.29 0.12 0.39 0.44
Std 0.14 0.18 0.19 0.26 0.17 0.27 0.34 0.19 0.25

Baseline Approaches

Since there have been few prior methods to directly solve
QDP task in standard tests, we first introduce some variants
of TACNN to highlight the effectiveness of each component
of our framework. The details of variants are as follows:

• CNN: CNN is a framework with attention-ignored strat-
egy and test-independent loss (Eq. (5)). Here, the
attention-ignored strategy means the attention scores α in
Eq. (3) are the same for all sentences in corresponding
materials (i.e., documents or options).

• ACNN: ACNN is a framework with attention strategy
(Eq. (3)) and test-independent loss (Eq. (5)).

• TCNN: TCNN is a framework with attention-ignored
strategy and test-dependent loss (Eq. (6)).

Besides, we also select HABCNN, whose network archi-
tecture is most similar to ours, as another baseline:

• HABCNN: A machine comprehension model from (Yin,
Ebert, and Schütze 2016) with a kind of CNN and sen-
tence attention. To apply it to QDP task, we adopt its orig-
inal network architecture and make it a little change by
adapting its original softmax based objective to our test-
dependent loss (Eq. (6)).

Both TACNN and baselines are all implemented by
Theano (Bergstra et al. 2010) and all experiments are run
on a Tesla K20m GPU.

Evaluation Metrics

To measure the performance of TACNN, we first use the
widely used Root Mean Squared Error (RMSE) (Salakhut-
dinov and Mnih 2011) for QDP precision comparison. Be-
sides, we adopt Degree of Agreement (DOA) (Liu et al.
2012) from ranking perspective to measure the percentage
of correctly ranked difficulties of question pairs.

We also borrow metrics from educational psychology
for evaluation from the test analysis perspective. In educa-
tional psychology, for test Ti, the higher positive correla-
tion between real difficulties and predictions of questions,
the better performances (Brizuela and Montero-Rojas 2013).
Thus, we use the average Pearson Correlation Coefficient
(PCC) (Benesty et al. 2009) of all tests to measure the corre-
lation performance. Moreover, we also adopt t-test passing
ratio (PR), which is denoted as the percentage of tests which
pass t-test at confidence level of 0.05, to evaluate confidence
performance.

In summary, the smaller the RMSE is, the better perfor-
mance the results have. For the other three (DOA, PCC, PR),
the larger, the better.

Experimental Results

Overall QDP Results. To observe how the models behave at
different data sparsity, we randomly select 60%, 40%, 20%,
10% of standard tests as testing sets, and the rests as training
sets, respectively. Note that, to ensure that the questions in
testing sets are all new questions and prevent overfitting, we
also remove the questions in training sets with same docu-
ments which exist in testing sets. Thus, there are no overlaps
between the questions in training sets and testing sets.

Figure 6 shows the overall QDP results of all models. We
can see that TACNN performs best. Specifically, by opti-
mizing the test-dependent pairwise loss, it beats CNN and
ACNN. By qualifying the contributions of texts with the at-
tention strategy, it beats TCNN. Then, HABCNN doesn’t
perform as well as TACNN, which indicates that the ar-
chitecture of HABCNN which aims for the machine com-
prehension task is unsuitable for QDP task. Last but not
least, we can see that models with test-dependent pairwise
loss (TACNN, TCNN, HABCNN) perform better than those
with test-independent loss (CNN, ACNN). This observa-
tion suggests that question difficulties are test-dependent and
demonstrates the rationality of pairwise training strategy.
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Larry was on another of his underwater expeditions...
He decided to take his daughter along with him...
This would be her first trip with her father on what...
Larry first began diving when he was his daughter...

Then, there was the instructor.
He gave him a short lesson before allowing him...

After the first expedition, Larry is later diving...
There was never a dull moment. In his black and...
Dangerous areas did not prevent him from ...
Sometimes, he was limited to a cage underwater...

Larry has first expedition without his father was...
Fortunately for him, a man offered to take him...

He hoped she would be able to continue the...
This was the key to a successful underwater...
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Figure 7: Attention visualization of the document material
for question Q2 in Figure 1(a), where too long sentences are
truncated with “...”. The left bar charts denote the distribu-
tion of attention scores over sentences in the document.

Experts Comparison. To demonstrate the practical signif-
icance of TACNN, we select 12 standard tests and invite 7
experts (high school teachers) who are familiar with READ-
ING problems to do QDP task manually. In detail, each se-
lected test contains 4 READING problems and 16 questions.
Experts (denoted as Ep1 to Ep7) are asked to answer the
questions and then value the difficulties individually. Fur-
thermore, we average their predictions which is denoted as
EpAvg. Thus we totally obtain 8 experts’ predictions. Fol-
lowing educational psychology, we use PCC to assess the
correlations between all predictions and real difficulties in
tests. All the results are shown in Table 4.

As we can see, TACNN outperforms all experts in most
cases, which means predictions from TACNN are the most
correlated to the practices. Besides, we also observe that pre-
dictions from experts are not always consistent. Specifically,
for each test, there are some experts doing the QDP task
well (e.g., Ep2 in T3) but others may fail (e.g., Ep5 in T3),
because they all make the predictions by subjective judg-
ments, which are hardly of the same minds. Thus, experts’
predictions may be misleading sometimes.
Case Study. One important characteristic of TACNN is its
explanatory power to distinguish the difficulty contributions
of text materials to a specific question, i.e., the attention
scores α in Eq. (3). Figure 7 shows the attention scores of
each sentence in the document for question Q2 (“Why did
Larry have to stay in a cage underwater sometimes?”) in Fig-
ure 1(a). We can see that four highlighted “red” sentences in
the document have the highest attention scores1, indicating
they contribute the most difficulty to Q2. This visualization
hints that TACNN provides a good way for a question to
capture key information for model explanations.
Discussion. From the experimental results, we can observe
that TACNN works well for QDP task in standard tests. Fur-
thermore, the case study shows that our framework could
give interpretive results.

In the future, there are still some directions for further

1For better illustration, we omit the attention scores of options.

studies. First, we will make our efforts to design a more ef-
ficient learning algorithm for TACNN. Second, we are also
willing to extend TACNN to solve QDP task in other types
of problems in English tests, such as LISTENING, WRIT-
ING (Leki, Cumming, and Silva 2010) and SPEAKING, and
also in other subjects, e.g., MATH.

5 Conclusions

In this paper, we proposed a novel Test-aware Attention-
based Convolutional Neural Network (TACNN) framework
to solve QDP task for READING problems in standard tests.
Specifically, we first designed a CNN-based architecture for
exploiting sentence representations for the text materials
of questions. Then, we qualified the contributions of sen-
tences to question difficulties by an attention strategy. Fi-
nally, we proposed a test-dependent pairwise strategy for
training TACNN and generating the difficulty prediction val-
ues. The experimental results on a real-world dataset clearly
demonstrated both the effectiveness and explanatory power
of our proposed framework. We hope this work could lead
to more studies in the future.
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