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Abstract

Crowdfunding is an emerging mechanism for entrepreneurs
or individuals to solicit funding from the public for their cre-
ative ideas. However, in these platforms, quite a large pro-
portion of campaigns (projects) fail to raise enough money of
backers’ supports by the declared expiration date. Actually, it
is very urgent to predict the exact success time of campaigns.
But this problem has not been well explored due to a series
of domain and technical challenges. In this paper, we notice
the implicit factor of distribution of backing behaviors has a
positive impact on estimating the success time of the cam-
paign. Therefore, we present a focused study on predicting
two specific tasks, i.e., backing distribution prediction and
success time prediction of campaigns. Specifically, we pro-
pose a Seq2seq based model with Multi-facet Priors (SMP),
which can integrate heterogeneous features to jointly model
the backing distribution and success time. Additionally, to
keep the change of backing distributions more smooth as the
backing behaviors increases, we develop a linear evolutionary
prior for backing distribution prediction. Furthermore, due to
high failure rate, the success time of most campaigns is unob-
servable. We model this censoring phenomenon from the sur-
vival analysis perspective and also develop a non-increasing
prior and a partial prior for success time prediction. Finally,
we conduct extensive experiments on a real-world dataset
from Indiegogo. Experimental results clearly validate the ef-
fectiveness of SMP.

Introduction
In recent years, crowdfunding has gradually become a pop-
ular way for entrepreneurs and individuals to solicit fund-
ing from the public for their creative ideas. Among various
types of crowdfunding platforms, reward-based ones (e.g.,
Indiegogo) are considered as the most popular (Bannerman
2013). Nowadays, thousands of entrepreneurs and individu-
als create campaigns for funding and demonstrate their prac-
tical productions on these platforms every day. They expect
to attract enough backers to meet their financial demands so
that they can witness the birth of their ideal productions.

For example, Figure 1 shows an example of the campaign
from Indiegogo. Generally, a campaign contains a detailed
description, several perks with different funding prices and
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Comments
Kevin Dackiw:

The command console will be a wond-

erful addition to my home theater. ...

Alex Balcanquall:

Hi, I am really excited by this, I own 

one of the original MR millennium 

falcons and know you guys have 

awesome attention to detail. ...

HAL 9000 Product Line from 2001: A Space Odyssey
Description
    For 50 years, fans have been waiting for the ultimate replica 

of the HAL 9000 computer from "2001: A Space Odyssey."

    MRG is proud to announce that the wait is finally over! ...

Funding price: $419 USD

Rewards: 

Early Bird Desktop Bundle

Estimated delivery: Jan. 2019

Funding price: $889 USD

Rewards:

Early Bird Command Console LE

Estimated delivery: Mar. 2019

Perks

Funding Process
Funding goal: $80,000

Expiration date: 28 days left; Funding duration: 40 days

Current progress: $71,519 (89%) USD raised by 90 backers

Figure 1: A campaign example from Indiegogo.

rewards (often vowing future productions), and its funding
process with a pledged goal, expiration date, etc. Anyone
interested in the project can choose any perk to support and
expect the corresponding rewards in return. Among these
heterogeneous features, it is challenging to comprehensively
analyze and integrate them to predict the success time of
campaigns (i.e., success time prediction). Fortunately, In-
diegogo also reveals the backers’ comments which gener-
ally affect the following backing behaviors (i.e., funding
the campaign or not; selecting specific perks) and the speed
of funding process. For example, in Figure 1, the positive
comments (highlighted in blue) encourage this campaign to
quickly raise 89% of its funding goal in a short term. Ac-
tually, with the help of comments, creators can more accu-
rately estimate the backing distribution in the future (i.e., the
ratio of backing behaviors in different price ranges or perks),
which is related to the backers’ preference or perk popular-
ity. Intuitively, more backing behaviors with higher funding
prices lead to rapid fundraising. Therefore, backing distribu-
tion prediction is significant for creators to assess and update
the campaign design in time. Additionally, due to the lim-
ited backing behaviors on each campaign (around 3 backing
behaviors per day on average), the change of backing distri-
butions is slow and smooth so that creators could further es-
timate the success time of campaigns based on the predicted
backing distribution. However, how to construct the predic-
tions of backing distribution and success time remains to be
open issues.
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In this area, some researchers focused on predicting the
success rate of campaigns (Lu et al. 2014; Zhang et al.
2016). However, the problems of backing distribution pre-
diction and success time prediction of campaigns are more
difficult and complicated. Indeed, our focus is more chal-
lenging and dominant to the prior studies for the follow-
ing reasons. First, the two prediction tasks are influenced by
various factors, such as campaign description, perks infor-
mation, comments. Analyzing these heterogeneous features
and integrating them for accurate prediction are nontrivial.
Second, the backers’ feedback (e.g., comments) can greatly
affect the following backing behaviors. Therefore, it is nec-
essary to model the relations between comments and back-
ing distributions. In the meantime, keeping the change of
backing distributions smooth is quite difficult. Third, we no-
tice the implicit factor of backing distribution has a strong
impact on the speed of fundraising. In other words, it is sig-
nificant to take the predicted backing distribution into ac-
count for our senior goal, i.e., predicting the success time of
campaigns. Last but not the least, around 60% of campaigns
failed in fully funding (Liu et al. 2017). As a consequence,
their success time is unobservable, which is referred to as
censoring phenomenon (Li, Rakesh, and Reddy 2016). This
censored data imposes a significant challenge to our study.

To address the challenges above, we present a focused
study on two joint tasks, i.e., backing distribution predic-
tion and success time prediction. Specifically, we propose a
Seq2seq based model with Multi-facet Priors (SMP), which
can integrate heterogeneous features to jointly model the
two prediction tasks. Particularly, we apply an encoder to
track and predict the dynamics of backing distributions by
integrating both static features (e.g., campaign description,
perks information) and dynamic features (e.g., comments).
Then, the final prediction together with the representation
of the encoder is fed into the decoder which predicts the
success time of the campaign. Additionally, to keep the
change of backing distributions smooth, we develop a lin-
ear evolutionary prior for the backing distribution task. Fur-
thermore, we model the censoring phenomenon from the
survival analysis perspective and further develop a non-
increasing prior and a partial prior for the success time pre-
diction task. Finally, we conduct extensive experiments on
a real-world dataset collected from Indiegogo. Experimental
results clearly validate the effectiveness of SMP.

Related Work
In our study, the related work can be grouped into two cate-
gories: crowdfunding and survival analysis.

Crowdfunding
As an emerging research area, the development of crowd-
funding has attracted much research attention in academics.
Although there are some studies focusing on recommender
systems (An, Quercia, and Crowcroft 2014; Rakesh, Lee,
and Reddy 2016) or production supply optimization (Liu
et al. 2017), most researchers pay much attention to pre-
dicting whether the campaign succeed or not (Li, Rakesh,
and Reddy 2016; Zhang et al. 2016). Among them, some

factors are turned out to be valuable (Lu et al. 2014;
Mollick 2014). For instance, Mollick (2014) showed some
campaigns which could reflect the underlying culture would
be associated with funding success. Lu et al. (2014) found
the social media could help crowdfunding projects succeed.
There was a strong correlation between a project’s early
promotional activities and the final outcomes. Additionally,
project creators’ backing history (Zvilichovsky, Inbar, and
Barzilay 2013) and project description (Zhou et al. 2018)
were also effective for improving the prediction accuracy.

Recently, instead of predicting the final results of cam-
paigns, some researchers try to solve more difficult but
valuable problems such as tracking the dynamics for cam-
paigns in their complete funding durations (Zhao et al. 2017;
2018). However, these studies mainly explore the influence
of explicit factors while ignoring the positive effect of im-
plicit ones, such as the backing distribution, on the predic-
tion tasks. Furthermore, few studies have settled the success
time prediction problem which can help creators assess and
update the campaigns in time. To the best of our knowledge,
this is the first attempt to predict backing distribution, and
we also exploit that for success time prediction in crowd-
funding.

Survival Analysis
Survival analysis aims to predict the occurrence of specific
events of interest at a future time, such as the success of cam-
paigns in our study. Actually, this problem has been studied
in various application fields such as student dropouts (Ameri
et al. 2016), health care (Li et al. 2016a) and check-in loca-
tion prediction (Yang, Cai, and Reddy 2018). In this domain,
one of the unique challenges is the presence of censored in-
stances which do not experience the event of interest. Since
the exact time of these censored instances is not observable,
traditional regression models are not appropriate. To deal
with this problem, survival analysis techniques have been
developed to make use of such censored instances. In liter-
ature, survival analysis is a subfield of statistics and most
related methods can be divided into two categories: semi-
parametric and parametric methods. Cox proportional haz-
ard regression model (Cox 1992) is one of the earliest and
most widely used semi-parametric methods. To efficiently
handle high dimensional data, some regularization meth-
ods are proposed such as LASSO-Cox (Tibshirani 1997),
Elastic-Net Cox (Yang and Zou 2013). Parametric methods
provide an important alternative to the Cox-based models.
They assume the event occurrence time follows a particular
distribution such as Weibull, Logistic or Log-normal (Li et
al. 2016a; Li, Rakesh, and Reddy 2016).

Recently, more advanced machine learning methods, such
as ensemble learning (Hothorn et al. 2004), transfer learn-
ing (Li et al. 2016b), multi-task learning (Li et al. 2016a)
and active learning (Vinzamuri, Li, and Reddy 2014), have
been developed to make the prediction from censored data.
In addition, there are a few studies combining deep learn-
ing techniques with survival analysis (Jing and Smola 2017;
Yang, Cai, and Reddy 2018). In this paper, we employ the
seq2seq technique on survival analysis and further propose
SMP, which is the first attempt in this domain.
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Figure 2: The architecture of SMP.

Table 1: The information of features.

Level Features Type

Static

campaign description text
perks description text

campaign’s category categorical
creator’s type categorical

declared funding duration numerical
declared pledged goal numerical

number of perks numerical
max/min/avg price of perks numerical
max/min/avg delivery term numerical

Dynamic comments text

Methodology
In this section, we first formally define the studied problem.
Then we introduce the technical details of SMP, i.e., the in-
put preprocessing, the architecture of SMP, the multi-facet
priors and the model training method.

Problem Overview
For the campaign i, it can be represented by a tuple
(Xi,Ci,V i, di, δi). Specifically, Xi and Ci are static fea-
tures and dynamic features, respectively. The former con-
sists of information created by the creator such as cam-
paign description, perks information, a pledged goal, etc,
while the latter contains a sequence of comments (Ci =
{ci1, ci2, ..., ciT }where T is the number of days since the cre-
ation of the campaign i, and all comments posted on day t
are aggregated into cit). V

i = {vi1,vi2, ...,viT } ∪ {vif} con-
sists of a sequence of backing distributions from the creation
of the campaign (i.e., vi1) to the observable day T (i.e., viT ),
and a final backing distribution (i.e., vif ) when the campaign
reaches its pledged goal or expiration date. Note that we use
a vector vit to denote a probability distribution of all backing
behaviors before t-th day so that each element in vit is non-
negative and ‖vit‖1 = 1. δi is the censoring indicator where

δi = 1 denotes the campaign i has reached its pledged goal;
δi = 0 otherwise. di denotes the observed time which is
defined as:

di =

{
Oi, if the campaign i is successful (δi = 1),
U i, otherwise (δi = 0),

(1)
where Oi is the number of days that the campaign i takes
to succeed; U i is the number of days when the campaign i
has reached its expiration date. For censored instances (i.e.,
δi = 0), Oi is unobservable. Then, the studied problem is
defined as follows.

Problem Formulation. For the campaign i, given its
static and dynamic features (i.e., Xi,Ci), our goal is to es-
timate the final backing distribution ṽif and use it as extra
features to further estimate its exact time to success Oi.

Input Preprocessing
For each campaign, time to success is influenced by vari-
ous features in the form of categorical, text and numerical
data. Table 1 lists the detailed information of features. For
consistency, we carefully preprocess them. Specifically, for
categorical data, we adopt the one-hot encoding (Liu et al.
2017). For text data, it is converted into numerical vectors by
the doc2vec method (Le and Mikolov 2014). For numerical
data, it is normalized by Z-score transformation (Menden-
hall, Sincich, and Boudreau 2016).

Seq2seq Model on Two Prediction Tasks
In our study, we first integrate heterogeneous features to
track and predict the dynamics of backing distributions from
the creation of the campaign to the observable day T . Then,
based on the prediction, we estimate the exact success time
of the campaign. To model the relations between our two
tasks, we design a seq2seq model for them. Specifically, it
aims to model the conditional probability p(Ṽ i, d̃i|Xi,Ci),
which can be divided into two components: (a) an encoder
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which tracks and predicts the dynamics of backing dis-
tributions (i.e., Ṽ i) and computes a representation sid for
the campaign i; (b) a decoder which predicts the success
time of the campaign d̃i. Hence, the conditional probability
p(Ṽ i, d̃i|Xi,Ci) can be decomposed as:

p(Ṽ i, d̃i|Xi,Ci) = p(Ṽ i|Xi,Ci)p(d̃i|sid). (2)

For the encoder, it mainly focuses on the backing distribu-
tion prediction task. We assume whether a backer will sup-
port a campaign or not depends on the following process.
First, she scans the campaign’s static information such as
campaign description, perks information, etc. Then, when
she shows a little interest but has not made her decision,
she will seek others’ advice so that comments on the cam-
paign play an important role in this process. After that, the
backer will decide how much to support. According to this
assumption, we can easily track the dynamics of backing
distributions. Since the backing distribution is influenced by
the daily comments, a natural choice to model this change
is Long Short-Term Memory (LSTM) (Graves, Mohamed,
and Hinton 2013). Given the static features Xi, we first
use a single hidden layer to get the overall representation
of the campaign si0 which is used to initialize the memory
cell of LSTM. Then, given the dynamic features on t-th day
cit (t ∈ {1, 2, ..., T}), (t− 1)-th memory cell sit−1 and hid-
den state hit−1, the t-th hidden state hit is computed as:

hit = LSTM(cit, s
i
t−1,h

i
t−1). (3)

In order to estimate the final backing distribution ṽif , we
also let LSTM output an additional hidden state hif where
the corresponding input is a zero vector. After getting the
sequence of hidden states, we can estimate the probability
distribution of all backing behaviors before t-th day (i.e.,
vit) and the final backing distribution when the campaign
reaches its pledged goal or expiration date (i.e., vif ) as:

p(ṽit|sit−1,hit−1, cit) = softmax(Whit + b), (4)

p(ṽif |siT ,hiT ) = softmax(Whif + b), (5)

where t ∈ {1, 2, ..., T}; {W , b} are a weight matrix
and a bias vector, respectively. Finally, we define the
logarithm of conditional probability of the encoder (i.e.,
log p(Ṽ i|Xi,Ci)) as:

Lien =

T∑
t=1

vi
tlog p(ṽi

t|sit−1,h
i
t−1, c

i
t) + vi

f log p(ṽi
f |s

i
T ,h

i
T ). (6)

For the decoder, it aims to predict the days to success
of the campaign Oi. However, due to the censoring phe-
nomenon, the success time of censored instances (more than
60% of campaigns) is unobservable. To tackle this prob-
lem, we first design a survival sequence for campaign i
(i.e., Y i = {yiT , yiT+1, ..., y

i
di , y

i
di+1}) and then propose a

non-increasing prior and a partial prior which will be il-
lustrated in the next subsection. For the survival sequence,
each variable yi∗ consists of three different states (i.e.,
{1, 0, <EOS>}). In particular, yi∗ = 1 means the campaign
i has still been raising money; yi∗ = 0 means it has reached

...
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Figure 3: The encoder with linear evolutionary prior.

the pledged goal; <EOS> is a special symbol which is re-
quired to mark the End Of the Sequence (i.e., yiT , y

i
di+1 =

<EOS>). Note that for the successful campaigns, their sur-
vival sequences are {<EOS>, 1, 1, ..., 1, 0, <EOS>}, while
for the others, their survival sequences are similar but with-
out 0 (i.e., {<EOS>, 1, 1, ..., 1, <EOS>}). Then, the de-
coder generates one state yi∗ at a time. Specifically, we first
randomize a vector for each state, which can be tuned dur-
ing the training stage, and then employ another LSTM to
automatically generate the target sequence. Formally, given
the last hidden state and memory cell of the encoder (i.e.,
hif , s

i
f ) and the estimated backing distribution (i.e., ṽif ), we

first initialize the memory cell by a vector sid which is com-
puted by the concatenation of hif , sif and ṽif followed by a
single hidden layer. Then, the logarithm of conditional prob-
ability of the decoder (i.e., logp(d̃i|sid)) is defined as:

Lide =

di+1∑
t=T+1

log p(yit|yit−1, sid). (7)

After getting the target sequence, we can make a predic-
tion that the campaign iwill reach its pledged goal on day d̃i

where the variable yi
d̃i
∈ {0, <EOS>} and yik = 1 (k < d̃i).

Multi-facet Priors
In this subsection, we propose three innovative priors for
two prediction tasks, i.e., a linear evolutionary prior, a non-
increasing prior and a partial prior.
Linear evolutionary prior. Due to the limited backing be-
haviors on each campaign (around 3 backing behaviors per
day on average), we assume the change of backing distribu-
tions is slow and smooth. In other words, the hidden state
of the encoder from day t to t + 1 can be transferred by a
matrix A. As shown in Figure 3, given the hidden state hit
(t ∈ {1, 2, ..., T−1}) of the encoder, we propose the follow-
ing conditional distribution to guarantee our assumption:

hit+1|hit ∼ N (Ahit,Σ), (8)

whereΣ is the conditional covariance shared by all hit. Un-
der the assumption, we also assume the hidden state hif can
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be computed by hif = AhiT , which is used to predict the
final backing distribution in Eq. (5), rather than generating
it through LSTM. Therefore, we can formulate the objective
function for this prior as:

Lic1 =

T−1∑
t=1

‖hit+1 −Ahit‖22 + ‖hif −AhiT ‖22, (9)

where ‖ · ‖2 is the L2 Norm. We will further validate the
capacity of matrixA in experiments.
Non-increasing prior. In the decoder, to solve the censor-
ing phenomenon, we design a survival sequence for each
campaign. However, most variables in these survival se-
quences are the same (i.e., yi∗ = 1) so that it is difficult
for the decoder to predict the exact time when the campaign
will succeed or failed (i.e., yi∗ = 0, <EOS>). To tackle
this problem, when generating the conditional probability
p(yit = 1|yit−1, sid) in t-th day, we consider it as the distance
from the pledged goal. Intuitively, as time goes on, more
backers join in the campaign so that the distance from the
pledged goal will become smaller. Therefore, it makes sense
that the conditional probability of the survival sequence
is non-increasing (i.e., p(yit = 1|yit−1, sid) ≥ p(yit+1 =

1|yit, sid), t ∈ {T + 1, T + 2, ..., di − 1}). Inspired by the
learning to rank strategy (Severyn and Moschitti 2015), we
adopt a large margin objective to model this prior. Formally,
given the predicted survival sequence {p(yit = 1|yit−1, sid)},
we formulate the objective function for this prior as:

Lic2 =

di−1∑
t=T+1

max(0,m+ gi(t+ 1)− gi(t)),

gi(t) = p(yit = 1|yit−1, sid),

(10)

where m is the margin which is a hyper-parameter and
ranges from 0 to 1.
Partial prior. With the help of the non-increasing prior, the
decoder is capable of predicting the final result of the cam-
paign (i.e., successful or not). However, how to fit the suc-
cess time of censored instances is still an open problem. To
this end, we propose a partial prior which can help tackle
this problem even though the success time of censored in-
stances is unobservable. Specifically, given a censored in-
stance (campaign i) whose observed time is di, we first find a
campaign set J where each of them has reached its pledged
goal by day di. Then, compared with the distance of cam-
paigns in J from their pledged goals, the distance of the
campaign i is farther from its pledged goal. Therefore, we
have the following large margin objective function:

Lic3 =
∑
j∈J

max(0,m+ gj(T + 1)− gi(T + 1)), (11)

where gi(T + 1) is the distance of campaign i from its
pledged goal on the second day of the observable day T .

Model Training
Combining the seq2seq model with our proposed multi-
facet priors, in this subsection, we will integrate them into
one complete objective function. Given N campaigns, we

first maximize the log-likelihood functions defined in the
seq2seq model (i.e., Len, Lde). Then, we incorporate our
priors and minimize them (i.e., Lc1, Lc2, Lc3). Note that
the partial prior is only effective for the censored instances.
Therefore, we have the whole objective function as follows:

L = min
Θ

N∑
i=1

(−Lien − Lide + λ1Lic1 + λ2Lic2 + λ3I[δ
i = 0]Lic3),

(12)
where {λ1, λ2, λ3} are hyper-parameters used to balance the
effects of different priors; I[x] is an indicator function that
equals 1 if x is true and equals 0 otherwise; Θ denotes all
parameters in SMP and we use Stochastic Gradient Decent
(SGD) to update them with the back propagation through
time algorithm.

Experiments
In this section, we first introduce the dataset collected from
Indiegogo. Then, we illustrate the experimental setup in de-
tail. Finally, we report the experimental results of data ex-
ploration and performances on two tasks.

Dataset Description
We collect a dataset from Indiegogo including 14,143
launched campaigns with their static and dynamic infor-
mation described in Table 1. Among them, there are total
98,923 perks and 240,922 comments. In addition, we also
collect funding information with 1,862,097 backing behav-
iors. For each campaign, its funding process begins with its
creation and continues until its success or declared fund-
ing duration. To observe how the model behaves at different
stages, we split the funding process of each campaign into
two parts at 30%, 50% or 70%. The early portion is fed into
the encoder and the other is fed into the decoder.

Experimental Setup
Parameter Setting. For the encoder, from the description
in Input Preprocessing, all textual inputs (i.e., the descrip-
tion of campaigns, perks and comments) are converted into
numerical vectors by the doc2vec method. We aggregate all
description and use public doc2vec lib (Gensim) to assign
each text with a 50-dimensional vector. With respect to the
backing distributions V i, we count the prices of all perks
and empirically split them into 10 different price range (i.e.,
vi∗ ∈ R10; the price range of the k-th element is from k ∗ 20
to (k + 1) ∗ 20 dollars and its corresponding value (i.e.,
vi∗k) denotes the ratio of all backings in this range). For
the decoder, there are three different states in survival se-
quences and each of them will be randomly assigned with
a 20-dimensional vector which is tuned during the training
stage. In addition, the sizes of the hidden state and memory
cell in the encoder (decoder) are empirically set as 50 (20).

For all parameters Θ in our model, we follow (Huang
et al. 2017) and randomly initialize them with a uni-
form distribution in the range from −

√
6/(nin+ nout) to√

6/(nin+ nout), where nin and nout are the sizes of lay-
ers before and after the weight matrix. During the training
stage, all parameters are tuned. Moreover, we use dropout
with probability 0.2 to prevent overfitting. Due to the space
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limitation, we treat all hyper-parameters as constants. With-
out special illustration, m in Eq. (10) and Eq. (11) is empir-
ically set as 0.1, and λ1, λ2, λ3 in Eq. (12) are set as 1.0.
Evaluation Metrics. In our study, we focus on two predic-
tion tasks, i.e., backing distribution prediction and success
time prediction. We adopt different metrics to evaluate their
performances.

For the backing distribution prediction task, we adopt
three different metrics, i.e., KL divergence, root mean square
error (RMSE) and mean absolute error (MAE). Specifically,
for the campaign i, given its real backing distribution vif and
predicted one ṽif , where vif , ṽ

i
f ∈ R10, the performances

can be measured by:

KL =
∑9

j=0
vifj log

vifj
ṽifj

,

RMSE =
1

10

∑9

j=0
(vifj − ṽifj)2,

MAE =
1

10

∑9

j=0
|vifj − ṽifj |.

(13)

For the success time prediction task, due to the censor-
ing phenomenon, the success time of a large proportion
of campaigns is unobservable so that we adopt a widely
used evaluation metric in survival analysis, i.e., the concor-
dance index (CI). Specifically, given N pairs of campaigns
(di, d̃i), i ∈ {1, 2, ..., N}, where di is the actual observed
time, and d̃i is the predicted one, CI can be calculated by:

CI =
1

num

∑
i∈{1,2,...,N}∧δi=1

∑
dj>di

I[d̃j > d̃i], (14)

where num denotes the number of comparable pairs.
Benchmark Methods. When testing the performances on
the backing distribution task, we apply the encoder part with
the linear evolutionary prior (denoted as SMP-A) against
baselines. When testing the performances on the success
time prediction task, we compare our complete method (de-
noted as SMP) against baselines.

For the backing distribution task, we choose three effec-
tive methods as baselines.

• Multinomial-LR (Krishnapuram et al. 2005) is a classifi-
cation method that generalizes logistic regression (LR) to
multiclass problems.

• MLP (Multilayer Perceptron) (Bengio and others 2009) is
a feedforward artificial neural network.

• SMP-NA is a variant of SMP-A without the linear evolu-
tionary prior.

For the success time prediction task, we choose a series
of representative models widely used in survival analysis.

• COX (Cox 1992) is the most commonly used semi-
parametric model in survival analysis.

• Logistic, Log-logistic (Li, Rakesh, and Reddy 2016) are
parametric censored regression models with logistic and
log-logistic distributions respectively.

0

0.1

0.2

0.3

0.4

0

1

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o
n

 (
%

)

0.5

0.75

0.25

P
ro

b
a
b

il
it

y
 d

is
tr

ib
u

ti
o
n

 (
%

)

Price range of perks

Failed campaigns Successful campaigns

(a) Backing distribution.

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 10+

Number of comments

R
a
ti

o
 o

f 
su

cc
e
ss

fu
l 

o
r
 f

a
il

e
d

 c
a
m

p
a
in

s 
(%

)

S
u

cc
e
ss

fu
l 

c
a
m

p
a
ig

n
/F

a
il

e
d

 o
n

e
s 

(%
)

0

0.5

1

1.5

2

Failed campaigns Successful campaigns

(b) Comment effects.

Figure 4: Data exploration.

• Tobit (Li et al. 2016a) is an extension of the linear regres-
sion which estimates relations between variables when
there is censoring in the dependent variable.

• Multitask L21, Multitask Lasso (Li et al. 2017) are
two standard multi-task learning models with l2,1 and
LASSO norm penalty, respectively.

• BoostCOX (Hothorn et al. 2004) is an ensemble method
using Gradient-boosted Cox proportional hazard loss with
regression trees as base learner.

• SurvivalSVM (Navab and Katouzian 2015) is a ranking-
based support vector machine for survival analysis

• SMP-S is a variant of SMP by removing the encoder part.
We initialize the memory cell of the decoder by concate-
nating the static and dynamic features with a hidden layer
and then continue to make a prediction.

• SMP-T is another variant of SMP by removing the back-
ing distribution prediction task and the linear evolutionary
prior, i.e., Lien and Lic1 are removed in Eq. (12).

Except our models (i.e., SMP, SMP-T, SMP-A, SMP-NA),
other benchmark methods cannot model the sequential fea-
tures (i.e., comments in our study). To deal with it, we trans-
form all comments into one vector through an average pool-
ing operation and then concatenate it with static features.
Note that all methods are trained with parameters which per-
form their best on the training data.

Experimental Results
Data Exploration. In this experiment, we explore the im-
pact of backing distribution and backers’ feedback (i.e.,
comments) on campaign success. For the former factor, we
collect all backing behaviors and separate them into several
groups according to the two rules: (1) Whether the corre-
sponding campaign reaches its pledged goal by the expi-
ration date? (2) How much is the backing? According to
our statistics, in our dataset, there are 5,534 successful cam-
paigns and 8,609 failed ones so that 60.9% of campaigns are
censored instances. Then, we plot the backing distribution
as shown in Figure 4a. In this figure, solid lines denote the
probability distribution of successful campaigns (red curve)
and failed campaigns (blue curve), while dotted lines de-
note the cumulative distribution. From the comparison of
two solid lines, we find the blue one is higher than the red
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Figure 5: Performances of the backing distribution prediction.

Table 2: Performances of success time prediction.

Level Model Partition Ratio
30% 50% 70%

Semi-Para COX 0.737 0.693 0.720

Parametric
Tobit 0.770 0.709 0.793

Logistic 0.684 0.680 0.689
Log-Logistic 0.695 0.702 0.701

Machine
Learning

Multitask L21 0.608 0.596 0.595
Multitask Lasso 0.610 0.622 0.600

BoostCOX 0.836 0.776 0.85
SurvivalSVM 0.752 0.717 0.794

Our Models
SMP-S 0.734 0.729 0.764
SMP-T 0.883 0.930 0.899
SMP 0.910 0.960 0.914

one at lower price range but it changes to the opposite at
higher price range. That is to say, the average funding price
of successful campaigns is larger than that of failed cam-
paigns. The comparison of two dotted lines can also reflect
the same conclusion. Therefore, the backing distribution is
highly related to the results of campaigns.

For the second factor, we make some statistics according
to the number of comments. In Figure 4b, for a fixed num-
ber of comments, the corresponding red bar denotes the per-
centage of successful campaigns while the blue bar denotes
the failed campaigns. In addition, we also compute the ratio
of successful ones to the failed ones plotted by a solid line.
From this figure, we observe that the success rate of cam-
paigns increases with the number of comments. Generally,
it means the comments play a positive role in raising funds
and help campaigns appeal to more backers to support so
that reaching their pledged goals.

From the statistics and analysis above, we can conclude
some representative features such as funding prices and dy-
namic comments play an important role in our two tasks.
Performances on Backing Distribution Prediction. Here,
we demonstrate the performance comparisons on the back-
ing distribution prediction task. Figure 5 provides the his-
togram plots on KL, RMSE and MAE metrics. From the re-
sults, it can be observed that our models (i.e., SMP-A and
SMP-NA) outperform the other baselines in most cases. Ad-
ditionally, compared with SMP-NA, SMP-A performs better
which indicates that our linear evolutionary prior is effective

and help the model predict the backing distribution more ac-
curately. Furthermore, as the partition ratio of the funding
process increases, the number of comments also increases
and the distance between the predicted and real distribution
is getting smaller. This observation once again shows the
important role that comments play in our study.
Performances on Success Time Prediction. Here, we show
the performance comparisons on the success time prediction
task among all methods. As shown in Table 2, our com-
plete method (i.e., SMP) significantly performs better than
the baselines at three different partitions. Compared with
the best baseline apart from our variant models (i.e., Boost-
COX), SMP respectively performs improvements with 8.9%,
7.9% and 6.9% on CI. This indicates the effectiveness of
SMP on the success time prediction task. Then, we turn to
the comparison results of SMP-S, SMP-T and SMP. Specif-
ically, SMP-S integrates heterogeneous features by a hidden
layer while SMP-T employs LSTM to model their relations.
As a consequence, SMP-T dominates SMP-S on this task
which indicates the encoder part in SMP-T has the ability
on learning the complex relations of heterogeneous features.
In addition, compared with SMP-T, SMP takes the backing
distribution into account when predicting the success time of
the campaign. And the results also show that SMP performs
better than SMP-T which reflects the predicted backing dis-
tribution has the positive effects on this task.

Conclusion
In this paper, we presented a focused study on predicting
both backing distribution and success time of campaigns by
integrating heterogeneous features. Inspired by the sequence
learning and survival analysis, we first proposed a seq2seq
based model to jointly model two prediction tasks. Then,
according to our observation and analysis, we made some
assumptions and also developed three innovative priors, i.e.,
a linear evolutionary prior, a non-increasing prior and a par-
tial prior. In experiments, we analyzed the influence of com-
ments and backing distributions on the results of campaigns
and validated the capacity of SMP and its variants on two
tasks. The experimental results clearly validated the effec-
tiveness of SMP.
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