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Abstract

Fast item recommendation based on implicit feedback is vital
in practical scenarios due to data-abundance, but challenging
because of the lack of negative samples and the large number
of recommended items. Recent adversarial methods unifying
generative and discriminative models are promising, since the
generative model, as a negative sampler, gradually improves
as iteration continues. However, binary-valued generative
model is still unexplored within the min-max framework, but
important for accelerating item recommendation. Optimizing
binary-valued models is difficult due to non-smooth and non-
differentiable. To this end, we propose two novel methods to
relax the binarization based on the error function and Gumbel
trick so that the generative model can be optimized by many
popular solvers, such as SGD and ADMM. The binary-valued
generative model is then evaluated within the min-max frame-
work on four real-world datasets and shown its superiority
to competing hashing-based recommendation algorithms. In
addition, our proposed framework can approximate discrete
variables precisely and be applied to solve other discrete op-
timization problems.

Introduction
Nowadays the recommendation system has become more
and more important for a lot of companies(e.g.,Amazon,
Facebook, Netflix) to help their customers find their desir-
able products to purchase. Traditional recommender systems
aim to predict ratings and recommend items based on ex-
plicit ratings.

However, explicit ratings are not always available in many
cases. Implicit feedback is more common and abundant, e.g.,
purchase history, mouse activities and users’ video view-
ing (Bennett, Lanning, and others 2007). So how to utilize
implicit feedback is a problem needing to be solved. How-
ever, compared with explicit feedback, implicit feedback
is more difficult to utilize because lack of negative feed-
back (Pan et al. 2008). Some work such as WR-MF (Hu,
Koren, and Volinsky 2008), BPR (Rendle et al. 2009),
LambdaFM (Yuan et al. 2016) etc based on matrix fac-
torization (Koren and Bell 2015) achieved great perfor-
mance in solving this problem. Recently, some work used
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GAN (Generative Adversarial Networks) (Goodfellow et al.
2014) to get high-quality negative samples. IRGAN (Wang
et al. 2017) which is based on a minimax game and ma-
trix factorization model is one of their representative works.
By generating high-quality negative samples, IRGAN is the
state-of-art algorithm for implicit feedback tasks.

Because the preferences of customers may change con-
stantly, recommender systems need update in time, which
means the efficiency of online recommendation is impor-
tant. Unfortunately, latent factor models, as generative mod-
els in IRGAN, has a critical efficiency bottleneck in top-K
task that is almost the most common and important recom-
mendation task today. If there are M users and N items,
and the dimension of latent space is k, the time complex-
ity of recommendation is O(MNk +MN logK) to extract
top-K desirable items for every user because it needs to
compute users’ preference for all items and rank the pref-
erence. To solve this bottleneck, hash technique is applied
in recommendation. Hash technique, encoding real-valued
vectors compact binary codes(e.g.,{0,1},{1,-1}), can pro-
vide an efficient way to compute preference because in-
ner product can be computed efficiently by bit operation. It
can also be used to find approximate top-K items in sub-
linear or logarithmic time (Wang, Kumar, and Chang 2012;
Muja and Lowe 2009).

To make adversarial-based recommendation for implicit
feedback effectively and efficiently, we propose an adversar-
ial binary collaborative filtering framework (ABinCF) fol-
lowing IRGAN. However, binary constraints make the learn-
ing generally NP-hard (Håstad 2001). To solve this discrete
optimization problem, some work used two-stage methods
like BCCF (Zhou and Zha 2012), PPH (Zhang et al. 2014)
and CH (Liu et al. 2014)) and some directly learnt binary
codes like Discrete Collaborative Filtering (DCF) (Zhang
et al. 2016). However, the two-stage methods lead to a
large quantization loss (Zhang et al. 2016), and DCF op-
timizes binary codes bit by bit, which is a local search
method (Hromkovič 2013). It searches neighborhoods with
the distance of one. So DCF is easy to fall into local op-
tima because our objective function is non-convex and non-
linear. And a recent work (Courbariaux et al. 2016) did op-
timization by estimating discrete gradient, which use sign
function as feed-forward pass and a hard tanh as back-
propagation. It may be hard to converge asthe feed-forward
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pass and back-propagation pass using different activation
functions (Cao et al. 2017). To address their problem, in-
spired by recent continuous methods (Allgower and Georg
2012; Cao et al. 2017; Song 2017), we design ABinCF-
erf using error function to approximate sign function which
can result in a sequence of optimization problems con-
verging to the original problem. At the same time, some
work (Maddison, Mnih, and Teh 2016; Jang, Gu, and Poole
2016; Li et al. 2018) approximated Bernoulli distribution
by Gumbel-softmax trick. (Maddison, Mnih, and Teh 2016;
Jang, Gu, and Poole 2016) add noise ln(−ln(U)) and (Li
et al. 2018) adds noise ln(U/(1 − U)), where U follows
Uniform(0, 1). However, most values of their noise are too
large and they even play a more important role in training
processing than user and item latent vectors, which is shown
in Figure 1. Therefore, we propose ABinCF-Gn which pro-
vides a general Gumbel-softmax method to control the value
of noise and approximate Bernoulli distribution with any de-
gree of accuracy.

Our contributions are summarized as follows:
• We propose an adversarial binary collaborative filtering

framework for implicit feedback to do accurate and fast
recommendation.

• We develop two effective discrete optimization algo-
rithms by approximating sign function and Bernoulli dis-
tribution with high accuracy.

• Through extensive experiments performed on four real-
world datasets, we show the superiority of the proposed
algorithm to the state-of-the-arts.

Related Work
In this section we review some work related to our
task including adversarial collaborative filtering and recent
hashing-based collaborative filtering methods.

Adversarial Collaborative Filtering
How to generate negative samples effectively is crucial for
implicit feedback. Some work used adversarial collabora-
tive filtering to solve it such as IRGAN, APR (He et al.
2018), ACAE (Yuan, Yao, and Benatallah 2018), MNRN-
GAN (Wang et al. 2018), etc. (1)IRGAN proposed a min-
imax game to optimize both models iteratively. Their dis-
criminative model mined signals from labelled and unla-
belled data to guide generative model and the generative
model generated different examples to fool discriminative
model in an adversarial way to minimise its discriminative
objective. (2)APR enhanced the pairwise ranking method
BPR by performing adversarial training. It played a mini-
max game where the minimization of BPR objective func-
tion defended an adversary. The adversary added adversarial
noise to maximize BPR objective function at the same time.
(3)ACAE proposed a general adversarial training framework
for neural network-based recommendation models to im-
prove model robustness and performance and made a trade-
off between them. (4)MNRN-GAN designed a streaming
recommender model based on neural memory networks and
an adaptive negative sampling framework based on GAN to
optimize the streaming recommender model.

Discrete Hashing for Collaborative Filtering
An early work was based on Locality-Sensitive Hashing to
generate binary codes for Google News readers by their
click history (Das et al. 2007). Later, (Karatzoglou, Smola,
and Weimer 2010) mapped user/item latent representation
learned from MF into Hamming space to get hash codes.
Following this, some two-stage methods were proposed
which relaxed binary constraints firstly and then did bi-
nary quantization (Zhou and Zha 2012; Zhang et al. 2014).
However, according to (Zhang et al. 2016),these two-stage
methods incur large quantization loss. Hence DCF proposed
a method to optimize binary codes directly. Unfortunately,
these algorithms were designed for rating prediction which
had less wide application range than implicit feedback.

Adversarial Binary Collaborative Filtering
Preliminaries
Adversarial Collaborative Filtering Objective Function
The original IRGAN combined objective function (Wang et
al. 2017) is

JG
∗,D∗

= min
θ

max
φ

N∑
n=1

(Ed∼ptrue(d|qn,r)[lnD(d|qn)]

+Ed∼pθ(d|qn,r)[ln(1−D(d|qn))])
where d means documents and q means queries. When op-
timizing generative retrieval G∗, it is difficult to optimize it
directly by gradient descent because the sample of d is dis-
crete. It uses policy gradient to compute gradient (Williams
1992):

∇θJG(qn)

=

M∑
i=1

∇θpθ(di|qn, r)ln(1 + exp(fφ(di, qn)))

=Ed∼pθ(d|qn,r)[∇θlnpθ(d|qn, r)ln(1 + exp(fφ(di, qn)))]

When it is used to item recommendation, the d means
items and q means users.The model of G is pθ(j|i) =
softmax(gθ(i, j)/τ) and the model of D is D(j|i) =
σ(gφ(i, j)), where gθ(i, j), gφ(i, j) are scoring functions
and i, j denote the ith user and the jth item. A widely
adopted approach for recommendation is matrix factoriza-
tion, so the scoring function is set as s(i, j) = bj + uTi vj ,
where bj is the bias term for item j and ui, vj ∈ Rk are the
latent vectors of user i and item j. So, the combined objec-
tive function for item recommendation is

D∗ = max
φ

M∑
i=1

(Ek∼ptrue(j|i)[lnσ(sφ(i, j))]

+ Ek∼pθ(j|i)[ln(1− σ(sφ(i, j)))])

G∗ = min
θ

M∑
i=1

∑
k∼pθ(j|i)

lnpθ(j|i)ln(1− σ(sφ(i, j)))

Problem Formulation
After having the latent representation of users and items,
generating top-K preferred items for each user is considered
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as a similarity-based retrieval problem. However, if the sim-
ilarity is computed by inner product and the top-K items are
extracted through the max-heap structure, the scheme costs
O(Nk + NlogK). When N is large, it will lead to crucial
low-efficiency issues.

If latent vectors are represented as binary codes, the
similarity-based search can be accelerated by computing the
inner product much more efficiently via the Hamming dis-
tance. Denoting ui ∈ {1,−1}k and vj ∈ {1,−1}k as the
binary codes of user u and item i, the inner product is rep-
resented as uTi vj = k − 2H(ui, vj), where H(·) denotes
the Hamming distance between binary codes. Particularly, if
denoting ui ∈ {0, 1}k and vj ∈ {0, 1}k, the the inner prod-
uct is represented as uTi vj = popcount(k − 2xor(ui, vj)).
Hamming distance can be computed extremely efficiently by
fast bit operations.

Following IRGAN which uses generative model to do rec-
ommendation, we try to make the parameters of generative
model be binary codes while the parameters of discrimina-
tive model are still continuous to keep accuracy. However,
the bias term is not binary in generative model because the
bias term is not involved in inner product and if it is con-
tinuous, it can help reduce accuracy loss of the generative
model. The combined objective function is

D∗ = max
φ

M∑
i=1

(Ek∼ptrue(j|i)[lnσ(sφ(i, j))]

+ Ek∼pθ(j|i)[ln(1− σ(sφ(i, j)))]) + λ‖φ‖L2

G∗ = min
θ

M∑
i=1

∑
k∼pθ(j|i)

lnpθ(j|i)ln(1− σ(sφ(i, j)))

s.t.θ = H(θ∗)

where θ∗ is real-valued and H(·) is a hash function which
make θ∗(except bias) be binary codes, ‖φ‖L2 is the L2 reg-
ularization of φ and λ is a coefficient of the regularization.

Train ABinCF
To get adversarial binary collaborative filtering recom-
mender system, we propose ABinCF algorithm based on
two continuation methods: one uses erf(·) to relax binary
constraint and the other one uses a general gumbel-softmax
method to approximate. The whole training processing is
shown in Algorithm 1. Then we explain the two algorithms
respectively.

Error Function Relaxation We try to optimize the objec-
tive function while vi is binary, since it is difficult to use
optimization method based on gradient to solve the problem
directly. To address the discrete optimization problem, we
relax the discrete objective function into a continuous func-
tion which is easy to optimize. When we adjust the value
of the parameter gradually which controls the degree of re-
laxation, the original optimization problem is replaced with
a series of continuation optimization problems which can
converge to the original problem (Cao et al. 2017). The re-
laxation method is based on the following equation:

lim
β→0+

erf(x/β) = sign(x)

Proof. Consider the density function of normal distribution
f(x) = 1√

2πβ
e−x

2/(2β2), the following equation holds:

lim
β→0+

∫ z

−∞

1√
2πβ

e−x
2/(2β2)dx = lim

β→0+

1

2
(erf(

z

β
) + 1)

According to Dominated convergence theorem (Royden and
Fitzpatrick 1988), we get

lim
β→0+

∫ z

−∞

1√
2πβ

e
− x2

2β2 dx =

∫ z

−∞
lim
β→0+

1√
2πβ

e
− x2

2β2 dx

When β → 0+, if x = 0, then f(x) = +∞. And f(x) = 0
if x 6= 0. Therefore the equality holds.

When we reduce the value of β, erf(x/β) can approxi-
mate sign(x)by any precision. In other words, we can de-
crease the value of β gradually to approximate binary codes.
Based on the above conclusion, we design the following al-
gorithm for optimizing generative models. In the beginning,
we use erf(x) to train the generative model because it is
easiest to train by this relaxation function. Then the value
of β will decrease afterwards and train generative model
until convergence. Particularly, we name this algorithm as
ABinCF-erf for short in this paper.

General Gumbel-softmax Method Gumbel-
softmax trick (Maddison, Mnih, and Teh 2016;
Jang, Gu, and Poole 2016) is an efficient method to
approximate discrete distribute and it is widely used in
stochastic computational graphs. However, they are not
robust to solve this problem. Considering that the noise
added in these two methods, if the value of U is close to
0 or 1, the noise will tend to ∞. If we want to control
the range of noise, let |noise| < ε and the range of U is
extremely narrow. To solve this problem, we propose a
general Gumbel-softmax method firstly, and then choose
Gaussian distribution as the noise to avoid the value of
noise being too large. We list three methods approximating
Bernoulli distribution based on Gumbel-softmax trick
in Table 1, where α ∈ R, τ > 0, x ∼ N(0, σ2) and
U ∼ Uniform(0, 1).

Table 1: Two Gumbel-based approximation methods

Method Approximation function Noise

Gumbel-softmax G(α, τ) = σ(α−ln(−ln(U))
τ ) ln(−ln(U)

G2-LSTM G(α, τ) = σ(
α+ln( U

1−U )

τ ) ln( U
1−U )

ABinCF-Gn G(α, τ) = σ((α− x)/τ) x

Theorem 1 Assume σ(·) is the sigmoid function. Given
the τ > 0 and α ∈ R, we define a random variable D ∼
B(F (α)) where F (·) is the CDF of a particular distribution
and G(α, τ) = σ(α−xτ ) where x is a random variable and
its CDF is F (·). If F (·) is ρ− Lipschitz continuous, then for
any ε ∈ (0, 1/2) the following two inequalities hold:

P (D = 1)− ρτ ln(1/ε) ≤ P (G(α, τ) ≥ 1− ε)
≤ P (D = 1)

P (D = 0)− ρτ ln(1/ε) ≤ P (G(α, τ) ≤ ε)
≤ P (D = 0)
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Proof. Because the proof of the two inequalities is almost
the same, we just prove the first one.

Firstly, computing the following probability and we have

P (G(α, τ) ≥ 1− ε) =P (x ≤ α− τ ln(1/ε− 1))

=F (α− τ ln(1/ε− 1))

Considering that F (·) is ρ− Lipschitz continuous and it is
monotonically increasing, we get

P (D = 1)− P (G(α, τ) ≥ 1− ε)
=F (α)− F (α− τ ln(1/ε− 1))

≤ρτ ln(1/ε− 1)

≤ρτ ln(1/ε) (1)

and P (D = 1)−P (G(α, τ) ≥ 1−ε) ≥ 0. So, the inequality
holds.

Corollary 1 Given the τ > 0 and α ∈ R, we define a
random variable D ∼ B(F (α)) where F (·) ∼ N(0, σ2)
and G(α, τ) = σ(α−xτ ) where x ∼ N(0, σ2). For any ε ∈
(0, 1/2) the following two inequalities hold:

P (D = 1)− ρτln(1/ε) ≤ P (G(α, τ) ≥ 1− ε)
≤ P (D = 1)

P (D = 0)− ρτln(1/ε) ≤ P (G(α, τ) ≤ ε)
≤ P (D = 0)

where ρ = 1/(
√
2πσ).

So, when τ → 0+, we have

P ( lim
τ→0+

G(α, τ) = 1) = P (D = 1)

P ( lim
τ→0+

G(α, τ) = 0) = P (D = 0)

This means that G(α, τ) is an approximation of
Bernoulli(F (α)) and the rate of convergence is showed by
Eqn. (1).

In the sequel, we apply this Normal distribution Gumbel-
softmax method to solve problems with binary constraint.
We will explain the reason why choose normal distribu-
tion rather than any other distributions and how to use this
method. First of all, normal distribution satisfies ”three-
sigma rule of thumb”, which means the value of most sam-
ples are in the range (−3σ, 3σ), so we can control the value
of noise by controlling the value of the variance. Then we
replace α ∈ {0, 1} with σ((α − x)/τ) where α ∈ R
to relax binary variables. Specifically, in matrix factoriza-
tion model, the ui is a k dimension vector, so we use the
following way to solve it: Given α ∈ Rk and τ ≥ 0,
G(α, τ) = σ((α−x)/τ) where x is a random vector which
every element xi is sampled independently from N(0, σ2),
where i = 1, 2, 3, ..., k. If we set τ as a small value or
we decrease the value of τ gradually, we can approximate
binary vector well by any optimization methods based on
gradient like SGD, Adam and so on. In the following sec-
tion, we choose normal distribution and we call this method
ABinCF-Gn for short.

Experiments
In this section, we evaluate our proposed hashing framework
with the aim of answering the following research questions.

Algorithm 1: ABinCF Algorithm
Input: A sequence of temperature;generator

pθ(ik|un);discriminator fφ(un, ik);training
dataset S

Output: Generative model with H(x) as hash function
1 Initialize weights θ, φ randomly.
2 Pre-train pθ(ik|un), fφ(un, ik) by S
3 repeat
4 Train Generative model with R(·) as relaxation

function;
5 Set converged Generative model as next Generative

model initialization;
6 Decrease temperature;
7 Train Discriminator model;
8 until Convergence;

1. Does the recommendation performance of the proposed
ABinCF outperform the state-of-the-art hashing-based
recommender systems?

2. Whether our proposed Normal Gumbel-softmax method
can approximate Bernoulli distribution well? And
whether our method is more effective than Gumbel and
G2-LSTM method?

3. How the temperature setting influences the results?
4. How about the advantage of hashing for online recom-

mendation over real-based frameworks?
We introduce the experimental settings firstly and then an-

swer the above questions in following sections.

Experiment Settings
In this section, we introduce datasets used in our experi-
ments in the beginning. Then we introduce five important
baselines, followed by the introduction of evaluation metric.

Datasets We use the four public available datasets from
various real-word online websites to evaluate the proposed
algorithm.

MovieLens datasets are collected by the GroupLens Re-
search Project at the University of Minnesota, and Movie-
Lens100k and MovieLens10M are two of them. There are
originally 10,000,054 ratings from 0.5 to 5 with 0.5 inter-
val from 71,567 users on 10,681 items in MovieLens10M
and there are 100,000 ratings from 1 to 5 from 943 users on
1,683 items in MovieLens100k.

Amazon contains user rating and reviews on Amazon of
24 product categories and we evaluate our method on one
of the largest product categories, Book dataset. It includes
1,732,060 ratings from 35,151 users on 33,195 items.

Yelp is the latest Yelp challenge dataset. The scores are
integers from 1 to 5. And Yelp dataset includes 2,685,066
ratings from 409,117 users and 85,539 items.

Due to the extreme sparsity of MovieLens10M, Amazon
and Yelp original datasets, we remove users who have less
than 20 ratings and remove items which are rated by less
than 20 users. Because MovieLens100k is not very sparse,
we don’t filter it. Since the proposed algorithm is suitable
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for implicit feedback, we follow BPR (Rendle et al. 2009)
to convert rating data into implicit feedback. Particularly,
we set ratings greater than 3.5 as positive feedback. Table
2 summarizes the filtered datasets. For each user, we ran-
domly sampled 50% ratings as training as the rest as testing.
We repeated for five random splits and reported the averaged
results.

Table 2: Statistics of datasets

Dataset #User #Item #Rating Density

MovieLens100k 943 1,683 100,000 6.30%
MovieLens10M 69,838 8,939 9,983,758 1.60%

Book 35,151 33,195 1,732,060 0.15%
Yelp 13,679 12,922 640,143 0.36%

Comparison Methods For hashing-based recommender
system, we compare ABinCF with 3 very popular and state-
of-art methods:DCF, PPH, BCCF. Note that DCF tackles a
discrete optimization problem directly which is subject to
de-correlated and balanced constraints for seeking compact
and informative binary codes for users and items. PPH and
BCCF are both two-stage method to learn hash code. BCCF
is a Binary Code learning method for Collaborative Filter-
ing and PPH is a two-stage Preference Preserving Hashing.
However, they haven’t been designed for implicit feedback.

For real-based recommender system, we only compare
the latest and state-of-art method: IRGAN. It uses gen-
erative and discriminative information retrieval models to
do recommendation and it is especially designed for im-
plicit feedback problems, which outperforms almost other
continuous models including BPR (Rendle et al. 2009),
LambdaFM (Yuan et al. 2016).

Evaluation Metric We evaluate the recommendation sys-
tem performance by a widely used ranking based metric:
NDCG(Normalized Discounted Cumulative Gain) and Pre-
cision. NDCG is the normalization of DCG(Discounted Cu-
mulative Gain) which can measure the ranking quality. Pre-
cision is the ratio of the number of relevant results to the
total number of results. In our experiment, we predicted the
top-K preference items for each user from testing datasets.

Parameter Settings In our experiments, we set β =
max(exp(−epoch), 0.01) for ABinCF-erf on all datasets
and τ = exp(−0.1 ∗ epoch) on MovieLens100K, τ = 0.9
on other datasets for ABinCF-Gn. For all datasets, we set σ
of ABinCF-Gn as 0.01, set the dimension of latent factor k
as 16 and set λ as 0.1/batchsize. We set the sampling tem-
perature to 0.2, and the number of generated relevant items
to 5 for policy gradient and the number of negative items to
the number of positive ones for discriminative learning for
IRGAN and ABinCF on all datasets following (Wang et al.
2017).

Besides, for other baselines, we held-out evaluation
method on randomly splits of training data to tune the opti-
mal hyper-parameters for them by grid search. The settings
of them are listed in Table 3.

Table 3: Parameter Settings

DCF BCCF PPH
α β λ λ

MovieLens100k 1 10 0.09 16
MovieLens10M 0.001 10 0.09 16

Book 10 10 0.01 16
Yelp 0.001 10 0.01 8

Comparison with Baselines
Although hashing recommendation has significant advan-
tages of time and storage over real-valued recommendation,
it often suffers from low recommendation accuracy because
binary codes lose a lot of information compared with real-
valued codes due to the discrete constraints. ABinCF is pro-
posed to improve the recommendation accuracy.

In this part, we will answer the first question at the begin-
ning of the experiment section. The recommendation accu-
racy comparisons including Precision@10 and NDCG@10
are shown in Table 4, Table 5, Table 6 and Table 7.

Compared with other hash-based recommendation, the
performance of ABinCF-Gn far surpasses all other hash al-
gorithms including DCF, BCCF and PPH. And ABinCF-erf
has huge advantages over other hash-based algorithms on
Amazon, Yelp and MovieLens10M dataset while the value
of Precision@100 is a little smaller than PPH on Movie-
Lens100k. Because Amazon, Yelp and MovieLens10M are
sparser than MovieLens100k, so our model based on adver-
sarial collaborative filtering can show more advantages on
generating high quality negative samples which are signifi-
cant in implicit feedback tasks. So ABinCF-erf achieves the
best performance about Precision@100 and NDCG@100
on Amazon. ABinCF-Gn has better performance than oth-
ers including ABinCF-erf on MovieLens and Yelp be-
cause Normal Gumbel-softmax method makes it approxi-
mate Bernoulli distribution well. In addition, DCF, BCCF
and PPH are designed to make binary codes for explicit rec-
ommendation, and BCCF is a two-stage method and PPH
is based on quantization method while ABinCF relax sign
function directly, so ABinCF has much better results.

Compared with the state-of-art real-valued recommenda-
tion algorithm IRGAN, precision loss of ABinCF-erf is less
than 30% in almost datasets while the gap between ABinCF-
erf and IRGAN is larger than that between ABinCF-Gn and
IRGAN. Because IRGAN is real-based method, it obtains
more information from real-valued codes. And ABinCF ap-
proximates both in sampling of policy gradient and making
hash codes, so IRGAN performs better than ours.

The Effectiveness of Normal Gumbel-softmax
Method
We next show the effectiveness of Normal Gumbel-softmax
method as follows:
(1)Normal Gumbel-softmax method can approximate
Bernoulli distribution greatly. We set τ = 0.001, α = 0,
which means 0 and 1 have same probability according to
F (0) = 0.5. Then we sample x ∼ N(0, 1), x ∼ N(0, 0.1)
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Table 4: Item Recommendation Results(MovieLens100k)

Precision@3 Precision@10 Precision@100 NDCG@3 NDCG@10 NDCG@100
IRGAN 0.4396 0.3627 0.1578 0.4542 0.4074 0.4807
DCF 0.0964 0.0962 0.0752 0.1135 0.1058 0.1609
BCCF 0.1336 0.1223 0.0974 0.1331 0.1266 0.2071
PPH 0.1863 0.1779 0.1065 0.1952 0.1893 0.2853
ABinCF-erf 0.2327 0.2005 0.1034 0.2387 0.2204 0.2970
ABinCF-Gn 0.2742 0.2192 0.1129 0.2814 0.2466 0.3244

Table 5: Item Recommendation Results(MovieLens10M)

Precision@3 Precision@10 Precision@100 NDCG@3 NDCG@10 NDCG@100
IRGAN 0.2576 0.2104 0.0972 0.2646 0.2336 0.2683
DCF 0.0589 0.0356 0.0201 0.0748 0.0502 0.0639
BCCF 0.0328 0.0358 0.0330 0.0325 0.0348 0.0521
PPH 0.0418 0.0348 0.0244 0.0492 0.0423 0.0783
ABinCF-erf 01156 0.0759 0.0273 0.1372 0.1025 0.0840
ABinCF-Gn 0.2582 0.2066 0.0590 0.2648 0.2293 0.2043

Table 6: Item Recommendation Results(Amazon)

Precision@3 Precision@10 Precision@100 NDCG@3 NDCG@10 NDCG@100
IRGAN 0.0458 0.0377 0.0194 0.0474 0.0416 0.0629
DCF 0.0113 0.0115 0.0097 0.0109 0.0114 0.0266
BCCF 0.0142 0.0141 0.0111 0.0140 0.0142 0.0280
PPH 0.0065 0.0038 0.0030 0.0065 0.0091 0.0090
ABinCF-erf 0.0334 0.0263 0.0156 0.0351 0.0295 0.0479
ABinCF-Gn 0.0352 0.0274 0.0143 0.0364 0.0307 0.0457

Table 7: Item Recommendation Results(Yelp)

Precision@3 Precision@10 Precision@100 NDCG@3 NDCG@10 NDCG@100
IRGAN 0.0873 0.0705 0.0356 0.0896 0.0800 0.1475
DCF 0.0102 0.0104 0.0095 0.0098 0.0107 0.0325
BCCF 0.0101 0.0094 0.0093 0.0100 0.0100 0.0307
PPH 0.0077 0.0078 0.0068 0.0079 0.0083 0.0240
ABinCF-erf 0.0474 0.0340 0.0218 0.0434 0.0384 0.0831
ABinCF-Gn 0.0510 0.0422 0.0223 0.0520 0.0472 0.0893

and x ∼ N(0, 0.01) 1M times respectively and compute
G = σ(α−xτ ). The value interval of G is shown in Figure 1.
In case of σ = 1, σ = 0.1 or σ = 0.01, it is clear to find that
our method can approximate well.
(2)Normal Gumbel-softmax method is more effective than
Gumbel noise and G2-LSTM noise. We count the number
of elements in |ui| less than absolute value of Gumbel-based
noise and ABinCF-Gn noise at the beginning and the end of
the first training on MovieLens100k. The result is shown in
Figure 1 where the left part is the beginning of first training
and the right part is the end of the first training. If noise is
larger than parameters needed updating, it will have a greater
impact on the gradient. From Figure 1, noise of Gumbel-
based method is too large and ours can update parameters

much more effectively. Therefore, this experiment verifies
the analysis in the part of General Gumbel-softmax method.

The Setting of Temperature
In this section, we answer the third question. We
show the value of Precision@10 and NDCG@10
via iterations with different ways to set tempera-
ture in ABinCF-erf and AbinCF-Gn. In this exper-
iment, we set the number of epoch as 15 and the
number of iteration within each epoch as 20. We test
temperature=exp(−0.01∗ epoch), temperature=exp(−0.1∗
epoch), temperature=max(exp(−epoch), 0.01) and tem-
perature=0.1. We did this experiment in MovieLens100k.

The experiment results are shown in Figure 2. The two
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Figure 1: (a):The statistics of interval of random variables using the Normal Gumbel-softmax method with different values of
σ. Left.σ = 1.Middle.σ = 0.1.Right.σ = 0.01. (b):The percentage of the absolute value of user latent vectors smaller than the
absolute value of stochastic noise by three methods before and after the first training
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Figure 3: Time and Storage Cost vs Item Size

left figures of Figure 2 shows Precision@10 and NDCG@10
of ABinCF-erf. It is clear to observe that when tempera-
ture is set as temperature=max(exp(−epoch), 0.01), it has
much better performance than setting temperature 0.1 be-
cause such low temperature at the beginning is hard to train,
so our method updating temperature is valid. We also find
the green line in the two right ones of Figure 2 representing
temperature=0.1 achieving the highest results in the first 120
iterations but it drops after. This is because the temperature
is too low to update parameters. Besides, the red and blue
curves rise during all the training time. Thus we can set tem-
perature as a constant a bit larger than 0.1 or set temperature
changes with the increase of epoch.

Efficiency Comparison
According to the analysis before, the significant advantage
of hashing method of recommendation over real-based rec-
ommendation is the efficiency of online recommendation.

We follow PPH to study the efficiency of hashing-based rec-
ommendation on the Amazon dataset. However, the number
of candidate items is only 33,195, so it is impossible to test
efficiency of recommendation in the case of large size of
candidate items. To this end, we assume real-valued item la-
tent factors from IRGAN’s generative model following mul-
tivariable Gaussian distribution, and then sample latent fac-
tors of 10K, 100K, 1M, 5M, and 10M items based on the
estimated mean and covariance. Some users’ latent factors
from IRGAN’s generative model are used as a query code.
Given this synthetic dataset, we compared the efficiency of
recommendation and storage cost between real-valued and
binary-valued models. The real-valued model directly uses
latent factors of the user and items while the binary-valued
model exploits the binarzied representation of these latent
factors. The effectiveness of hashing-based recommendation
compared with real-based recommendation is shown in Fig-
ure 3.

Time Complexity The time cost variation over different
item sizes is shown in Figure 3. We can conclude that the
hashing-based recommendation spends much less time than
real-valued recommendation. When the number of users and
items becomes much larger which is above millions, the time
consuming is extremely huge. Therefore, hashing-based rec-
ommendation is much more effective in terms of time than
real-based recommendation.

Storage Complexity The storage cost variation over dif-
ferent item sizes is shown in Figure 3. When items become
10M, the storage space is only 1/12 of real-valued features.

5254



The storage superiority of hash codes will show more com-
pletely when items become larger.

Conclusions
In this paper, we propose an adversarial-based CF hashing
framework ABinCF for implicit feedback. By our proposed
learning strategy and approximation methods, ABinCF-
erf and ABinCF-Gn both outperform the state-of-the-art
hashing-based collaborative filtering algorithms and have
small accuracy loss compared to real-based algorithm IR-
GAN for implict feedback on four public datasets. Our ex-
periments also show the proposed ABinCF has great advan-
tages in speed of online recommendation and storage. There-
fore, it reconciles both effectiveness and efficiency.
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