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Abstract—Natural Language Inference (NLI) task requires an
agent to determine the semantic relation between a premise
sentence (p) and a hypothesis sentence (h), which demands
sufficient understanding about sentences from lexical knowledge
to global semantic. Due to the issues such as polysemy, am-
biguity, as well as fuzziness of sentences, fully understanding
sentences is still challenging. To this end, we propose an Image-
Enhanced Multi-Level Sentence Representation Net (IEMLRN),
a novel architecture that is able to utilize the image to enhance
the sentence semantic understanding at different scales. To be
specific, we introduce the corresponding image of sentences as
reference information, which can be helpful for sentence semantic
understanding and inference relation evaluation. Since image
information might be related to the sentence semantics at dif-
ferent scales, we design a multi-level architecture to understand
sentences from different granularity and generate the sentence
representation more precisely. Experimental results on the large-
scale NLI corpus and real-world NLI alike corpus demonstrate
that IEMLRN can simultaneously improve the performance. It is
noteworthy that IEMLRN significantly outperforms the state-of-
the-art sentence-encoding based models on the challenging hard
subset and challenging lexical subset of SNLI corpus.

Index Terms—Natural Language Inference, Sentence Semantic,
Image-Enhanced Representation, Multiple Level

I. INTRODUCTION

Natural Language Inference (NLI) or Recognizing Tex-

tual Entailment (RTE) task requires an agent to determine

the semantic relation between two sentences among entail-
ment (if the semantic of hypothesis can be concluded from

the premise), contradiction (if the semantic of hypothesis

cannot be concluded from the premise) and neutral (neither

entailment nor contradiction). As depicted in the following

example from [1], where the semantic relation is entailment:

p: Several airlines polled saw costs grow more than expected,
even after adjusting for inflation.

h: Some of the companies in the poll reported cost increases.

NLI is known as a fundamental and yet challenging task for

Natural Language Understanding (NLU) [2]. It requires NLI

models to understand the sentence semantic as comprehensive

as possible and model the semantic relations between two

sentences, which has broad applications, e.g. information

p : People shopping at an outside market
h: 

gold-label: Entailment 

People are enjoying the sunny day at the market.

gold-label: Contradiction
�A� �B�

Fig. 1. Example from SNLI dataset.

retrieval [3], question answering [4], as well as dialog sys-

tem [5]. With respect to the granularity, NLI task can be

classified into two categories: Lexical-level inference [6]–[8]

and Sentence-level inference [9]–[11]. Lexical-level inference

focuses on representing word semantic with different methods

and identifying whether one word can entail another [6], [12].

Sentence-level inference concerns more about the content of

entire texts and representation of sentence semantics [13]. With

the availability of large annotated datasets, such as SNLI [13],

MultiNLI [2], and the advancement of semantic representation

technique [14]–[17], researchers have proposed various end-

to-end neural models to understand sentence semantic and

evaluate the inference relations between sentences.

However, most of these models focus on the text itself and

do not take into consideration the reference information (or

context, such as images), which is essential for sentence

semantic understanding. Sentence semantic suffers from the

issues such as polysemy, ambiguity, as well as fuzziness.

Moreover, it is highly related to the context. The information

of sentence itself may be insufficient for precise semantic

understanding. As shown in Figure 1, both the premise and

hypothesis describe that people are shopping at the market,

while the weather information is different. The weather in hy-

pothesis sentence is “sunny day”, while it is fuzzy in premise

sentence. Since the market is outside, we may conclude that

the weather is “sunny”, which we are not sure about. Thus, we

may conclude the inference relation is neutral when texts are



provided singly. On the contrary, when providing the reference

information, i.e. the image in Figure 1(A), we can make a

confident decision. The image, which is the corresponding to

the sentence pair in SNLI, provides the reference information

for us to verify the uncertain content. Moreover, when the

reference information becomes the image in Figure 1(B),

there is no doubt that the inference relation is contradiction.

Therefore, it is urgent to take into consideration the reference

information for sentence semantic understanding and inference

relation evaluation.

In fact, image captioning work [18]–[21] have proven that

images convey important information of associated sentences.

However, the information that images contain may relate to the

sentence semantic at different scales, e.g. lexical-level, phrase-

level, or the whole sentence. Inappropriate use of the image

reference information may have a negative impact on sentence

semantic understanding [22], [23], which is crucial for natural

language inference. Therefore, it is critical to find an effective

method to integrate the image reference information into

sentence semantic understanding and representation.

To this end, we propose an Image-Enhanced Multi-Level

Sentence Representation Net (IEMLRN), a novel architecture

that is able to utilize the image to enhance the sentence

semantic understanding at different scales to tackle the above

issue. To be specific, we introduce the corresponding image

as reference information and utilize the attention mechanism,

which allows the model to focus on the most relevant parts of

inputs for outputs [24], to integrate the information among text

and images at different scales, i.e. lexical-level, phrase-level,

and sentence-level. Thus, sentence semantic can be enhanced

with the help of reference information and evaluated with the

same standard, which is in favor of tackling NLI task. Exten-

sive evaluations on a large-scale NLI corpus and a real-world

NLI alike corpus demonstrate the effectiveness of IEMLRN
over state-of-the-art sentence encoding-based baselines.

The remainder of this paper is organized as follows. In

Section II, we introduce the related work. Then the structure

and technical details of our proposed approach are given in

Section III. In Section IV, experiments on different test sets

are presented. Finally, we conclude our work in Section V.

II. RELATED WORK

In this section, we will introduce the related work, which

can be classified into three parts: methods about NLI, methods

about image captioning, as well as works about NLI data.

A. Natural Language Inference Methods

Due to data limitation, early works on NLI have been

performed on small datasets with conventional methods [1].

Turney et al. [6] proposed the Similarity Differences Hy-

pothesis: The tendency of a to entail b is correlated with
some learnable function of the differences in their similarities
to a set of reference words. Based on this hypothesis, they

proposed the SimDiffs method, a second-order feature vector

representation of p and h, in which the features were the

differences in the similarities of p and h to a set of reference

words. Among these differences, some were important for

entailment while others might tend to indicate a lack of

entailment. The reference words they utilized included 2086

basic English words [25]. Zhang et al. [26] introduced the

neural network into lexical-level inference and proposed a

method called CENN to represent words semantic with dif-

ferent context and integrated these representations with the

consideration of inference relations.

With large annotated corpora for NLI, i.e. SNLI [13],

MultiNLI [2], a variety of methods have been developed

to represent and evaluate sentence semantic for NLI. These

models could be classified into two frameworks: sentence

representation framework and words matching framework.

The sentence representation framework focused on semantic

representation of each sentence and modeled their semantic

similarity. For example, Bowman et al. [13] encoded the

premise and hypothesis with different LSTMs. Many related

works followed this framework, using different neural net-

works as encoders. They also proposed a Stack-augmented

Parser-Interpreter Neural Network (SPINN), which combined

parsing and interpretation within a single tree-sequence hybrid

model [27]. Munkhdalai et al. [28] proposed Neural Tree

Indexers (NTI) to provide a middle ground between sequential

RNNs and syntactic tree-based recursive models. In addition to

network structures and sentence structures, inner information

also attracted researchers’ attention. Mou et al. [9] proposed

a tree-based convolutional neural network (TBCNN) for NLI,

which captured the sentence level semantics. Liu et al. [29]

proposed a bi-directional LSTM model with inner-attention of

a sentence to generate sentence representation, which could

help re-weight words according to their importance. Im et

al. [30] employed multi-head attention and distance mask,

which could grasp as many aspects of sentences as possible,

to generate a better sentence representation.

The second framework took into consideration more about

words matching. Rocktäschel et al. [31] proposed a word-

by-word attention model to capture the attention information

among words and sentences. Cheng et al. [32] proposed

an LSTM with deep attention fusion model to process text

incrementally from left to right. There were still other models

developed for NLI, such as decomposable attention model with

intra-sentence attention [33], full tree matching NTI-SLSTM-

LSTM with global attention [28], Bilateral Multi-Perspective

Matching [34], etc.

B. Image Captioning Methods

It has been observed that the use of the intermediate rep-

resentation from Convolutional Neural Network (CNN) as an

image descriptor significantly boosts subsequent tasks such as

object localization, object detection, and fine-grained recogni-

tion [22], [35], [36]. What’s more, image captioning [18]–[21]

has been found benefiting from using the image descriptors

from a pre-trained CNN.

Junhua et al. [19] proposed a multimodal Recurrent Neural

Network (m-RNN) to model the probability distribution of

generating a word given previous words and the image.



TABLE I
SOME EXAMPLES FROM DIFFERENT SNLI TEST SETS.

Test set Premise Hypothesis Label

SNLI Test A man looks intent while sculpting a gargoyle.
The man is working on art. Entailment

The man is at the bank. Contradiction

Hard Test
Here is a picture of a man waiting for the bus to pick
him up and he is hiding his face

The man is driving himself somewhere Contradiction
The man is going somewhere. Neutral

Lexical Test The man is wearing a yellow shirt and playing a piano
The man is wearing a yellow shirt and playing an instrument. Entailment
The man is wearing a yellow shirt and playing a french horn. Contradiction

They took the image information into account in each step

of generating a new word. Andrej et al. [37] proposed a

Multimodal Recurrent Neural Network that used the inferred

alignments to learn to generate novel descriptions of image

regions. Their model utilized the images and sentences to learn

about the inter-modal correspondences between them. Oriol et

al. [21] proposed a neural network consisting of a vision CNN

followed by a language generating RNN. The initial state of

language generating RNN was the image representation from

the vision CNN.

C. Works on NLI Data

With the development of large annotated NLI corpora, i.e.

SNLI [13], MultiNLI [2], more and more neural networks have

beed proposed to represent and evaluate sentence semantic,

as well as tackle the NLI tasks. However, these datasets were

created by crowd workers. Specific linguistic phenomena such

as negation and vagueness would be highly correlated with

certain inference classes [38], making it possible to identify

the label by looking only at the hypothesis. Thus, based on the

SNLI test set, Gururangan et al. [38] proposed a challenging

hard test set, in which the examples that premise-oblivious

model classified accurately were removed. They intended to

better evaluate NLI models’ performance with this test set.

Besides, recent models that intended to tackle the NLI task

concerned more about the structures and global semantic of

sentences, but less about external lexical knowledge, which led

them to failing to capture many simple inferences that require

lexical and world knowledge [39]. In order to evaluate NLI

models’ generalization ability, Glockner et al. [39] proposed

a simple but challenging lexical test set. Since this test set is

created based on SNLI too, all the models trained on SNLI

data could be tested for better evaluation. Table I gives some

example from SNLI test, hard test, as well as lexical text.

III. PROBLEM STATEMENT AND MODEL STRUCTURE

In this section, we first formulate the natural language

inference (NLI) problem as a supervised classification and

then introduce the structure and technical details of Image-
Enhanced Multi-Level Sentence Representation Net (IEMLRN)
for natural language inference.

A. Problem Statement

First, we define our task in a formal way. Given a premise

sentence sp = {wp
1 ,w

p
2 , ...,w

p
lp
}, a hypothesis sentence sh =

{wh
1 ,w

h
2 , ...,w

h
lh
} and the corresponding image I , our goal

is to learn a classifier ξ which is able to precisely predict the

inference relation y = ξ(sp, sh, I) between sp and sh. Here,

wp
i and wh

j are one-hot vectors which represent the i th and

j th word in the sentences, and lp and lh indicate the total

number of words in sp and sh. To achieve this goal, two

challenges should be considered:

1) Sentences may have various meanings within different

contexts. How to ensure the semantic meanings captured

from both the premise and the hypothesis sentences match

the context given by the image?

2) The key feature related to the given context (image) can

exist in different scales such as a key word, a specific

phrase or the whole sentence. How to model the sentences

in a multi-scale manner to understand the sentences from

lexical view to global view?

To this end, we propose an Image-Enhanced Multi-Level

Sentence Representation Net (IEMLRN). In the following

subsections, we will show our proposed model dealing with

these issues.

B. Technic Solution

The overall architecture is shown in Figure 2. In order

to understand sentences at multiple scales, we utilize three

networks, i.e., lexical-level network, phrase-level network, as

well as sentence-level network, as it is shown in the dashed

boxes in Figure 2.

Each network consists of four layers: 1) Embedding Layer:

encoding the text inputs with different granularity, i.e. lexical-

level, phrase-level, and sentence-level; 2) Image-Enhanced

Unit Layer: generating the comprehensive sentence representa-

tion with the image reference information; 3) Matching Layer:

modeling the inference relation between two sentences and

getting the inference relation vector; 4) Classification Layer:

classifying the inference relation with different granularity.

Next, we will introduce the technical detail of each layer.

1) Embedding Layer: The image input of IEMLRN are the

feature representations. We select the pre-trained VGG19 [40]

to process the original image and employ the result of the last

convolutional layer as the image feature representations. Then

we get the feature representation C = {c1, c2, ..., clc}, ci ∈
R

d
′
, where d

′
represents the dimension of each feature.

The text inputs of IEMLRN are one-hot representation

sequences sp = {wp
1 ,w

p
2 , ...,w

p
lp
} for premise sentence,

sh = {wh
1 ,w

h
2 , ...,w

h
lh
} for hypothesis sentence. In order to

better represent each word, we utilize the concatenation of pre-

trained word embedding [41], character feature [42], and syn-

tactical features [38], [43] to represent each word in sentences.

The character feature is obtained by applying a convolutional
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Fig. 2. Architecture of Image-Enhanced Multi-Level sentence Representation Net (IEMLRN). (1):The lexical-level embedding P lx,H lx are the
concatenation of text features. The phrase-level embedding P ph,Hph are the results of 1-D convolution with lexical-level embedding. The
sentence-level embedding P st,Hst are the outputs of GRU based on phrase-level embedding. (2): C are the image features from pre-trained
VGG19. (3): Each output in the classification layer is the probability distribution on three categories P (y|sp, sh, I).

neural network and a max pooling to the learned character

embeddings, which can represent words in a finer-granularity

and help avoid the Out-Of-Vocabulary (OOV) problem that

pre-trained word vectors suffer from. The syntactical features

consist of the embedding of part-of-speech tagging feature,

binary exact match feature, and binary antonym feature, which

has been proved useful for sentence semantic understand-

ing [38], [43]. Then we get the extravagant representations

{plx
i |i = 1, 2, ..., lp} and {hlx

j |j = 1, 2, ..., lh} for words

{wp
i } and {wh

j } in premise and hypothesis sentences at

lexical-level. Details about word embedding will be explained

in subsection III-C.
However, these text representations focus on lexical knowl-

edge. Sentence semantic depends on not only lexical knowl-

edge, but also other sentence features, such as word sequence,

phrase structure, and the dependencies among sentences. Thus,

multi-level embedding methods are employed to encode the

necessary information from different granularity.
To be specific, after getting the lexical-level representations

{plx
i } and {hlx

j } for premise and hypothesis sentences, we first

concatenate those plx
i and hlx

j by rows to form embedding

matrices P lx ∈ R
lp∗d and H lx ∈ R

lh∗d for premise and

hypothesis sentences. Then, 1-D convolutions with different

filter sizes (unigram, bigram, and trigram) [4] are applied to

them, followed by a max-pooling over different filters at each

word. At last, we get the phrase-level representations P ph ∈
R

lp∗d and Hph ∈ R
lh∗d, which extract the phrase structure

information for sentence semantics as follow:

P ph = Conv1D(P lx), Hph = Conv1D(H lx). (1)

Furthermore, to take the dependency, the words sequence,

as well as the global semantic into consideration, we also

send these phrase-level representations to a GRU [44] layer,

resulting in the sentence-level representations P st ∈ R
lp∗d

and Hst ∈ R
lh∗d, which can be formulated as follows:

pst
i = GRU(pph

j=1,2,...,i), hst
i = GRU(hph

j=1,2,...,i). (2)

Therefore, we have access to embedding layer for three

levels of sentence representations. We have to note that each

representation at different levels will then be passed to the

Image-Enhanced Unit (IEU) Layer to make a deeper fusion

with image reference information.
2) Image-Enhanced Unit Layer: As mentioned before,

reference information is essential for sentence semantic un-

derstanding and helpful for evaluating two sentences with

the same standard. However, how to make full of reference

information is still challenging. Among the core representation

learning techniques, attention mechanism plays an important

role. Attention Mechanism is known for its alignment be-

tween representations, focusing one part of representation over

another, and model the dependency regardless of sequence

length [42]. Moreover, self-attention, which is a special case

of attention mechanism, relates elements at different positions

from a single sequence by computing the attention between

each pair of tokens of the sequence [15], [45]. It is very flexible

to model the long-range and local dependencies. Therefore,

we intend to utilize attention mechanism to fully utilize the

reference information for sentence semantics.

Figure 3 shows the structure of Image-Enhanced Unit (IEU).

As shown in the figure, the inputs are one embedding se-

quence P = {p1,p2, ...,pls}, one image feature sequence

C = {c1, c2, ..., clc}, as well as the inference relation vector v
which we will introduce next. Please note that the embedding

sequence P can be the premise vectors P lx, P ph P st or
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Fig. 3. Architecture of Image-Enhanced Unit.

the hypothesis vectors H lx, Hph Hst from different levels.

Here, for simplicity, we take the lexical-level representations

P lx of the premise sentence as an example. We first employ

Co-Attention [42] to model the relevance of each word in

the premise sentence and the image features, which can be

formulated as follows:

αij = tanh(plx
i W cocj) ∈ R,

pco
i =

l∑

j=1

exp(αij)∑l
k=1 exp(αkj)

cj , i = 1, 2, ..., lp,
(3)

where pco
i is actually a weight summation of the image context

cj for i-th word in the premise. W co ∈ R
d∗d′

is the trainable

parameters. According to Similarity differences hypothesis [6],

the reference information can reveal some useful contents to

indicate the inference relation between two sentences. Thus,

we can utilize the most relevant information of image features

for semantic understanding of each word in sentences.

After getting the representation {pco
i } from reference infor-

mation, it’s natural to consider integrating this representation

and the original representation {plx
i }. Inspired by GRU archi-

tecture, we introduce the fuse gate to integrate two type of

representations [42], which can be formalized as follows:

zi = tanh(Wz[p
lx
i ;pco

i ] + bz),

ri = σ(Wr[p
lx
i ;pco

i ] + br),

fi = σ(Wf [p
lx
i ;pco

i ] + bf ),

pfu
i = ri � plx

i + fi � zi,

(4)

where Wz,Wr,Wf ∈ R
d∗2d and bz, br, bf ∈ R

d are train-

able parameters. tanh and σ are activation functions, while �
is element-wise product. By utilizing fusion gate operation,

we can integrate textual information as well as reference

information. Thus, the semantic of each word is represented

in a more comprehensive way, which will be beneficial for

sentence semantic understanding.

However, sentence semantic understanding requires not only

lexical knowledge, but also words’ dependency and interaction

among the sentence. In order to capture the dependency

between words and significant properties in each sentence, we

perform a self-attention, a max-pooling on each fusion result,

as well as max-pooling on the text input sequence. Then, we

concatenate them together:

βi = wTσ(Wβp
fu
i +Uβv + bβ),

pself =

p∑

i=1

exp(βi)∑p
k=1 exp(βk)

pfu, i = 1, 2, ..., lp,

prep = [pself ; maxpi (p
fu);maxpi (p

lx)].

(5)

Here, v in Eq. (5) is the inference relation vector of two

sentences. Note that the input value of v depends on which

level of the network is. For the lexical-level network, v will

be zeros since it is the lowest level in our architecture. For

a phrase-level network, its v is set as the output of the

matching layer in lexical-level network, and so on. Details

about computing that in matching layer will be discussed later.

As mentioned before, self-attention can solve the long-range

dependency problem and choose the relevant information for

sentence semantic. Since the sentence representations learning

at each level are aimed at the same sentence, we aim to inform

the current level of the classification reason of the previous

level. By utilizing this operation, the model can grasp the

most relevant parts for inference relation precisely and make

the correct decision. What’s more, the max-pooling operation

can select the most significant properties in each sentence and

enhance the sentence representation. Therefore self-attention

and max-pooling together can generate a sufficient sentence

representation, which is also the output of IEU.

As shown in the red box in Figure 2, the sentence vector

prep for the premise and hrep for hypothesis represent the

sentence semantics in a comprehensive way and guarantee

the models’ ability of sentence understanding and inference

relation classification.

3) Matching Layer: In order to better evaluate the overall

inference relation between two sentences. we employ matching

layer to integrate the information among the premise rep-

resentation prep and hypothesis representation hrep. To be

specific, we leverage heuristic matching methods to modify

these representations, which can be formulated as follows:

v = relu([prep;hrep;hrep − prep;hrep � prep]), (6)

where [.; .] represents the concatenation operation, � means

element-wise product and relu is the non-linear activation

function. v is the inference relation vector of two sentences. To

be specific, concatenation can retain all the information [26].

The element-wise product is a certain measure of “similarity”

of premise and hypothesis [9]. Their differences can capture

the degree of distributional inclusion on each dimension [46].

The output v will be used as the input of the classification

layer. Besides, as mentioned in section III-B2, it will also be

sent to the IEU layer of the next level, e.g., v from lexical-level

network is sent to phrase-level network.

4) Classification Layer: After getting the inference relation

vector v, we utilize a multi-layer perceptron (MLP) and one

softmax output layer to classify the inference relation of

two sentences. The output of this layer is the probability



distribution of the inference relation between these sentence

pairs the reference information. The formulation is as follows:

P (y|sp, sh, I) = softmax(MLP(v)). (7)

We have to note that the input sentences are encoded

at multiple levels. Thus, the probability P (y|sp, sh, I) also

can be calculated at multiple levels. As shown in Figure 2,

we utilize P lx, P ph, P st to represent the outputs of lexical-

level network, phrase-level network, as well as sentence-level

network. The final classification result we use is the output of

sentence-level network.

C. Model Learning

In this subsection, we will introduce the details about the

model learning, which consists of two parts: 1) loss function;

2) model initialization.

1) Loss Function: Since it’s a classification problem, we

utilize cross-entropy as the loss function, The following is

the loss function of the lexical-level network, where n is the

number of training examples:

L = − 1

n

n∑

i=1

yilogP (yi|spi , shi , Ii) (8)

yi is the one-hot representation for the true class of i-
th example, and P (yi|spi , shi , Ii) is the probability distribu-

tion over the classes that IEMLRN outputs. As mentioned

in section III-B4, each network in our model has an out-

put. We intend that each network in our model should

make the right classification. Therefore, we apply cross-

entropy function to each-level output. Considering the model

complexity, we also add the l2-norm of all parameters

θ = {W co,Wz, bz,Wr, br,Wf , bf ,Wβ ,Uβ , bβ} in Image-

Enhanced Unit Layer to the entire loss function. Then we get

the loss function for the whole model as follows:

L = Llx + Lph + Lst + ε ‖θ‖2 (9)

2) Model Initialization: We set the word embedding di-

mension as 300, character-level embedding level as 100, the

dropout as 0.6, and ε as 0.01. The word embedding we use are

obtained from a pre-trained word vectors (840B GloVe) [41].

The hidden state size of GRU is 512. To initialize the model,

we randomly set the all weights such as W following the

uniform distribution in the range between −√
6/(nin+ nout)

and
√
6/(nin+ nout) as suggested by [47]. All biases such as

b are set as zeros. We use Adam optimizer with learning rate

10−4. During implementation, we utilize Photinia1 to build

our entire model.

IV. EXPERIMENT

In this section, we will first introduce the datasets that

we evaluate the models on and the baselines that IEMLRN
compared with. Then, we give a detailed analysis of the model

and experimental results.

1https://github.com/XoriieInpottn/photinia

A. Data Description

In this subsection we introduce two datasets we evaluate

the models on, and we utilize parameter size and accuracy on

different test sets to evaluate the performance of all models.

SNLI. Standford Natural Language Inference (SNLI) [13]

has 570k human annotated sentence pairs. The premise sen-

tences are drawn from the captions of the Flickr30k cor-

pus [48], and the hypothesis sentences are manually composed.

Thus each instance has one corresponding image treated as

the reference information. The labels we use are “entailment”,

“neutral”, and “contradiction”.

We use the same data split as in [13]. In order to reduce the

impact of annotate artifacts and better evaluate models’ ability

of sentence understanding, we also select the challenging hard

subset from [38], in which the premise-oblivious model cannot

classify accurately, as one of the test set. What’s more, the

challenging lexical subset from [39], which require lexical

and world knowledge, is also selected to evaluate models’

generalization ability. Table I gives some examples from

different SNLI test sets.

DanMu. This dataset comes from the user-generated time-

sync comments about the videos2, which has 12k sentence

pairs with corresponding images. Following the idea [49], the

premise and the corresponding image are extracted from a

short period [50], [51], the hypothesis sentence is a modified

variant of one of the comments from either the same period

or a random, unrelated one. The labels we use here are

“entailment” and “not entailment”. Table III reports some key

statistics about these test sets.

B. Baselines

In this part, we compare our model against the following

start-of-the-art sentence-encoding baselines:

• LSTM encoders [13]: encoding the premise and hypoth-

esis with two different LSTMs.

• CENN [26]: utilizing different context to generating

sentence representation for NLI.

• BiLSTM with Inner-Attention [29]: using bidirectional

LSTM with inner attention mechanism to generating

sentence representation for NLI.

• Gated-Att BiLSTM [10]: employing intra-sentence

gated-attention component to encodes a sentence to a

fixed-length vector for NLI.

• Distance-based Self-Attention [30]: utilizing self-

attention and distance mask to model the local and global

dependency for NLI.

We also select two image captioning models to better

verify the performance of IEMLRN. Since these works aim

to generate the description of the images, we add the premise

and hypothesis as inputs to RNN module separately and treat

the final state of models as sentence representations. Then,

we employ the same matching unit and classification layer as

IEMLRN, shown in Figure 2 for NLI.

2www.bilibili.com



TABLE II
PERFORMANCE (ACCURACY) OF MODELS ON SNLI AND DANMU DATASETS.

Model #Paras Full test Hard test Lexical test DanMu test
(1)LSTM encoders [27] 3.0m 80.6% 58.5% 52.3% 64.9%
(2)BiLSTM with Inner-Attention [29] 2.8m 84.5% 62.7% 58.6% 66.3%
(3)CENN [26] ≈700k 82.1% 60.4% 51.9% 65.2%
(4)Gated-Att BiLSTM [10] 12m 85.5% 65.5% 65.6% 67.3%
(5)Distance-based Self-Attention [30] 4.7m 86.3% 67.4% 68.5% 69.7%
(6)CENN with image [26] ≈700k 83.1% 61.7% 66.8% 66.6%
(7)NIC [21] - 84.7% 63.6% 67.1% 67.9%
(8)m-RNN [29] - 85.1% 64.9% 69.4% 68.1%
(9)IEMLRN 3.9m 87.5% 75.4% 78.1% 79.5%
(10)IEMLRN(ensemble) - 88.3% 78.7% 80.5% 82.4%

TABLE III
STATISTICAL INFORMATION OF EACH TEST SET.

Test set Data Size Average Token Count
E C N premise hypothesis

SNLI Full Test 3368 3237 3219 13.91 7.48
Hard Test 1058 1135 1068 13.81 7.71

Lexical Test 982 7164 47 11.42 11.60
DanMu Test 2127 - 3906 10.07 9.26

• NIC [21]: a neural network consisting of a vision CNN

followed by a language RNN.

• m-RNN [29]: utilizing a deep RNN for sentences and a

deep CNN for images to model the probability distribu-

tion of words.

C. Experimental Results

We evaluate the performance of all models from the follow-

ing aspects: A) The parameter size (#Para) of models; B) The

accuracy in 1) SNLI full test set(Full test); 2) SNLI Hard test

(Hard test); 3) SNLI lexical test (Lexical test); D) DanMu test

set (DanMu test).

1) Overall Performance: The overall results are summa-

rized in Table II. We can conclude that IEMLRN achieves

state-of-the-art performance with respect to parameter size and

accuracy on all test sets. To be specific, IEMLRN introduces

the corresponding image as reference information. Thus, the

inference relation between the premise and hypothesis sen-

tences can be evaluated with the same standard. With attention

mechanism, reference information can provide necessary help

for sentence semantic. As shown in Figure 1, the image can

be helpful for distinguishing the exact weather in premise

sentence. What’s more, our model integrates the reference

information and evaluates the inference relation between two

sentences with different granularity, which means IEMLRN
can not only understand the sentence semantic with lexical

knowledge, but also model local and global semantic inter-

actions between sentences. Thus, IEMLRN can understand

sentence from a more comprehensive perspective and achieve

state-of-the-art performance compared with these baselines.

2) Experiments on SNLI full test: LSTM encoder [27]

utilizes different LSTMs to encode sentences and leads

many related works to employ different network structure

as encoders, such as BiLSTM with Inner-Attention [29],

CENN [26]. However, these models encode each sentence

separately. The interactions between two sentences, which are

essential for NLI, have not been utilized effectively. The results

also demonstrate that just separated textual information is

insufficient for NLI. Gated-Att BiLSTM [10] and Distance-

based Self-Attention [30] both utilize attention mechanism

to evaluate the important parts of sentences, which leads a

better performance. The former utilizes the gate information

in LSTM to represent the importance of words. The depen-

dencies among sentences are evaluated effectively. However,

if words in the sentences have high overlap, it might have a

bad influence on its performance. The latter uses multi-head

attention to consider as many aspects of sentences as possible.

Thus it can understand the sentence semantic and evaluate

the inference relation effectively. However, They take into

consideration only the text information, which is insufficient

for solving the issues, such as ambiguity and fuzziness, that

sentence semantics suffer. IEMLRN takes advantage of image

reference information to understand the sentence semantic

more precisely and avoid the issues that sentence semantic

suffers. Thus, our proposed model significantly outperforms

other NLI baselines.

3) Experiments on SNLI hard test set: Gururangan et

al. [38] suspects that annotation artifacts inflate model perfor-

mance. Thus, they propose a challenging hard subset of SNLI

to better evaluate the models’ ability on sentence semantic un-

derstanding. Since the examples that premise-oblivious model

classified accurately are removed, this test set can focus the

model on sentence semantic rather than the annotate artifacts

and better evaluate the models’ performance.

From the results in Table II, we could conclude that

IEMLRN outperforms all the baselines by a large margin, e.g.

Distance-based Self-Attention model (+8.0%), Gated-Att BiL-

STM model (+9.9%) and CENN (+15.0%), which indicates

that our proposed model has better adaptability. Since IEMLRN
introduce the corresponding image as reference information

into inference processing and evaluate the sentence semantics

from different granularity, it can still capture the sentence

semantic even if the sentences became obscure.

4) Experiments on SNLI lexical test set: Recently, many

end-to-end neural models pay more attention to network

structures and make few efforts to incorporate external lex-

ical knowledge, which is simple but important for sentence

semantics, into inference processing. Whether learning from

large-scale training data can help the model grasp the explicit

lexical knowledge still attracts researchers’ attention. Based on



TABLE IV
ABLATION PERFORMANCE (ACCURACY) OF MODELS ON SNLI AND DANMU DATASETS.

Model #Paras Full test Hard test Lexical test DanMu test
(1)IEMLRN-lexical feature 1.6m 34.3% 42.1% 67.5% 51.7%
(2)IEMLRN-phrase feature 1.6m 52.7% 45.2% 66.2% 57.5%
(3)IEMLRN-sentence feature 1.8m 76.2% 57.9% 65.0% 62.3%
(4)IEMLRN-lexical-gram feature 2.7m 65.5% 64.5% 69.4% 63.3%
(5)IEMLRN-lexical-sentence feature 2.96m 82.9% 66.8% 74.6% 70.2%
(6)IEMLRN-gram-sentence feature 2.96m 83.2% 65.7% 73.2% 71.5%
(7)IEMLRN 3.9m 87.5% 75.4% 78.1% 79.5%
(8)IEMLRN(ensemble) - 88.3% 78.7% 80.5% 82.4%
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Fig. 4. Comparison between premise-hypothesis and hypothesis-only.

SNLI dataset, Glockner et al. [39] creates a new challenging

SNLI lexical text set to evaluate models’ ability to make infer-

ences that require simple lexical knowledge. The lexical test

examples in Table I show us that the premise and hypothesis

sentences have high overlap on words, even the different words

between these two sentences may be in the same category.

Thus, this test set requires NLI models to pay close attention to

the specific words and their lexical semantics in sentences. Due

to the phenomenon that is not included in training data and

the high similarity between two sentences, this test set make

great difficulties for these NLI models, though it is simple

for us human. As shown in Table II, most of the models’

performances are worse than their own performances on the

former two test set.

However, IEMLRN achieves a 78.1% accuracy, which is

2.7% higher than its own performance on the hard test.

This indicates our proposed model has better generalization

ability and grasps the lexical knowledge indeed. In order

to better integrate the image reference information and text

information, IEMLRN considers the sentences semantic with

different granularity. Thus, it has the ability to concern the

difference not only between the whole sentences, but also

between the lexical-level or phrase-level semantic. What’s

more, the image reference information can provide necessary

support for identifying this lexical knowledge in sentences.

Therefore, our proposed model can outperform these state-of-

the-art sentence-encoding baselines.

5) Experiments on DanMu test set: This NLI alike dataset

is collected from user-generated time-sync comments about

videos, which was highly diverse in various aspects (length,

complexity, expression, etc), posing linguistic challenges for

NLI task. They might present the same meaning with different

forms of expression due to different audiences. IEMLRN takes

into consideration the corresponding image, which helps to

grasp the true meaning of sentences and evaluate the sentence

semantics with the same standard. Moreover, multi-level repre-

sentations and understanding help the model effectively utilize

the image reference information. Thus, IEMLRN achieves

the best performance. What’s more, we can find that the

model with images will perform better than most of those

without images, which also proves that reference information

is important for sentence semantics and NLI.

D. Ablation Performance
We conduct an ablation study on our model to examine

the effectiveness of each component. The results are shown in

Table IV. Experiments (1)-(3) are single granularity. When

considering global semantic, i.e. full test, hard test, and

DanMu test, we can conclude that sequence information is

necessary for sentence semantics. Without sequence informa-

tion, the performance of lexical feature and phrase feature

are very bad. When local semantic matters more, i.e. lexical

test, we find that lexical feature and phrase feature achieve

better performance than sentence feature, proving different

granularity information is all useful for sentence semantic.

Experiments (4)-(6) consider two of three granularity. We can

draw the same conclusion as experiments (1)-(3). What’s more,

these results are a little better than the previous ones, indicating

that considering the semantics of sentences from different

granularity is very important and necessary for semantic

understanding. In other words, Lexical-level information con-

siders more about the local information, while sentence-level

information concerns more about the global information and

sequence information. They all should be considered for better

sentence understanding and inference relation classification.

E. Analysis on the function of images
We introduce the images as reference information into

NLI. In SNLI data, the premise sentences are drawn from

the captions of these images. In DanMu data, the premise

sentences are comments about these images. Thus, it’s urgent

to distinguish the difference between our work and those about

image and sentence retrieval. If the images have the ability to

replace the premise sentence, we can just evaluate the relation

between images and hypothesis sentences like the latter ones.

Therefore, we remove all the premise data in IEMLRN and

evaluate its performance on the test sets. The results are shown

in Figure 4.
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Fig. 5. Visualization of self-attention with different granularity.

From the results, we conclude that there is a big gap

between the performance of complete data and the hypothesis-

only data. What’s more, the performances on these challenging

test sets, such as hard test and Lexical test, become a lot worse.

This indicates that the images cannot replace the premise

sentences. Even though the premise sentences describe the

information in corresponding images, there is still a big dif-

ference between them. The images can be treated as reference

information to assist the sentence semantic understanding and

inference relation classification, but they cannot be treated as

the replacement of the premise sentences. In other words, our

work still focuses on the inference relation between sentences

and has a great difference with image and sentence retrieval

alike work. IEMLRN is a novel NLI model indeed.

F. Case Study

Here, we visualize the self-attention with different gran-

ularity to validate the introduced reference information and

the multi-level representations. Figure 5 shows the attention

distribution and classification probability distribution of each

level over the example shown in Figure 1.

With the help of image reference information, IEMLRN fo-

cuses on the most relevant parts of the premise and hypothesis

sentences. i.e. “shopping, market” in premise and “enjoying
the sunny day, the market” in hypothesis sentences at lexical-

level. Since IEMLRN only know the lexical information at

this level, it selects the words that are critical to sentence

semantics under the same standard according to the reference

information. From the classification result, we find that the

model considers the inference relation is “neutral”.

When it comes to phrase-level self-attention, IEMLRN is

able to consider not only the sentence semantic more com-

prehensive, but also the lexical knowledge from the previous

level. Therefore, the classification result turns to “entailment”.

What’s more, we can figure out from the attention visualization

that the model started to concern the “outside market” in

premise sentence and “sunny day” in hypothesis sentence,

which indicates that the model evaluated the inference relation

between these two phrases. As mentioned in Section I, there

is a high correlation between the “sunny day” and “outside
market”, which is consistent with our model.

The following is Sentence-level self-attention. In this level,

IEMLRN takes into consideration the global semantic and

dependencies among sentences. The attention distribution at

this level also indicates the same phenomenon. We find that

IEMLRN pays attention to not only the weather information

previous level found, i.e. “outside market” in premise sentence

and “sunny day” in hypothesis sentence, but also people’s

activation, i.e. “People shopping” in premise sentence and

“People enjoying market” in hypothesis sentence. In other

words, IEMLRN evaluates sentence semantics and relations

from lexical knowledge to global semantic, which in favor

of tackling the NLI task. The classification probability also

indicates that IEMLRN become more confident to classify this

instance to “entailment”. With respect to the information from

different levels, our proposed model makes a confident and

solid decision.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an Image-Enhanced Multi-Level

Sentence Representation Net (IEMLRN) for natural language

inference, a novel architecture that allowed the model to utilize

the image reference information and understand sentence

semantic from lexical knowledge to global semantics. To

be specific, we introduced the corresponding image of two

sentences as the reference information, which could be helpful

for sentence semantic understanding and evaluate the inference

relation with the same standard. In order to better integrate

the image reference information and text information, we pro-

posed a multi-level networks, i.e. lexical-level, phrase-level, as

well as sentence-level, to utilize the image for enhancing the

sentence understanding and representation. Thus, sentence se-

mantic and inference relations could be evaluated from a more

comprehensive perspective. Experimental results on different

SNLI test sets and a real-world NLI alike corpus demonstrated

that IEMLRN had the ability to understand sentence semantic,

generate sentence representation, and evaluate the inference

relation between sentences at different scales. In the future,

we will consider more different reference information and

more efficient processing methods for more precise sentence

semantic understanding and representation.

VI. ACKNOWLEDGEMENTS

This research was partially supported by grants from the

National Natural Science Foundation of China (Grants No.

U1605251, 61727809, 61672483 and 61602147), the Science

Foundation of Ministry of Education of China & China Mobile

(No. MCM20170507), and CCF-Tencent Open Fund.



REFERENCES

[1] Bill MacCartney. Natural language inference. Stanford University, 2009.
[2] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage

challenge corpus for sentence understanding through inference. pages
1112–1122, 2018.

[3] Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind
Tafjord, Peter D. Turney, and Daniel Khashabi. Combining retrieval,
statistics, and inference to answer elementary science questions. In
AAAI, 2016.

[4] Peng Wang, Qi Wu, Chunhua Shen, and Anton van den Hengel. The
vqa-machine: Learning how to use existing vision algorithms to answer
new questions. In Proc. CVPR, 2017.

[5] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C
Courville, and Joelle Pineau. Building end-to-end dialogue systems us-
ing generative hierarchical neural network models. In AAAI, volume 16,
pages 3776–3784, 2016.

[6] Peter D Turney and Saif M Mohammad. Experiments with three
approaches to recognizing lexical entailment. Natural Language En-
gineering, 21(3):437–476, 2015.

[7] Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh
Shan. Entailment above the word level in distributional semantics. In
EACL, pages 23–32, 2012.

[8] Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan Zhitomirsky-
Geffet. Directional distributional similarity for lexical inference. Natural
Language Engineering, 16(4):359–389, 2010.

[9] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi
Jin. Natural language inference by tree-based convolution and heuristic
matching. In ACL, volume 2, pages 130–136, 2016.

[10] Qian Chen, Xiao-Dan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and
Diana Inkpen. Recurrent neural network-based sentence encoder with
gated attention for natural language inference. 2017.

[11] Tsendsuren Munkhdalai and Hong Yu. Neural tree indexers for text
understanding. In Proceedings of the conference. Association for
Computational Linguistics. Meeting, volume 1, page 11, 2017.

[12] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector
space models of semantics. Journal of artificial intelligence research,
37:141–188, 2010.

[13] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christo-
pher D. Manning. A large annotated corpus for learning natural language
inference. In EMNLP, 2015.
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