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Abstract. Recent years have witnessed the successful rise of the time-
sync “gossiping comment”, or so-called “Danmu” combined with online
videos. Along this line, automatic generation of Danmus may attract
users with better interactions. However, this task could be extremely
challenging due to the difficulties of informal expressions and “semantic
gap” between text and videos, as Danmus are usually not straightforward
descriptions for the videos, but subjective and diverse expressions. To
that end, in this paper, we propose a novel Embedding-based Generative
Adversarial (E-GA) framework to generate time-sync video comments
with “gossiping” behavior. Specifically, we first model the informal styles
of comments via semantic embedding inspired by variational autoen-
coders (VAE), and then generate Danmus in a generatively adversarial
way to deal with the gap between visual and textual content. Extensive
experiments on a large-scale real-world dataset demonstrate the effec-
tiveness of our E-GA framework.

1 Introduction

Recent years have witnessed the booming of the novel time-sync comments on
online videos, or so-called “Danmu” [10,11], which describes the scene that
massive comments flying across the screen just like bullets [14]. This new business
mode could not only enrich the video with textual information but also attract
viewers with better interactions. For instance, the report of iQiYi1, a leading
Danmu-enabled video-sharing platform in China, revealed that Danmus have
improved the online user activities, such as views or comments, even by 100
times. Along this line, administrators are encouraged to improve the loyalty

1 http://digi.163.com/14/0915/17/A66VE805001618JV.html.
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of users with high-quality Danmus. However, due to the limitation of “grass-
root” users, the quantity and quality of Danmu could be hardly ensured. Thus,
solutions for automatic Danmu generation is urgently required.

Usually, prior arts conducted the short text generation mainly following the
idea of tagging method [25], textual summarization [4,17] or Question-answering
system [1]. Nevertheless, though large efforts have been made, these brilliant
works may not be suitable for the Danmu generation task due to its unique
characters. Indeed, Danmu is not just the objective statement of video content,
more importantly, it could be the “gossiping” to the video. First, different
from the image caption techniques, Danmu always indicates the subjective
opinions, e.g., “I like Penny” and “Sheldon is so cute” (from the American
TV sitcom “The Big Bang Theory”). Second, the content of Danmus could be
more diverse, which is not limited to the current episode of video, e.g., we can
see “Bazinga”, the pet phrase of Sheldon, in Danmus at anywhere even without
Sheldon. Besides, the expression of Danmus could be informal, as emotions (e.g.,
“O(∩ ∩)O”) or slangs (e.g., “lol” which means laughing), which could be more
fluent just like human talking, but cannot be interpreted by literal meanings
and thus increase the difficulty of generation.

To that end, in this paper, we propose a novel Embedding-based Generative
Adversarial framework (E-GA) to generate the gossiping Danmus of videos.
Specifically, considering the informal expressions in Danmu, we represent both
the video scenes and textual information as vectors. Then, to deal with the
semantic gap between visual content and user opinions, a generative adversarial
model is adapted to learn the latent mapping between visual space and semantic
space. Along this line, the proper and diverse semantic vectors will be generated,
and then decoded as sentences. To the best of our knowledge, we are among
the first ones who attempt to generate Danmu-like comments with combining
both embedding and adversarial approaches. Extensive experiments on a large-
scale real-world dataset demonstrate the effectiveness of our E-GA framework,
which validates the potential of our framework on generating “gossiping” text
in Danmu-enable social media platforms.
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2 Problem Definition and Technical Solution

In this paper, we target at generating Danmus for video frames. Formally, we
first give the definition as follow:

Definition 1 (Danmu Generation). Given the training set of video frames
{vi}, where vi ∈ V denotes the i-th frame in video, combined with related Dan-
mus as Si = {sik}. Our target is to learn a Danmu generator G, so that a series
of Danmu-like comments {s′

kj} could be produced for gossiping any given frame
v′
i ∈ V ′ in the test set.

Specifically, as we mentioned above that we target at generating the “gos-
siping” Danmus for given video frames, we have to satisfy the following three
requirements to ensure the gossiping characters:

1. Relation. The generated Danmus must be semantically related to the given
frame.

2. Diversity. The generated Danmus should be more than only the description
of the objective truth in the frame. They should be subjective and semanti-
cally diverse.

3. Fluency. The generated Danmu should be fluency, i.e., their style should be
similar to the human-written comments.

Along this line, to satisfy all the three requirements above, we formulate our
solution in the following way. First, according to the basic task, i.e., generating
a sequence of comments given the video frame, we propose a generator G to
model the probability distribution P (s|v). Then, considering the requirements
on semantic relation, we adopt the Generative Adversarial Networks (GANs)
structure [16], and further introduce a noise vector τ , so that the requirements
on diversity could also be satisfied.

Correspondingly, the generator G could be re-formulated as {sk} = G(τ |v).
However, here the generated Danmu, as the sequences of words, will be dis-
crete but not continuous as prior arts. Thus, requirements of fluency could be
unsatisfied with directly using the GAN [28]. Moreover, the informal expres-
sions exist in Danmu may further increase the difficulty in understanding the
relations between frames and text. To address these challenges, we design an
Embedding-based Generative Adversarial framework (E-GA), where the frames
V and comments S are first represented into low dimensional continuous spaces
Hv and Hs. Then, we further adapt our generator as {hsk} = G(τ |hv), in which
hsk ∈ Hs and hv ∈ Hv. Finally, Danmu sentences si will be reconstructed
from hsi.

In summary, the overall framework of our E-GA model is illustrated in Fig. 1,
which includes two parts, namely (1) the embedding part and (2) the generation
part. Technical details will be introduced in the following sections.

2.1 The Embedding Part

First, we will introduce the detail of embedding part. In order to better model
the internal relations for the frames and text, we choose to perform data
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representation via the Variational AutoEncoders (VAE) [13], which is based on
a regularized standard autoencoder. It modifies the conventional ones by using
a posterior distribution q(z|x) instead of the deterministic embedding φ(x) for
input x. Reconstruction of x is generated by sampling a vector z from q(z|x)
and then passing it through a decoder. In addition, to ensure that the embedding
space is continuous where any point (vector) can be decoded to a valid sample,
the posterior q(z|x) is regularized with its KL-divergence from a prior distri-
bution p(z), which usually follows standard Gaussian N (0,1). The objective
function takes the following form:

L = −Eq(z |x)[log p(x|z)] + DKL(q(z|x)||p(z)), (1)

where the expectation term is known as the reconstruction loss Lrec, while the
other term denotes the KL-loss LKL.

Though the VAE based model can achieve decoding vectors to human accept-
able data, e.g., images or fluency sentences, its embedding ability has been largely
weakened. Note that, the “embedding ability” here refers to how well the repre-
sentations can reconstruct their original inputs. For example, if there are embed-
ding vectors h = φ(x) that can be decoded to the inputs x with little loss, we
normally say that φ have good embedding ability. In contrast, if a series of rep-
resentations fail to reconstruct the original inputs, there is definitely a loss of
information. At the same time, the associated reconstruction loss Lrec will be
large. Thus, we are not going to use the VAE directly. Considering the KL term
in Eq. 1, the KL divergence for diagonal Gaussian N (μ,σ2) can be formulated
by:

LKL =
N∑

i=1

(μ2
i + σ2

i − log(σ2
i ) − 1), (2)

which is composed of the “μ-term” and the “σ-term”. As we know, for a con-
verged VAE, these two terms will ideally set μ and σ to 0 and 1 respectively,
which will result in poor embedding effect. In our task, both of the ability of
embedding and decoding are needed. On one hand, we need the proper repre-
sentations μ to feed into the generator. On the other hand, we also need the
decoder to generate new sentences from h ∼ N (μ,σ2) rather than giving the
existing sentences from the training set. To this end, we loose the KL constraint
by replacing the μ-term with max(μ2

i − μ2
0, 0):

LKL =
N∑

i=1

(max(μ2
i − μ2

0, 0) + σ2
i − log(σ2

i ) − 1), (3)

so as to σ still converge to 1 while μi can be in the range of [−μ0, μ0]. Further,
to measure the embedding capacity for the modified model, we define a metric
as follows:

C = Eµi∼U(−µ0,µ0)

[
DKL

(
q(z|x)||p(z)

)

H
(
q(z|x), p(z)

)
]

= 1 −
√

ln 2πe
μ0

arctan
μ0√

ln 2πe
, (4)
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Fig. 2. The RNN structure of sentence encoder and decoder. Size of each layer is
labeled on the box. Note that the encoder and decoder share the same parameters for
word embedding layer.

where H denotes the cross entropy of the two distribution. C is valued in [0, 1),
and we could balance the effect of embedding and decoding by tuning μ0 based
on this. We will discuss more about this later in Sect. 3.4.

Next, to be specific, for video frames, we set up an encoder φv to encode an
image v ∈ V as a posterior distribution q(hv|v). Typically, we use a diagonal
Gaussian distribution N (μv,σ

2
v) to present this posterior, where (μv,σv) =

φv(v). Then, to formulate the loss function and learn the model, a visual vector
hv is sampled from q(hv|v) and then sent to a decoder ψv. The image is finally
reconstructed as v′ = ψv(hv). The reconstruction loss is in the form of Mean
Squared Error (MSE):

Lrec =
1
N

∑
(v′ − v)2. (5)

Specially, the encoder φv and decoder ψv are implemented by deep convolutional
networks with 4 layers as used in [19].

For Danmu sentences, the situation is a little different. We design character
level Gated Recurrent Unit (GRU) [5] networks as encoder φs and decoder ψs, as
shown in Fig. 2. At each time, a pair of sentences (s1, s2) that are selected from
the same frame are first put into the encoder by characters to get their posterior
distributions N (μs1,σ

2
s1) and N (μs2,σ

2
s2). Like frame embedding, hs1 and hs2

which are sampled from the two distributions are put into the decoder. In the
decoder, for every single sentence, the corresponding reconstruction loss is the
sum of the negative log likelihood of the correct character at each step:

Lrec(s) = − log P (s|hs) = −
N∑

t=1

log P (ct|hs, c0, ..., ct−1). (6)

More importantly, to model the deeper semantic meaning of Danmus, we also
involve a semantic loss formulated as:

Lsem(s1, s2) = dist(μs1,μs2), (7)

in which we take the assumption of “temporal correlation” [14], i.e., comments
appear in the same frame hold the similar topics (relevant to the frame, but
semantically diverse). Here we choose cosine distance as the distance function
dist(). Finally, the overall reconstruction loss for Danmu embedding is given by:
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Lrec = Lrec(s1) + Lrec(s2) + Lsem(s1, s2). (8)

2.2 The Generation Part

In the generation part, we set up Conditional Generative Adversarial Model
which consists of two “adversarial” models: a generative model G that captures
the data distribution, and a discriminative model D that estimates the prob-
ability that a sample came from the training data rather than G. Here, since
we aim to produce semantic vectors from the visual vectors, both G and D are
implemented by deep neural networks.

In detail, we choose to utilize our GAN as a Wasserstein GAN [2]. For G, the
visual vector hv and the noise vector τ are first concatenated, and then put into
the hidden layers with size 1000 and 500. Here, we perform the batch normal-
ization [12] for every layer to reduce the internal-covariate-shift by normalizing
its input distributions to the standard Gaussian distribution, and leaky ReLU
with leak value 0.01 is used as the activation function. Then, a linear transfor-
mation is took place on the output to produce the “fake” semantic vector, i.e.,
hs = G(τ |hv).

Similarly, for D, the input is the concatenation of a visual vector hv and a
(fake) semantic vector hs, while the hidden layers are sized as 2000 and 1000
with the same activation function. Please note that batch-norm should not be
used for a discriminator since it can cause the model unable to converge. Finally,
the critical output y = D(hs|hv) is calculated by linearly mapping the hidden
state to a scalar, which indicates whether the input semantic vector is fake or
not. Furthermore, G and D are trained alternatively and the objective function
of a two-player min-max game would be:

min
G

max
D

V (D,G) = Ep(hs|hv)[D(hs|hv)] − Ep(τ )[D(G(τ |hv)|hv)].

2.3 Learning the Model

We then turn to introduce details about learning the model. With recalling the
Fig. 1, the training process can be divided into two stages: (1) We separately
learning the two autoencoders with the frames and comments from the videos.
After the parameters are fine-tuned, we store the models including the image
encoder φv, sequence encoder φs and the sequence decoder ψs for further use.
(2) Based on the autoencoders, we train the generator G and the discriminator
D in a generative adversarial way. Note that in this stage, parameters of φv, φs

and ψs are kept unchanged, only G and D are updated.
To be specific, in both of the two stages, mini-batch gradient descent is used

to optimize the models, where the batch size in our case is 32. For the autoen-
coders, we use SGD with momentum, where the learning rate and momentum
are separately set as 0.1 and 0.6, and at the same time, gradient clipping is per-
formed to constrain the L2 norm of the global gradients not larger than 1.0. To
our pilot study, it is crucial to clip the gradients for most of the optimizing algo-
rithms due to the exploding gradients problem even with a very small learning
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rate. For the GAN part, we take the RMSProp2 algorithm with learning rate
10−5 and decay 0.9.

Another problem is the trade-off between reconstruction loss Lrec and KL-
loss LKL when training the embedding models. For a VAE-based model, directly
minimizing Lrec + LKL may fail to encode useful information [3] in the embed-
ding vector, since in most cases, LKL is far more easy to be optimized, which will
yield models that consistently set Q(z|x) equal to P (z). Thus, in our case, we
design a simple annealing approach, in which Lrec +αLKL is used to replace the
original loss function, where α is initialized with 0 and then gradually increased
to 1.

3 Experiments

3.1 Data Preparation

We choose to validate our work on a real-world dataset extracted from Bilibili,
which is one of the largest video-sharing platforms in China. Specially, totally
2, 716 individual movies are extracted, which last for 232, 485 minutes and con-
tain 9, 661, 369 Danmus. To get scene images, we split the videos into frames for
every one second.

Since the total number of the frames is too large, key frame extraction is
carried out to eliminate the duplicated ones. First, we extract features for frames
by constructing the scalable color descriptors (SCD) [15]. Then, based on these
features, an affinity propagation algorithm is performed to cluster the frames,
and the kernels are collected as our key frames. In our experiment, we got 214, 953
key frames with their corresponding Danmus. 80% of them are used as training
data, while others for testing.

3.2 Experimental Setup

Baseline. As far as we know, few works about Danmu generation have been done
before and there can be mainly three kinds of models for generation tasks. Thus,
to evaluate our model, we consider the corresponding straightforward baseline
models to compare with.

(1) Encoder-Decoder framework. We train a Convolutional Neural Net-
work (CNN) as the encoder to get the representations of frames. The repre-
sentations are then treated as inputs for a decoder implemented by a Recur-
rent Neural Network (RNN). The model is similar to the Neural Image Cap-
tion [22].
(2) Conditional Variational Autoencoders (CVAE). The CVAE [21]
is based on traditional VAE which has an condition input y to both
encoder and decoder. In our experiment, we take the representations of the
frames as y.

2 http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf.
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(3) Simple Generative Adversarial Networks. Similar with CVAE, gen-
erative adversarial nets can be extended to a conditional model [16]. We can
perform the conditioning by feeding extra information y (the representations
of frames in our experiment) into both the discriminator and generator.

Artificial Judgement. Since heuristic rules could hardly judge whether a sen-
tence should be “gossiping” of a given video, to evaluate the Danmu generation
models, a human study is carried out, in which we have 40 experts who have
years of experience in watching Danmu-enabled videos. While, as the amount of
all generated Danmu is really huge for humans, we also developed a web-based
GUI for online labeling. For each time a person logs in the system, 20 video
frames are randomly sampled from the test set with their corresponding gener-
ated Danmus. Then he/she is asked to click the Danmus which are thought as
fake. Our system will then label the clicked ones as “fake”, and the others as
“escaped”. We evaluate the models based on the percentage of the “escaped”
Danmus, which we call it “Human Recall”.

Metrics. To eliminate the errors caused by the human raters, we will take
metrics which can be automatically computed as our alternative measurements.
The BLEU score [18] which is a form of precision of word n-grams between
generated and reference sentences has been commonly used in machine trans-
lation and image description. In this paper, we use the character level BLEU-4
score to measure the overall performance. The references set of BLEU are 3
sentences randomly selected from the existing comments of the corresponding
frame. Additionally, we also define Fluency and Diversity metrics to measure
the performances on multiple aspects. In detail, for each Danmu sentence s, we
split it into n-gram tokens t ∈ Ts . The Fluency and Diversity are separately
defined in the form below:

Fluency =

∑
t∈Ts

[t ∈ T ]len(t)
∑

t∈Ts
len(t)

, Diversity = 1 − 1
N

∑

si,sj∈S′,i �=j

2|Tsi
∩ Tsj

|
|Tsi

| + |Tsj
| ,

where T denotes the n-gram tokens for all human written sentences in the train
set, [t ∈ T ] is an indicator function whose value is 1 if t ∈ T otherwise is 0,
and S ′ indicates all sentences generated for the same scene and N is the total
number of the pair combinations in S ′.

Table 1. Performance of these models.

Human Recall BLEU-4 Fluency Diversity

Encoder-Decoder 0.4572 0.168214 0.678827 0.904757

Conditional VAE 0.5580 0.174298 0.733117 0.948959

Simple-GAN 0.3454 0.129924 0.440087 0.705946

E-GA 0.6274 0.177638 0.845072 0.964757
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3.3 Overall Results

The overall experimental results are summarized in Table 1. We can see that
our proposed framework outperforms the other models in all of four metrics.
Not surprisingly, all models except Simple-GAN achieve high performance on
Fluency, since for those straightforward RNN-based models, it is easier to imi-
tate human style languages, while simple implemented GAN fails due to the
discreteness output in the task. However, all of these methods perform poor on
BLEU, which we think is also reasonable since our task is quite different from
those like translation or image description. As mentioned in Sect. 1, the Danmu
senders do not aim to reveal the objective truth in most cases, so the exist-
ing Danmus cannot be considered as the only deterministic ground-truth in our
experiment. Consequently, it is very difficult and sometimes no need to hit the
existing Danmus precisely.

At the same time, we have observed that our model outperforms the others
with significant margin on Human-Recall and Diversity due to the excellent gen-
erative ability of GAN. Thus, it is proved to be reasonable that the combination
of embedding method and GAN is suitable for Danmu generation task. On one
hand, the embedding technology simplifies the GAN structure into DNNs which
are more easy to learn. On the other hand, it avoids the discrete problem when
training a GAN in generating sequential data.

3.4 Balance for Embedding and Decoding Capacity

The performance of our framework can be affected by the embedding/decoding
capacity of autoencoders, therefore, it is crucial for us to determine the asso-
ciated parameter and also necessary to analyze the impacts of them. As men-
tioned in Sect. 2.1, the embedding effect of a VAE model is naturally opposite
to its decoding ability, and thus we involved parameter μ0 in making a trade-off.
According to Eq. 4, there is a curve that the embedding capacity C changes along
with μ0. As shown in Fig. 3, C is zero at the beginning, which means the model
is almost unable to perform sentence representation but perfect in generating.
Then, as μ0 increases, C grows rapidly, and at the same time, the embedding
ability will become stronger. As μ0 continues to become larger, the enhancement
for embedding quality is getting less stark.

We examined this by setting up several autoencoders with different μ0. Here,
Table 2 gives some examples with μ0 set to 0, 2, 4 and 8, and Fig. 3 shows
the reconstruction loss changing with μ0. For every case, three sentences are
listed which separately indicate the “input”, the “reconstruction” from μ and
the “generation” from a sample from N (μ,σ2). Obviously, when μ0 is zero, we
got the best generation effect, however, we could hardly reconstruct the original
sentence from its representation μ. Then, we can see for μ0 valued 2 and 4,
the reconstructed sentences are much better and the generated ones are still
acceptable. At last, if μ0 is much larger, the reconstruction quality reached the
best, while the generated sentence became unreadable for humans. In summary,
the results prove that our modification for VAE is reasonable, and in most cases,
we can set μ0 to around 2.
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Table 2. Samples from trained autoencoders.
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Fig. 3. The embedding capacity (a) and reconstruction loss (b) w.r.t µ0.

3.5 Case Study

At last, some typical scene images and the generated Danmus can be seen in
Fig. 4. Row 1 and Row 2 are good and bad cases generated by our E-AG frame-
work. Row 3 shows outputs from other baselines. For scenes in the first row, the
generated Danmus are mainly focused on expressing viewers’ different opinions
on the frame, which have very high diversity. Especially, for the scene from row 1
column 2, we can easily recognize it as scared shot. Just like human viewers, our
model not only generates Danmus to indicate “the ghost will come”, but also
send something like “BGM is lovely”, “It is an interesting movie” to embolden
themselves. Of course, we have to admit that there are also some Danmus do
not fit the given scenes. While, to our further observation, we found that most
of the miss-generated scenes are images with some strange content. Finally, for
some results in the third row, we can hardly imagine the relationship between
some of the comments and frames. In summary, the results are interesting, and
furthermore, we could intuitively feel the diversity and the gossiping behavior of
Danmu-enabled videos.
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other baselines.

Fig. 4. Typical cases of generated Danmus. The Chinese sentences are translated into
English.

4 Related Work

In this section, we will summarize the prior arts on three related topics, namely
Text Generation, Unsupervised Autoencoders and the Generative Adversarial
Networks.

Text Generation. Since we have witnessed only a few prior arts which focus
on the Danmu analysis, especially for the Danmu generation, we will summa-
rize related works on similar topics with Danmu-like Text Generation, i.e., the
Image Caption which focus on extracts “meaningful” descriptions for images.
Traditionally, early approaches rely on recognizing the visual elements, and then
performing template model, n-gram model, or statistical machine translation
to get sentences [8,20]. Recently, end-to-end methods [22,24] are proposed to
combine deep convolutional networks and recurrent neural networks as autore-
gressive models. However, image caption techniques mainly focus on describing
the objective facts, which is different from the task the Danmu generation who
targets at expressing the subjective opinion of viewers.

Unsupervised Autoencoders. These NN-based techniques are designed for
efficient embedding, with the aim of learning an encoder φ(x) by maximizing
the likelihood of a probabilistic decoder P (x|φ(x)). Though autoencoders have
seen success in pre-training image [23] and sequence [6] models, they may not
be effective at extracting for global semantic features, e.g., generating data from
the continuous space. In contrast, recently, a variant method called Variational
Autoencoder (VAE) [13] has become more widely used for learning generative
models. The VAE learns representations not as single points, but as a distribu-
tion in the latent space, forcing them to fill the space rather than memorizing
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the training data as the isolated vectors. However, according to the features
above, the VAE may not be suitable for embedding, due to the difficulty in
reconstructing samples from the indeterministic representations.

Generative Adversarial Networks. GANs are methods to generate synthetic
data with similar statistical properties as the real one [9]. Instead of explicitly
defining a loss from a target distribution, GANs train a generator by receiving a
loss from a discriminator which tries to differentiate between real and generated
data. Though GANs and its variants have shown great success in Computer
Vision domain [7,19], there are still challenges in applying them to the traditional
NLP tasks [26–28].

5 Conclusion

In this paper, we proposed an embedding-based framework to generate Danmu-
like comments for video scenes. In detail, we first represented key frames and
comments into continuous spaces, and then learned the mapping between the
two spaces via a generative adversarial approach. Along this line, the proper
and diverse semantic vectors will be generated, and then decoded as sentences.
Experiments on a real-world dataset showed the potential of our framework
on generating “gossiping” text in Danmu-enable social media platforms. In the
future, we will improve our framework with more comprehensive factors (e.g.,
positions, colors) which may help to better understand the meaning.
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