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Figure 2: Melody of the song “WeDon’t Talk Anymore” with
chord progression labeled.

others. In previous works, multi-task learning has been used suc-
cessfully across all applications of machine learning, from natural
language processing [7, 21] to computer vision [10, 33]. For exam-
ple, Zhang et al. [34] proposed to improve generalization perfor-
mance by leveraging the domain-specific information of the train-
ing data in related tasks. In the work [15], the authors pre-defined
a hierarchical architecture consisting of several NLP tasks and de-
signed a simple regularization term to allow for optimizing all model
weights to improve one task’s loss without exhibiting catastrophic
interference in other tasks. Another work [18] in computer vision,
adjusted each task’s relativeweight in the cost function by deriving
a multi-task loss function based on maximizing the Gaussian like-
lihood with task-dependant uncertainty. More multi-task learning
works applied in deep learning are proposed in [22, 23, 27].

3 PRELIMINARIES
In this section, we will intuitively discuss the crucial influence of
chord progression, rhythm pattern and instrument characteristic
in pop song generation, based on music knowledge with related
statistical analysis to further support our motivation.

3.1 Chord Progression
In music, chord is any harmonic set of pitches consisting of two
or more notes that are heard as if sounding simultaneously. An
ordered series of chords is called a chord progression. Chord pro-
gressions are frequently used in songs and a song often sounds
harmonious and melodic if it follows certain chords patterns. As
we can see from Figure 2, every period in melody has the corre-
sponding chord, and “F-G-Am-Em” is the chord progression, which
repeatedly appears in this song. In pop songs, the chord progres-
sion could influence the emotional tone and melody procession.
For example, “C - G - Am - Em - F - C - F - G”, one of the chord pro-
gressions in pop music, is applied in many songs, such as “Simple
love”, “Agreement”, “Deep breath”, “Glory days” and so on.

3.2 Rhythm Pattern
Apart from the chords we mentioned above, rhythm pattern is an-
other characteristic of pop songs. Rhythm pattern could be defined
as the notes duration in a period. For example, the periods labeled
by box in Figure 2, have the same rhythm pattern, which repre-
sents the duration of every note in a period. Different from the
music generated note by note, pop song is a more structural task.
However, previous works didn’t consider the structure of the song.
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Figure 3: Tracks and instruments analysis of pop song.

3.3 Instrument Characteristic
The last characteristic of the song is the arrangement, whichmeans
combing other instruments with the melody for making the whole
music more contagious. In pop music, arrangement is a necessary
section, and often includes drum, bass, string, guitar to accompany
the melody. We analyze the MIDI files, and the detailed statistics
are shown in Figure 3(a), which indicates that the multi-track mu-
sic widely exists in pop songs. Besides, as show in Figure 3(b), pi-
ano is usually used for representing melody and several other in-
struments, such as drum, bass, string and guitar, are typically used
for accompanying tracks.

4 PROBLEM STATEMENT AND MODEL
STRUCTURE

In this section, we will first present the music generation prob-
lem with a formulated problem definition and then introduce the
structures and technical details of Chord based Rhythm and Melody
Cross-Generation Model (CRMCG) for single track music, as well
asMulti-Instrument Co-Arrangement Model (MICA) for multi-track
music. For better illustration, Table 2 lists some mathematical no-
tations used in this paper.

4.1 Problem Statement
Since each pop music has a specific chord progression, we con-
sider the scenario of generating the pop music on the condition of
given chord progression. Thus, the input of music generation task
is the given chord progression C = {c1, c2, ..., clc }. Note that ci
is the one-hot representation of the chord and lc is the length of
the sequence. We target at generating the suitable rhythm Ri =
{ri1, ri2, ..., rilr } and melody Mi = {mi1,mi2, ...,milm }. To this
end, we propose CRMCG for single track music, as well as MICA
for multi-track music to tackle this issue.

Figure 4 shows the overall framework of XiaoIce Band, which
can be divided into four parts: 1) Data processing part; 2) CRMCG
part for melody generation (single track); 3)MICA part for arrange-
ment generation (multi-track); 4) The display part. We will intro-
duce the second and third part in detail. Data processing part will
be detailed in experiment section.
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Figure 4: The flowchart overview of XiaoIce Band.
Table 2: Notations used in the framework.

Notations Description
M the melody sequence of pop music
R the rhythm sequence of pop music
C the chord progression of pop music
pi the i-th period of pop music
mi j the j-th note in i-th period of pop music
ri j the j-th note duration in i-th period of pop music
ci the i-th chord of chord progression
lm, lr , lc the length of melody/rhythm/chord progression sequence respectively

h̄mi, j , h̄
r
i, j , h̄

c
i, j

the j-th hidden state in i-th period of melody/rhythm/chord progression
sequence respectively

hit,k the i-th task hidden state in period t at step k

4.2 Chord based Rhythm and Melody
Cross-Generation Model

Melody is made up of a series of notes and the corresponding dura-
tion. It’s a fundamental part of pop music. However, it’s still chal-
lenging to generate melody in harmony. Besides, note-level gener-
ation methods have more randomness on the pause, which causes
the music hard to sing.Thus, we propose CRMCG to solve the prob-
lem and generate a suitable rhythm for singing. Figure 5 gives the
architecture of CRMCG.

Given a chord progression C = {c1, c2, ..., cN }, we aim at gen-
erating the corresponding periods {p1,p2, ...,pN }. The generated
rhythm Ri and melody Mi in period pi are closely related to the
chord ci .We utilize encoder-decoder framework as our basic frame-
work since it is flexible to use different neural networks, such as
Recurrent Neural Network (RNN) and Convolutional Neural Net-
work (CNN), to process sequence effectively.

In order to better understand the chord progression and model
the interaction and relation of these chords, we utilize Gated Recur-
rent Units (GRU) [4] to process the low-dimension representation
of chords. They can be formulated as follows:

C̄ = EcC, Ec ∈ RVc ∗d ,
h̄ci,0 = GRU(c̄i ), i = 1, 2, ..., lc ,

(1)

here, Ec is the embedding matrix for chord and hidden states c̄i
encode each chord and sequence context around it. Then we can
use these hidden states to help generate rhythm and melody. To be
specific, our generation processing can be divided into two parts:
rhythm generation and melody generation.

Rhythm generation. It is critical that the generated rhythm is in
harmony with the existing part of music. Thus, in this part, we
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Figure 5: CRMCG.

take into consideration the previous part of music. To be specific,
we firstly multiply previous rhythm Rt−1 and melody Mt−1 with
embedding matrix Er and Em . Then, we get the representations of
R̄t−1, M̄t−1 as follows:

R̄t−1 = ErRt−1, Er ∈ RVr ∗d ,

M̄t−1 = EmMt−1, Em ∈ RVm∗d ,
(2)

where, Vm and Vr are the vocabulary size of notes and beats. Af-
ter getting these representations, we utilize two different GRUs to
encode these inputs:

h̄mt−1,i = GRU({m̄t−1,i }), i = 1, 2, ...lm ,

h̄rt−1,i = GRU({r̄t−1,i }), i = 1, 2, ..., lr .
(3)

Thenwe separately concatenate the last hidden states of rhythm
encoder and melody encoder, and make a linear transformation.
The result is treated as the initial state of rhythm decoder, which is
made up by another GRU. The outputs of GRU are the probability
of generated rhythm of the current period. They can be formalized
as follows:

sr0 = д(W [h̄mt−1,lm , h̄
r
t−1,lr ] + b), W ∈ Rb∗b ,

sri = GRU(yri−1, s
r
i−1), i > 0,

yri = so f tmax(sri ),

(4)

here д is the Relu activation function and sri is the hidden state of
GRU for generating the i-th beat in t-th period. Thus we get the
rhythm for the t-th period and turn to generate the melody.

Melody Generation.After generating the current rhythm, we can
utilize this information to generate melody. Like rhythm genera-
tion, we first concat previous melody Mt−1, currently generated
rhythm Rt and corresponding chords ct . Second, we make a linear
transformation in the concatenation, which can be formulated as
follows:

sm0 = д(W [h̄mt−1,lm , h̄
r
t,lr
, h̄ct ] + b), W ∈ Rb∗b . (5)

Then we get the initial hidden state of melody decoder. Finally,
we utilize GRU to process the result and generate the currentmelody
for the whole generation as follows:

smi = GRU(ymi−1, s
m
i−1), i > 0,

ymi = so f tmax(smi ).
(6)

Loss Function. Since the generating process can be divided into
two parts, we design two loss functions for each part.The loss func-
tions are both softmax cross-entropy functions. Based on the char-
acteristic of the model, we can update the parameters alternately
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Figure 6: (a): MICA (b): Attention Cell (c): MLP Cell.

by parameter correlation. In rhythm section, we only update pa-
rameters related with rhythm loss Lr . Differently, we update all
the parameters by melody loss Lm in melody section.

4.3 Multi-task arrangement Model
4.3.1 Multi-Instrument Co-ArrangementModel. In real-world ap-

plications, music contains more than one track, such as drum, bass,
string and guitar. To this end, we formulate a One-to-Many Se-
quences Generation (OMSG) task. Different from conventional mul-
tiple sequences learning, the generated sequences in OSMG are
closely related. When generating one of the sequences, we should
take into account its harmony, rhythm matching, and instrument
characteristic with other sequences. Previous works, such as hier-
archical Recurrent Neural Network proposed by [6], did not con-
sider the correlation between tracks. Therefore, they could achieve
good performance in single track generation, but failed in multi-
track generation. Encouraged by this evidence, we aim to model
the information flow between different tracks during music gen-
eration and propose the Multi-Instrument Co-Arrangement Model
(MICA) based on CRMCG.

Given a melody, we focus on generating more tracks to accom-
pany melody with different instruments. As shown in Figure 6(a),
the hidden state of decoder contains sequence information. Hence,
it naturally introduces the hidden state of other tracks when gen-
erating note for one of the tracks, but how to integrate them effec-
tively is still a challenge. To this end, we designed two cooperate
cells between the hidden layer of decoder to tackle this issue. The
details of these two cells are in the following parts.

4.3.2 AttentionCell. Motivated by attentionmechanism,which
can help the model focus on the most relevant part of the input, we
design a creative attention cell showed in Figure 6(b) to capture the
relevant part of other tasks’ states for current task. The attention
mechanism can be formalized as follows:

ait,k =
T∑
j=1

αt,i jh
j
t,k−1,

et,i j = vT tanh(Whit,k−1 +Uh
j
t,k−1), W ,U ∈ Rb∗b ,

αt,i j =
exp(et,i j )∑T

s=1 exp(et,is )
,

(7)

note that, ait,k represents the cooperate vector for task i at step k

in the period t , and hjt,k−1 represents the hidden state of j-th task
at step k − 1 in the period t . After getting the cooperation vector,
we modify the cell of GRU to allow the current track generation
take full account of the impacts of other tracks’ information. The
modifications are as follows:

r it,k = σ(W i
r x

i
t,k +U i

r h
i
t,k−1 +Aira

i
t,k + bir ),

zit,k = σ(W i
z x

i
t,k +U i

zh
i
t,k−1 +Aiza

i
t,k + biz),

h̃it,k = σ(W ix it,k +U i
[
r it,k · hit,k−1

]
+Aiait,k + bi ),

hit,k = (1 − zit,k ) · h
i
t,k−1 + zit,k · h̃it,k ,

(8)

by combining attention mechanism and GRU cell, our model can
generate every track for one instrument with the consideration of
other instruments.

4.3.3 MLP Cell. Different from the above cell for sharing task
information through input x it,k , we consider the individual hidden
state of each instrument and integrate them by their importance
for the whole music, which is achieved by gate units. Therefore,
our model can choose the most relevant parts of each instrument’s
information to improve the overall performance. Figure 6(c) shows
the structure of this cell, which can be formalized as follows:

r it,k = σ(W i
r x

i
t,k +U i

rH
i
t,k−1 + bir ),

zit,k = σ(W i
z x

i
t,k +U i

zH
i
t,k−1 + biz),

h̃it,k = σ(W i
hx

i
t,k +U i

h

[
r it,k · H i

t,k−1

]
),

hit,k = (1 − zit,k ) · H
i
t,k−1 + zit,k · h̃it,k ,

H i
t,k−1 = σ(W i

[
h1t,k−1, ...,h

N
t,k−1

]
+ bi ),

(9)

here, H i
t,k−1 is the i-th task hidden state in period t at k − 1 step

which contains all tasks current information h1t,k−1, ...,h
N
t,k−1 by

gate units. σ is the activate function andW i
r , U i

r ,W i
z , U i

z ,W i
h , U

i
h ,

W i , bi is corresponding weights of task i . Since our model shares
each track information at each decoding step, it can obtain the over-
all information about the music and generate music in harmony.

4.3.4 Loss Function. Motivated by [9], we optimize the summa-
tion of several conditional probability terms conditioned on repre-
sentation generated from the same encoder.
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L(θ) = arдmax
θ

(
∑
Tk

(
1

Np

Np∑
i
loдp(Y

Tk
i |XTk

i ;θ))),

where θ =
{
θsrc ,θtrдTk ,Tk = 1, 2, ...,Tm

}
, and m is the number

of tasks. θsrc is collection of parameters for source encoder, and
θtrдTk is the parameter set of theTk -th target track. Np is the size
of parallel training corpus of p-th sequence pair.

4.3.5 Generation. In generation part, we arrange for melody
generated by CRMCG. We will discuss this part in details. With the
help ofCRMCG, we get amelody sequenceMi = {mi1,mi2,…,milm },
and the next step is to generate other instrument tracks to accom-
pany it. Similarly, we utilize GRU to process the sequence and get
the initial state sm0 of multi-sequences decoder. They can be formu-
lated as follows:

M̄ = EmM, Em ∈ RVm∗d ,

sm0 = GRU(m̄i,lm ),
(10)

the outputs of multi-sequences decoder correspond other instru-
ment tracks, considering both melody and other accompanying
tracks. They can be formalized as follows:

sit = AttentionCell(yit−1, s
i
t−1), t > 0, or

sit = MLPCell(yit−1, s
i
t−1), t > 0,

yit = so f tmax(sit ),

(11)

where, sit is the i-th task hidden state at step t . We utilize sit to get
i-th instrument sequences through so f tmax layer. The Attention
Cell and MLP Cell, we proposed above, are used to get a cooper-
ation state, which contains self-instrument state as well as other
instrument states, to keep all instruments in harmony.

5 EXPERIMENTS
To investigate the effectiveness of the CRMCG and MICA, we con-
ducted experimentswith the collected dataset on two tasks:Melody
Generation and Arrangement Generation.

5.1 Data Description
In this paper, we conducted our experiments on a real-world dataset,
which consists of more than fifty thousand MIDI (a digital score
format) files, and to avoid biases, those incomplete MIDI files, e.g.,
music without vocal track were removed. Finally, 14,077 MIDI files
were kept in our dataset. Specifically, each MIDI file contains var-
ious categories of audio tracks, such as melody, drum, bass and
string.

To guarantee the reliability of the experimental results, wemade
some preprocessing on the dataset as follows. Firstly, we converted
all MIDI files to C major or A minor to keep all the music in the
same tune.Thenwe set the BPM (Beats Per Minute) to 60 for all the
music, which ensures that all notes correspond to an integer beat.
Finally, we merged every 2 bars into a period. Some basic statistics
of the pruned dataset are summarized in Table 3.

Table 3: Data Set Description.

Statistics Values
# of popular songs 14,077
# of all tracks 164,234
# of drum tracks 18,466
# of bass tracks 16,316
# of string tracks 23,906
# of guitar tracks 28,200
# of piano tracks 18,172
# of other instruments tracks 59,174
Time of all tracks (hours) 10,128

5.2 Training Details
We randomly select 9,855 instances from the dataset as the training
data, another 2,815 for tuning the parameters, and the last 1,407 as
test data to validate the performance as well as more generated
music. In our model, the number of recurrent hidden units are set
to 256 for each GRU layer in encoder and decoder. The dimensions
of parameters to calculate the hidden vector in Attention Cell and
MLP Cell are set as 256. The model is updated with the Stochastic
Gradient Descent [1] algorithm where batch size set is 64, and the
final model is selected according to the cross entropy loss on the
validation set.

5.3 Melody Generation
In this subsection, we conduct Melody Generation Task to validate
the performance of our CRMCG model. That is, we only use the
melody track extracted from the original MIDI music to train the
models and evaluate the aesthetic quality of the melody track gen-
eration result.

5.3.1 Baseline Methods. As the music generation task could be
generally regarded as a sequence generation problem, we select
two state-of-the-art models for sequence generation as baselines:

• Magenta (RNN).ARNNbasedmodel [3], which is designed
to model polyphonic music with expressive timing and dy-
namics.

• GANMidi (GAN). A novel generative adversarial network
(GAN) basedmodel [32], which uses conditionalmechanism
to exploit versatile prior knowledge of music.

In addition to the proposed CRMCG model, we evaluate two
variants of the model to validate the importance of chord progres-
sion and cross-training methods on melody generation:

• CRMCG (full). Proposed model, which generates melody
and rhythm crosswise with chords information.

• CRMCG (w/o chordprogression).Based onCRMCG (full),
the chords information is removed.

• CRMCG (w/o cross-training). Based on CRMCG (full), we
train melody and rhythm patterns respectively based on Lm
and Lr during the training processing.

5.3.2 Overall Performance. Considering the uniqueness of the
music generation, there is not a suitable quantitativemetric to eval-
uate the melody generation result. Thus, we validate the perfor-
mance of models based on human study. Following some point
concepts in [29], we use the metrics listed blow:
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Table 4: Human evaluation of melody generation.

Methods Rhythm Melody Integrity Singability Average
Magenta (RNN) [3] 3.1875 2.8125 2.8000 2.6000 2.8500
GANMidi (GAN) [11] 1.7125 1.7625 1.3500 1.4250 1.5625
CRMCG (full) 3.7125 3.8125 3.7125 3.9000 3.7844
CRMCG (w/o chord progression) 3.7000 3.5875 3.4375 3.8000 3.6312
CRMCG (w/o cross-training) 3.6375 3.5500 3.3500 3.6250 3.5406

• Rhythm.Does the music sounds fluent and pause suitably?
• Melody. Are the music notes relationships natural and har-

monious?
• Integrity. Is the music structure complete and not inter-

rupted suddenly?
• Singability. Is the music suitable for singing with lyrics?

We invited eight volunteers, who are experts in music appreci-
ation, to evaluate the results of various methods. Volunteers rated
every generated music with a score from 1 to 5 based on above
evaluation metrics. The performance is shown in Table 4. Accord-
ing to the results, we realize that our CRMCG model outperforms
all the baselines with a significant margin on all the metrics, which
demonstrate the effectiveness of our CRMCG model on Melody
Generation. Especially, CRMCG (full) performs better thanCRMCG
(w/o chord), which verifies that the chord information can enhance
the quality of melody. In addition, we also find that cross-training
can improve the quality of 6.9% on average, which proves effective-
ness of our cross-training algorithm on melody generation.

At the same time, we find that the RNN based baseline outper-
forms the GAN based model which uses convolutional neural net-
works to generate melody. This phenomenon indicates that RNN
based model is more suitable for Melody Generation, which is the
reason why we design CRMCG based on RNN.

5.3.3 Chord Progression Analysis. Here we further analyze the
performance of chord progression in our CRMCG model. We de-
fine Chord Accuracy to evaluate whether chords of generated
melodies match the input chord sequence:

Chord Accuracy =
P∑

i=1

e(yi , ỹi )/P ,

e (yi , ỹi ) =

{
1, i f yi = ỹi
0, i f yi , ỹi

,

where P is the number of the periods, yi is the i-th chord of gener-
atedmelody detected through [16], and ỹi is the i-th corresponding
chord in given chord progression.

The performance is shown in Figure 7(a). Specially, the average
Chord Accuracy of our generated melody is 82.25%. Moreover, we
show the impact of Chord Accuracy of generated melody on differ-
ent metrics in Figure 7(b), 7(c), 7(d) and 7(e). From the result, we
realize that as the chord accuracy increases, the quality of melody
generation improves significantly, which also confirms the impor-
tance of using the chord information on Melody Generation.

5.3.4 Rest Analysis. Rests are intervals of silence in pieces of
music, and divide a melody sequence into music segments of dif-
ferent lengths. It is important to provide spaces to allow listeners
to absorb each musical phrase before the next one starts. To create

Table 5: Human evaluation of arrangement generation.

Methods Overall Drum Bass String Guitar
HRNN[6] 3.2500 2.9875 3.0875 2.8000 2.8625
MICA (w/ att) 3.6625 3.0750 2.8000 3.2125 3.0000
MICA (w/ mlp) 3.8125 3.1000 3.4625 3.3125 3.3500

satisfying music, it is necessary to keep a good dynamic balance
between musical activity and rest. Therefore, we evaluate the per-
formance of rests in our generated music by contrasting the differ-
ences between distributions of the length of the music segments
in generated music and original ones. Figure 8 shows the distribu-
tions of the minimum, maximum and average length of the mu-
sic segments of the generated music and original ones. We realize
our generated music have similar distributions on music segments
lengths with original ones, which verifies that our CRMCG model
can generate the appropriate rests in pieces of music.

5.4 Arrangement Generation
In this subsection, we conduct Multi-track Music Generation to
validate the performance of our MICA model. Here we select five
most important tasks inMulti-trackMusic Generation, i.e., melody,
drum, bass, string and guitar.

5.4.1 BaselineMethods. To validate the performance of our two
MICA models, a relevant model HRNN [6] is selected as baseline
method. Specifically, we set the comparison methods as follows:

• HRNN. A hierarchical RNN based model [6], which is de-
signed to generate multi-track music. In particular, it uses
a low-level structure to generate melody and higher-level
structures to produce the tracks of different instruments.

• MICAw/AttentionCell.Theproposedmodel, which uses
Attention Cell to share information between different tracks.

• MICAw/MLP Cell.The proposed model, which uses MLP
Cell to share information between different tracks.

5.4.2 Overall Performance. Different from Melody Generation
task, we ask volunteers to evaluate the quality of generated music
in a holistic dimension. The performance is shown in Table 5. Ac-
cording to the results, we realize that our MICA model performs
better than current method HRNN both on single-track and multi-
track, which means MICA has significant improvement on Multi-
track Music Generation task. Specially, we find that multi-track
has higher score than single track score, which indicates that multi-
track music sounds better than single-track music and confirms
the importance of the arrangement. Meanwhile, we observe that
the drum tracks has the worst performance compared to other
single-track, which is because the drum track only plays an acces-
sorial role in a piece of multi-track music. Furthermore, our MLP
Cell based MICA model performs better than Attention Cell based
MICAmodel, and it seems that ourMLP Cell mechanism can better
utilize the information among the multiple tracks.

5.4.3 Harmony Analysis. Besides human study on Multi-track
Music Generation, we further evaluate whether melodies between
different tracks are harmonious. Here we consider that two tracks
are harmonious if they have similar chord progression [14]. Thus,
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Figure 7: Chord progression analysis compared with human study.
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Figure 8: Rhythm distribution.
we use chord similarity to represent harmony among multi-tracks.
Formally, we define Harmony Score as:

Harmony Score =
P∑

p=1

δ

( K∩
k=1

Ckp

)
,

δ (a) =

{
1, i f a , ∅
0, i f a = ∅ ,

where P and K denote the number of periods and tracks of gener-
ated music respectively, and Ckp denotes the k-th track p-th corre-
sponding chord.

As shown in Figure 10, we realize that ourMLPCell basedMICA
model achieves the best performance, with an improvement by
up to 24.4% compared to HRNN. It indicates our MICA model im-
proves the harmony of multi-track music through utilizing the use-
ful information of other tasks. Specially, we find that less tracks
music harmony is higher than more tracks music. For this result,
we think more tracks music have higher harmony requirements.

5.4.4 Arrangement Analysis. To observer how our model per-
forms at multi-track music arrangement, we generate each track
while fixing melody track as source melody sequence. Here we val-
idate the performance based on four metrics as follows:

• Note accuracy. Note accuracy is the fraction of matched
generated notes and source notes over the total amount of
source notes in a piece of music, that is

Notes Accuracy =
N∑
i=1

e(yi , ỹi )/N ,

where yi ,ỹi denote the i-th source note and generated note,
respectively.

• Levenshtein similarity. Levenshtein distance is calculated
by counting the minimum number of single-character edits
(insertions, deletions or substitutions) required to change
one sequence into the other. And it is usually used to mea-
sure the difference between two sequences [20]. Here we
calculate the Levenshtein similarity by Levenshtein distance,
and it can evaluate the similarity of generated musical notes
sequences and original ones. That is

Levenshtein similarity = 1 − Levenshtein distance

N + Ñ
,

whereN , Ñ denote the length of generatedmusical notes se-
quences and original musical notes sequences respectively.

• Notes distributionMSE.Notes distributionMSE is used to
analyze the notes distribution between generated and orig-
inal ones, which can be formulated by:

Notes distribution MSE =

∑M
i=1

∑N
j=1

(
yi
N − ỹi

N

)2
MN

,

where M ,N denote the number of pieces of music and note
categories respectively. Actually, every instrument has its
own characteristic in terms of note range. For example, bass
usually uses low notes and drum has fixed notes.

• Empty. It’s bad for generation results to be empty while a
real result has notes.We use it to evaluate generation results
and a lower score indicates better performance.

The performance is shown in Figure 9. According to the results,
generally, our MLP Cell based MICA model achieves best perfor-
mance across all metrics. Specially, from Figure 9(a), it can be con-
cluded that the drum task has the greatest note accuracy, which
confirms that drum is easier to learn than other instruments. And,
as shown in Figure 9(b), our MLP Cell basedMICAmodel could im-
prove the quality of 6.9% on average compared with HRNN. Mean-
while, from Figure 9(c), we observe that our MLP Cell based MICA
model has the most stable effect on Notes distribution MSE, which
proves our model can do a better job in learning instrument char-
acteristics. At last, the Figure 9(d) illustrates the robustness of our
MLP Cell based MICA model, which can maintain a high level of
generation result.
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Figure 9: The analysis of arrangement from four parts.

5 tracks 4 (w/o G) 4 (w/o S) 4 (w/o B)
0.0

0.1

0.2

0.3

0.4

H
ar
m
o
n
y
m
ea
n
sc
or
e

HRNN

MICA w/ Attention Cell

MICA w/ MLP Cell

Figure 10: The harmony analysis of arrangement (G: Guitar,
S: String, B: Bass).

6 CONCLUSIONS
In this paper, we proposed a melody and arrangement generation
framework based on music knowledge, called XiaoIce Band, which
generated a melody with several instruments accompanying si-
multaneously. For melody generation, we devised a Chord based
Rhythm and Melody Cross-Generation Model (CRMCG), which uti-
lizes chord progression to guide themelody procession, and rhythm
pattern to learn the structure of song crosswise. For arrangement
generation, motivated bymulti-task learning, we proposed aMulti-
Instrument Co-Arrangement Model (MICA) for multi-track music
arrangement, which used other task states at every step in the de-
coder layer to improve the whole generation performance and en-
sure the harmony of multi-track music. By massive experiments
provided, our system showed better performance compared with
other models in human evaluation and we have completed the Tur-
ing test and achieved good results. Moreover, we generated pop
music examples on the Internet, showing the application value of
our model.
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