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Abstract—Label correlations are important for multi-label learning. Although current multi-label learning approaches can exploit
first-order, second-order, and high-order label dependencies, they fail to exploit complete label correlations, which are included in the
joint label distribution of the ground truth labels. However, directly modeling the complex and unknown joint label distribution is very
challenging, if not impossible. In this paper, we propose an adversarial learning framework to enforce similarity between joint
distribution of the ground truth multi-labels and the predicted multiple labels. Specifically, the proposed multi-label learning method
includes a multi-label classifier and a label discriminator. The classifier minimizes error between predicted labels and corresponding
ground truth labels and gives the discriminator room for error. The object of the discriminator is to distinguish the predicted labels from
the ground truth labels. The classifier and discriminator are trained simultaneously through an alternate process. By adversarial
learning, the joint label distribution of the predicted multi-labels converges to the joint distribution inherent in the ground truth
multi-labels, and thus boosts the performance of multi-label learning as demonstrated in the experiments on eleven benchmark

databases.

Index Terms—multi-label learning, joint label distribution, adversarial learning

1 INTRODUCTION

RADITIONAL supervised learning paradigms assume
Tthat each instance is associated with one class label.
However, in real-world applications, a single instance is
commonly associated with multiple labels. For example, a
scenic image may contain trees, flowers, and mountains; a
variety show video may convey joy as well as tenderness; a
movie includes categories like costume, plot, and setting.
Multi-label learning has attracted increasing attention in
recent years due to its widespread application in areas such
as image annotation ( [1], [2], [3], [4]), text categorisation (
[5], [6]), the emotion detection of music ( [7], [8]), and social
network mining ( [9], [10]).

Successfully exploiting label correlations is crucial to
deal with the overwhelming size of the output space [11],
which is the biggest challenge of multi-label learning. Cru-
cial information exists in label correlations. For example, if
the label “sun” is present, the probability of the appearance
of “blue sky” would be high. A film is unlikely to be labelled
“terrifying” if it’s already labelled “comedy”. The former
instance would be a coexistent relationship; the latter is an
example of mutually exclusive relations. Complex relations
among labels, which are difficult to manually specify, are
inherent in the ground truth labels.

Current multi-label learning work directly captures label
correlations from ground truth labels. The exploited label
dependencies include first-order, second-order, and high-
order label correlations. However, they are far from enough
to capture label correlations effectively. Compared with ex-
ploiting correlation between two or more labels, modelling
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joint distribution of multiple labels, which takes all kinds
of label correlations into account, is a more thoroughly
way. For example, the coexistent and mutually exclusive
relations mentioned above are the conditional distribution
of one label under another label, which can be regard as one
part of the joint distribution of all labels. The distribution
must be measured in a certain way to enforce statistical
similarity between the predicted labels and the ground
truth labels. However, directly capturing the complex and
unknown joint label distribution for ground truth labels is
quite challenging.

Only recently, a few works have used a probabilis-
tic graph model to model label distribution for multi-
label learning. For example, [12], [13], and [14] leverage a
bayesian network (BN) to model joint label distribution by
decomposing the joint label distribution into the product
of conditional distributions; [15], [16], and [17] leverage a
restricted boltzmann machine (RBM) model to capture joint
label distribution through a hidden layer. Unfortunately,
both BN- and RBM-based methods make assumptions. A
BN assumes that some nodes are conditionally indepen-
dent in order to limit network complexity. An RBM model
assumes an explicit form of joint label distribution. These
assumptions may not be suitable for some applications, thus
limiting the performance of model.

In this paper, we propose to exploit label correlations
by enforcing distribution similarity between the predicted
labels and the ground truth labels. Unlike a BN or RBM,
which captures joint label distribution from ground truth
labels first and then fits the predicted labels of a basic
classifier into the captured joint label distribution, we make
the distribution of the predicted labels similar to the dis-
tribution of ground truth labels directly through an adver-
sarial framework inspired by generative adversarial nets
(GANS) [18]. Specifically, in addition to learning a multi-
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label classifier C, we introduce a label discriminator D. The
object of discriminator D is to distinguish whether the input
label is the ground truth label or the predicted label from
C. The multi-label classifier C has two objects: the first
is to minimize the error between the predicted labels and
the corresponding ground truth labels, and the second is
to “fool” D, i.e., output labels that were wrongly discrimi-
nated as ground truth labels by D. Through this adversarial
framework, we minimize the traditional supervised loss and
achieve distribution similarity between the predicted labels
and the ground truth labels.

The rest of the paper is organized as follows. In Section
2, we introduce the related works on multi-label learning
with a focus on exploiting label correlations. In Section 3,
we state the problem and give some notations. In Section 4,
we propose our multi-label learning method to exploit label
correlations by leveraging joint label distribution. In Section
5, sufficient experiments are conducted on several widely
used databases. The last section concludes our paper.

2 RELATED WORK
2.1 Multi-Label Learning

Multi-label learning methods can be divided into three types
according to the degree of label correlations exploited: first-
order, second-order, and high-order. These methods also
fall into one of two categories [11]: problem transformation
methods, which tackle the multi-label learning problem
by transforming it into another well-established learning
scenario; and algorithm adaptation methods, which adapt
popular learning techniques to deal with multi-label data
directly. Next, we briefly summarize the multi-label classifi-
cation methods according to the degree of label correlations
exploited.

First-order methods handle the classification of each
label independently, thus ignoring the correlations among
labels. The most well-known first-order method is binary
relevance (BR) [19], which decomposes the original multi-
label classification problem into several independent bi-
nary classification problems (one per label). Other first-
order methods include multi-label k-nearest neighbor (ML-
kNN) [20], which adapts k-nearest neighbor to deal with
multi-label data; multi-label decision tree (ML-DT) [21], which
adapts a decision tree (like C4.5) to deal with multi-label
data; and predictive clustering trees (PCTs) [22], which form
a general framework for prediction that can be instantiated
to a particular prediction task by defining a distance metric
and prototype. The performance of first-order methods may
be inferior as it ignores label correlations.

Second-order methods exploit pairwise label relations,
i.e., when one label is related to another one. Common
second-order methods include ranking by pairwise comparison
(RPC) [23], which transforms the task of multi-label learning
into the task of label ranking and transforms the multi-
label dataset into @ (where L is the number of labels)
binary label datasets; calibrated label ranking (CLR) [24],
which extends RPC by introducing a calibrated label and
using a majority voting strategy at prediction time; quick
weighted voting algorithm (QWeighted) [25], which introduces
a more effective voting strategy than the majority voting

2

used by the CLR method; QWeighted for multi-label classifi-
cation (QWML) [26], which adapts QWeighted by repeating
the process until all relevant labels are determined; ranking
support vector machine (Rank-SVM) [27] which adapts ker-
nel methods to deal with multi-label data, multi-label back-
propagation, (BP-MLL) [28] which adapts a popular back-
propagation algorithm to deal with multi-label data; and
collective multi-label classifier (CML) [29], which adapts a
maximum entropy principle to deal with multi-label data.
Second-order methods exploit label correlations to some
extent, thus achieving a better generalization performance
than first-order methods in most cases.

High-order methods exploit high-order correlations a-
mong labels and assume a label is influenced by more
than one other label. Common high-order methods include
random k-labelsets (RAKEL) [30], which transforms the task
of multi-label learning into the task of multi-class classifica-
tion; hierarchy of multi-label classifiers (HOMER) [31], which
transforms multi-label classification task with a large set of
labels into a tree-shaped hierarchy of simpler multi-label
classification tasks; and classifier chains (CC) [32], which
transforms the task of multi-label learning into a chain of
binary classification tasks. The correlation-modeling ability
of high-order methods is stronger than first- and second-
order methods.

Many multi-label learning methods can obtain better
generalization performance through an ensemble method.
RAKEL, for example, is actually an ensemble method han-
dling several multi-class classification problems, each of
which use a random subset of labels. Using CC as basic
classifier, ensembles of classifier chains (ECC) [32] trains a set of
CC classifiers with a random chain ordering and a random
subset of training samples. Through random forest, decision
tree-based multi-label learning methods can be extended
to ensemble methods Random forest of predictive clustering
trees (RF-PCT) [33] is an ensemble that uses PCTs, and
random forest of ML-C4.5 (REML-C4.5) [34] is an ensemble
that uses the ML-C4.5 tree. An extensive review of multi-
label classification methods can be found in [34], [35], [36],
[371], [38], and [11].

Although high-order methods can exploit high-order
relations among labels, they fail to consider all label cor-
relations. In CC, for example, the binary classifier of each
label is only trained with the correlations between the
current label and all previous labels. The label correlations
exploited by CC are limited by the chain ordering. While
ECC can train several CC classifiers with different chain
orders, it is unfeasible to consider every possible chain
order. Instead of exploiting certain kinds of label correla-
tions, some probabilistic graph-based methods model joint
label distribution for multi-label learning. Some works use a
bayesian network to decompose the joint label distribution
into the product of conditional distributions ( [12], [13], and
[14]). In a BN structure, nodes can be related to each other
indirectly or may be conditionally independent. In real-life
scenarios, it is difficult to say that two labels are completely
independent, so BN cannot preserve all correlations among
labels. Additionally, BN is a directed graph model and
assumes that the labels are related in the form of a hierarchy,
such as “steamship” and “sea”; “grassland” and ”Africa”.
This hierarchical structure may not be suitable for some
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applications. For example, a scenic image may contain a car,
house, and mountain, which are not subject to a hierarchy.

To address the problems above, some works use an
undirected graph model, i.e., an RBM model, to model the
joint distribution of multiple labels through a hidden layer
( [15], [16], and [17]). However, RBM-based models assume
an explicit form of joint distribution (i.e., the explicit form of
energy function), which is not suitable for all applications.
Additionally, RBM-based methods use a complex inference
procedure.

In this paper, we exploit label correlation by using joint
label distribution, which contains all label correlations. We
train a multi-label classifier by enforcing distribution sim-
ilarity between the predicted labels and the ground truth
labels. It’s important to note that the label distribution we
consider is different from the label distribution used in
Label Distribution Learning (LDL) [39]. In our work, one
instance has several binary labels, while in [39], one instance
is assigned several real values, representing the degree to
which each label describes the instance. Therefore, the label
distribution we consider is the joint distribution of all labels,
since the population contains all training instances. The
label distribution in [39] is only for one instance.

2.2 Generative Adversarial Nets

Goodfellow et al. [18] introduced the generative adversarial
nets (GANs), which consists of a generator G and a discrim-
inator D. This framework actually implements a two-player
zero sum game between G and D. Specifically, D tries to
distinguish whether the input sample is from a real data
distribution or generated by generator, and G tries to “fool”
D, i.e. to make D wrongly classify a generated sample as
real data. The object function of this two-player zero sum
game is shown as Equation 1

rngin mgx V<D’ g) :EINPda,m(I) [log D(x)]

)

+E.np, (2 [log(1 = D(G(2))]
where Pyqiq() is the real data distribution and P, (z) is an
arbitrary noisy distribution. It had been proven in [18] that
Eq. 1 gets the global optimum only when the generator’s
distribution P; = Pgutq. The discriminator D and gener-
ator G can be trained through an alternate optimization
process, first fixing G and optimizing D, then fixing D and
optimizing G, and repeating this process until convergence.
The details and variants of GAN can be found in [40], [41],
and [42].

In this paper, we propose an adversarial multi-label
learning framework similar to GAN in order to achieve
distribution similarity between the predicted labels and
the ground truth labels. Compared to related works, our
contributions are as follows:

e We are the first to propose an adversarial framework
for multi-label learning.

e Through adversarial learning, we implicitly capture
the joint distribution of multiple labels without any
assumptions and achieve significant improvements
on eleven benchmark databases.

3 PROBLEM STATEMENT

Let U = {x,,y,})_, be the training set for multi-
label learning, in which a feature vector x,, € R? is
associated with multiple class ground truth labels y, =
{yt,v2,...,yk}. q is the dimension of feature vector =, L
is the number of labels, and N is the number of instances.
Each y/ (1 < j < L) € {0,1}. Let X = {z,}_; denote the
feature set including all features in U and Y = {y,,},
denote the ground truth label set including all ground truth
labels in U. Given the training set U, our goal is to learn
a multi-label classifier C: R — {0,1}F. If we do not
consider the label correlations, minimizing the traditional
cross-entropy loss L. is a direct way to learn the multi-label
classifier C(x) = round(F(x)), where F(x) is the output of
a sigmoid activation.

Label correlations are curial for multi-label learning.
In this paper, we explore label correlations by enforcing
distribution similarity between the predicted labels and
the ground truth labels, i.e., minimizing the distance
d(P,, P,) between the joint distribution of the predicted
labels P, and the joint distribution of the ground truth
labels P,. Motivated by this goal, and considering the
basic supervised loss, we purpose the full objective of
this paper as follows:

Hgn(l - 7) * E(m,y)~U£ce(F(m; ‘1))7 y) + oy x d(Ppa Pg)a (2)

where @ is the parameters vector of the multi-label classifier
and 7 is the trade-off rate between the first and the second
term. L. is the supervised loss shown as follows:

Loo(F(x;®),y) = — |y log F(a; &)+

(1-y)" log(1— F(x; )]

We do not directly model distribution P, and P, since
the modeling processes are complex and errors could occur.
We use an adversarial framework to achieve the goal of
minimizing d(P,, Py).

®)

4 PROPOSED APPROACH

Inspired by GAN, we propose an adversarial framework
that enforces similar distributions of the predicted labels
and the ground truth labels while minimizing the errors
between predicted labels and their corresponding ground
truth labels. In the framework of original GAN, the gen-
erator generates “realistic” data from the random noise
space. In this paper, the generator is replaced by the multi-
label classifier C which recognizes the multiple labels of
instances from the feature space. The discriminator D gives
the probability that each input label vector comes from the
ground truth label set Y. The target for the discriminator
D is to give a high probability for ground truth labels in
Y and a low probability for the predicted labels from C.
The target for the multi-label classifier C is the opposite.
The competition game between the multi-label classifier C
and the discriminator D can be represented by the following
optimization problem. (For differentiability of objectives, we
input F'(x) to D directly):

min max By .y log D(y'; ¥)+Egx log(1—D(F (xz; P); ¥))
(4)
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Where y’ represents the ground truth label sampled from
Y, and ® and ¥ are parameter vectors of the multi-label
classifier and label discriminator, respectively. From Equa-
tion 4, we can achieve the objective of minimizing d(P,, Py)
in Equation 2. Combining the objectives in Equations 3
and 4 with the trade-off rate v, i.e., replacing d(P,, P,) in
Equation 2 with the objective in Equation 4, we obtain the
whole objective of the proposed approach as:

minmax [Ey vy log D(y'; ¥)
+ Egox log(1 — D(F(z; ®); 1))] ©®)
+ (1 - ,Y>E(a:,y)~UEce(F<w; (b)a y)

From the above equation, we find that if we set v = 0, it
degrades into a traditional supervised problem that doesn’t
consider label correlations. If we set v = 1, it only lever-
ages the label distribution information. We should seek the
optimum balance.

We can rewrite Equation 5 as Equation 6 to let F'(z; @) in
one square bracket, which helps to find individual objective
for F.

rrgn max VEy ~y logD(y'; ¥)
+ E(zy)~u [710g(1 — D(F(2; ®); ¥)) (6)
+ (1= )Lee(F(z; D), y)]

The objectives in Equations 5 and 6 can not be optimized
directly. Following the optimization procedure of original
GAN, we update the multi-label classifier and label dis-
criminator alternately shown in Fig. 1. Specifically, while
updating label discriminator D, the multi-label classifier C
is fixed and we randomly sample a mini-batch of feature
vectors from X and a mini-batch of ground truth labels from
Y. Both the predicted labels and the ground truth labels
are inputted to discriminator D, and D tries to correctly
distinguish between them. While updating multi-label clas-
sifier C, the label discriminator D is fixed and we randomly
sample a mini-batch of training instances including feature
vectors and corresponding ground truth labels from training
set U. The predicted labels are inputted to discriminator
D. C tries to minimize the cross-entropy loss between the
predicted labels and the corresponding ground truth labels,
and lets D make mistakes simultaneously.

We need to find the individual objectives for the multi-
label classifier and label discriminator. From the updating
procedure of label discriminator D and Equation 5, we
extract the term containing D in Equation 5 as the objective

4
Multi-label classifier C
,,,,,,,,,,,,,,,,,,,,,,, @
i 0
D L F)|O
— | [ || | — _ Discriminator D _
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Fig. 1: The training procedure of the proposed framework.
The multi-label classifier and label discriminator are up-
dated alternately. Upper: update discriminator D. Lower:
update multi-label classifier C.

Algorithm 1 Adversarial multi-label learning

Input: The training set U, max number of training steps

T, number of C that updates per step (K¢), number of
D that updates per step (Kp), sampling size S, hyper
parameter 7.

Output: The multi-label classifier C.

1: Initialize parameters of multi-label classifier ® and pa-
rameters of label discriminator W.

2: fort=1,2,...,T do

32 forkp=1,...,Kpdo

4: Sample mini-batch of S samples {x1,xo,...,xs}
from feature instance set X.

5; Sample mini-batch of S labels {y/, y5, ..., ys } from
the ground truth label set Y.

6: Update the label discriminator by descending its
gradient:

S
vy <}g ZUOgD(y;; U)+log(1-D(F(z;; ®); W)ﬂ)

for discriminator D shown as Equation 7, where parameters 7. and for
® are fixed. 8 forkc=1,..,Kcdo
min Vp(C, D) = —[Eyroy log D(y'; ¥) 9: Sample mini-batch of S samples {(x1,¥y1), (%2, Ys)
¥ (7) s (X5,Yg)} from training set U.
+ Egnx log(1 — D(C(z; @); 0))] 10: Update the multi-label classifier by descending its
Similarly, from the updating procedure of multi-label gradient:
classifier C and Equation 6, we extract the term containing 1S .
F'in Equation 6 as the objective for discriminator C shown Ve S Z [log D(F'(wi; 2); ¥)~
as Equation 8, where parameters ¥ are fixed. =t
IIgIl Vc(C,D) _ E(m,y)~U ['7£acdu(F(w§(I))§\Ij) (8) (1 - V)ﬁce(F(wﬁ‘I))vyi)})
11: df
(1= Lee(F(; ), )] 12: en(::lnforor
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Where LS, (F(z; ®); V) = log(1 — D(F(z;®); ¥)). In
practice, it’s better to minimize — log D(F(z; ®); ¥) rather
than log(1 — D(F'(x; ®); ¥)) to avoid the problem of van-
ishing multi-label classifier gradients [18], so we adjust
L4, (F(z;©); ) = —log D(F(z; ©); V).

The updating procedures of the multi-label classifier and
label discriminator in Fig. 1 are described as Algorithm 1.
Multi-layer perceptron is used for the structure of both
the multi-label classifier C and the label discriminator D.
Any gradient-based learning rule could be used to update
parameters for the optimization method. We use the Adam
algorithm [43] in our experiments and implement the ap-
proach using the TensorFlow framework [44].

5 EXPERIMENTS

In this section, experiments on eleven databases from differ-
ent domains are conducted to demonstrate the effectiveness
of the proposed approach.

5.1 Databases

Eleven databases from five different domains are used in
our experiments, nine of which can be downloaded from
MulLan library [45]'. All of these databases are commonly
used in multi-label classification tasks. From the image
domain, we use four databases: the Corel5k database [46]
, the Scene database [19], the NUS-WIDE database [47], and
the VOC2007 database [48]. The Corel5k database contains
Corel images that are segmented using normalized cuts.
Each image can be associated with several of 374 possible
labels. The Scene database contains 2407 images, and each
image may include one or more of six kinds of scenery,
including beach, sunset, field, fall foliage, mountain, and
urban. The NUS-WIDE dataset includes a set of images
crawled from Flickr, together with their associated tags,
as well as the ground-truth for 81 concepts for these
images. [47]. We use 128-D cVLAD+ features described
in [49]. The VOC2007 database is from the PASCAL
VOC2007 challenge. The image in this database is associ-
ated with twenty object classes.

From the text domain, we have three databases: the
Enron database [50], the Medical database [51], and the
Tmc2007 database [52]. The Enron database contains 1702
emails from 150 senior Enron officials. Each email can be
categorized into 53 types, which can be further categorized
into four groups: coarse genre, included/forwarded infor-
mation, primary topics, and messages with emotional tone.
The Medical database contains documents briefly summa-
rizing the symptom history of patients. Each document is
annotated with possible diseases. The Tmc2007 database
contains instances of aviation safety reports, and the labels
of each report are the problems described.

From the biology domain, we have two databases: the
Yeast database [27] and the Eukaryote [53]. The Yeast
database contains instances of genes which can be associat-
ed with one or more of 14 biological labels. The Eukaryote
database contains 7766 sequences for eukaryote species.
Both the GO (Gene ontology) features and PseAAC fea-
tures are provided. We use the latter.

1. http:/ /mulan.sourceforge.net/datasets-mlc.html

5

TABLE 1: Detailed information of eleven databases. (“do-
main” is the domain of the database. “samples” is the
number of samples. “features” is the dimensionality of
features. “labels” is the total number of labels. “cardinality”
is the average number of labels per sample. “density” is
equal to cardinality/labels. “diversity” is the number of
distinct label sets appeared in the data set. [11])

Database |domain samples features labels cardinality density diversity
Corel5k [46] image 5000 499 374 3.522 0.009 3175
Emotions [7] music 593 72 6 1.869 0.311 27
Enron [50] text 1702 1001 53 3.378 0.064 753
Mediamill [54] | video 43907 120 101 4.376 0.043 6555
Medical [51] text 978 1449 45 1.245 0.028 94
Scene [19] image 2407 294 6 1.074 0.179 15
Tmc2007 [52] text 28596 49060 22 2.158 0.098 1341
Yeast [27] biology 2417 103 14 4.237 0.303 198
NUS-WIDE [49]| image 269648 128 81 1.869 0.023 18430
Eukaryote [53] |biology 7766 440 22 1.146 0.052 112
VOC2007 [48] | image 9963 - 20 1.560 0.078 308

The Emotions database [7] contains 593 pieces of music,
each of which can be associated with one or more of six e-
motion labels: amazement, happiness, relaxation, quietness,
sadness, and anger. The Mediamill database [54] contains
data about annotated videos. The label space consists of 101
semantic concepts in video, such as building, flag, horse,
map, office, food, etc. Detailed information of the eleven
databases is shown in Table 1.

Since these databases have been pre-divided into train-
ing and testing sets, we use the split in our experiments
and extract part of the training set as the validation set.
In the Tmc2007 database, the feature dimensionality of the
samples is too high and the number of samples is relatively
small, so we use the top 500 features as Tsoumakas et
al [30] did to decrease computational complexity and make
the problem learnable. In order to reduce the impact of
randomness, all experiments on all databases are conducted
ten times.

5.2 Metrics

To sufficiently evaluate the performances of our method,
four evaluation metrics that are widely used in multi-label
classification are adopted in our experiment, including two
example-based evaluation metrics (accuracy and F1) and
two label-based evaluation metrics (micro F1 and macro F1).

Let S = {(zi,y;)]1 < i < m} be the testing set
and z; be the predicted labels corresponding to x;. The
detailed definition of the four evaluation metrics are shown
as follows [37]:

N
Accuracy = Z [y O zil

“ |y, U zi

Fl:lizx|yiﬁzi|

L
223 12?1@1 Z;
L
SRS

L
1 2
Macro F1 = — )~ 2 15

L j=1 Yty i A

Micro F1 =

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 17,2020 at 02:03:38 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2922603, IEEE

Transactions on Knowledge and Data Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Where z] is the j-th component of z;. For four metrics
above, higher values represent better performance.

5.3 Experimental Settings

On the VOC2007 database, since there is no provided
extracted feature, we adopt three kinds of network as the
structure of multi-label classifier, i.e., Alexnet, Vgg19, and
Resnet50. For each kind of network, a pre-trained model
is used. The proposed methods using three networks are
named as OURS-A, OURS-V, and OURS-R, respectively.
To show the performances of the compared multi-label
methods on the VOC2007 database, we use the output of
the pre-trained Resnet50 as the extracted features.

On other ten databases, since the extracted features
are provided by database constructors, and the dimension
of features are not very high, we use the multi-layer
perception as the structure of the multi-label classifier.
Specifically, we use the four-layers feedforward net on the
Tmc2007 database and the three-layers feedforward net on
the other nine databases according to the performances on
the validation set. We use L1 regularization on the Corel5k,
Enron, Mediamill, Medical, and Tmc2007 databases, and L2
regularization on other six databases. We use a Gaussian
normalization for each dimension of features for data pre-
processing.

As the selection of hyper parameters in Algorith-
m 1, a grid search strategy is used and the param-
eters which achieve the best performance on valida-
tion set are used. Specifically, for the maximum num-
ber of training steps on the Emotions and Medical
databases, ' € {500,600, 700, 800, 900,1000}, on other
databases, T € {1000, 1500, 2000, 2500, 3000}. For the
number of C that updates per step, Kc € {1,2,3}.
For the number of D that updates per step, Kp &
{1,2,3}. For sampling size on the Emotions and Med-
ical databases, S € {100,200,300}, on other databases,
S € {100, 200, 300, 400, 500}. For weight coefficient , we
first select it from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.
We find the proposed method achieves best performance
when v = 0.1 on most databases. For these databases, we
then select v from {0.1,0.01,0.001, 0.0001}.

5.4 Comparisons

The proposed method (OURS) is compared to the following
multi-label learning methods:

1) The proposed method without exploiting label cor-
relations (OURS-W). This comparison is to analyze
the contribution of the adversarial loss. We conduct
the ablation study by setting the hyper parameter
v=0.

2) Nine widely used multi-label learning methods. We
compare OURS to the following first-order methods:
ML-C4.5, ML-kNN, BR, and RF-PCT. We compare
it to the second-order CLR method. For the high-
order methods, we compare it to CC, HOMER,
RAKEL, and ECC. Detailed classification of these
nine methods is shown in Table 2. Madjarov et
al. conducted experiments of the above nine algo-
rithms on eight databases in [34], and we adopt the
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TABLE 2: The multi-label learning algorithms compared
with the proposed approach.

algorithm problem bl
adaptation transformation ensemble
. ML-C4.5 [21],
first-order ML-ANN [20] BR [19] RF-PCT [33]
second-order - CLR [24] -
. CC[32], RAKEL [30],
high-order HOMER [31]  ECC [32]

same experimental conditions, so we can copy their
experimental results directly. For the NUS-WIDE,
Eukaryote, and VOC2007 databases, we conduct
the experiments of the above nine algorithms
using the provided code in MuLan library.

3) Zhu et al’s work, multi-label learning with GLODb-
al and loCAL label correlation (GLOCAL) [55].
GLOCAL exploits global and local label correla-
tions simultaneously, through the global manifold
regularizer and the local manifold regularizer.
Since Zhu et al. used different databases and
metrics, we conduct the experiments of GLOCAL
on all databases using the provided code?.

4) Wang et al.’s work, BN [14], which also captures the
joint label distribution. They tried three basic classi-
fiers: Label Powerset (LP) [36], BR, and RALKEL. For
a fair comparison, we select BR+BN since both BR
and OURS-W ignore label correlations. Three met-
rics: accuracy, F1, and micro F1, that are adopted in
both our work and theirs, are used for comparison.

5) Two RBM-based methods: three-layers RBM (TRB-
M) [16] and four-layers RBM (FRBM) [17]. We only
compare to these two methods on the Emotion
database, since it is the only common database used
in ours and theirs [16], [17]. However, since BN [14],
TRBM [16], and FRBM [17] adopt a ten-fold cross-
validation strategy (which is different from ours),
these comparisons are only for reference.

6) Li et al’s work, Conditional Graphical Lasso
(CGL) [56]. CGL learns image-dependent condi-
tional label structures base on graphical lasso
framework. We only compare to CGL on the
VOC2007 database.

5.5 Results and Analyses

The results of OURS and OURS-W are listed in Table 3. On
the VOC2007 database, OURS and OURS-W use Resnet50
as the structure of classifier. A one-sided t-test at 95%
significance level was used to evaluate the superiority of
OURS compared to OURS-W. From Table 3, we find that
OURS performs significantly better than OURS-W on almost
all databases and metrics. On the Emotions database, the
Scene database, and the Yeast database for example, the
experimental results of OURS on accuracy are 1.57%, 3.06%,
and 3.32% higher than those of OURS-W, and on F1, the
results are 1.14%, 3.94%, and 3.60% higher, respectively. For

2. http:/ /lamda.nju.edu.cn/code_Glocal.ashx
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TABLE 3: Comparison between OURS-W and OURS. The proposed method OURS exploits label correlations, but OURS-W
does not. The letter in parentheses indicates whether OUR is significantly better than OURS-W (one-sided t-test at 5%
significance level.) T represents true and F represents false.

database algorithms accuracy F1 micro F1 macro F1
Emotions OURS-W 0.56504-0.0020 0.646440.0015 0.69444-0.0017 0.6869+0.0012
OURS 0.5807+0.0030(T) 0.6578+0.0010(T) 0.7036+0.0026(T) 0.6966+0.0031(T)
Scene OURS-W 0.6908+0.0010 0.7073+0.0004 0.7461+0.0003 0.7492+0.0005
OURS 0.721440.0027(T) 0.7462+0.0022(T) 0.7599+0.0024(T) 0.7659+0.0019(T)
Yeast OURS-W 0.50994-0.0002 0.6146+0.0002 0.6414+0.0001 0.3576+0.0013
OURS 0.5432+0.0001(T) 0.6506+0.0002(T) 0.6658+0.0001(T) 0.3992+0.0001(T)
Medical OURS-W 0.7361+0.0023 0.7669+0.0018 0.7924+0.0020 0.3456+0.0002
OURS 0.7498+0.0005(T) 0.7776+0.0001(T) 0.8012+0.0001(T) 0.3417+0.0039(F)
Enron OURS-W 0.43544-0.0119 0.5418+0.1268 0.551940.0072 0.1700+0.0003
OURS 0.4519+0.0015(T) 0.5585+0.0013(T) 0.5670+0.0021(T) 0.16184-0.0010(F)
Corel5k OURS-W 0.1029+0.0015 0.1457+0.0014 0.1826+0.0021 0.0241+0.0003
OURS 0.1276+0.0008(T) 0.1805+0.0010(T) 0.2160+0.0003(T) 0.0287+0.0004(T)
Tme2007 OURS-W 0.98604-0.0004 0.9894+0.0003 0.9914+0.0002 0.9876+0.0000
OURS 0.9867+0.0003(F) 0.9903+0.0003(T) 0.9917+0.0002(F) 0.98904-0.0006(T)
Mediamill OURS-W 0.4320+0.0007 0.5484+0.0002 0.5663+0.0003 0.0670+0.0007
OURS 0.4362+0.0000(T) 0.5526+0.0001(T) 0.5724+0.0001(T) 0.0713+0.0009(T)
NUS-WIDE OURS-W 0.3671+£0.0006 0.2299+0.0017 0.3981+0.0023 0.1151+0.0019
OURS 0.3774+0.0006(T) 0.2803+0.0028(T) 0.4424+0.0019(T) 0.1438+0.0006(T)
Eukaryote OURS-W 0.3434+0.0040 0.3910+0.0042 0.4616+0.0030 0.122740.0022
OURS 0.3645+0.0061(T) 0.4125+0.0070(T) 0.4617+0.0087(F) 0.133440.0043(T)
VOC2007 OURS-W 0.7160+0.0031 0.7673+0.0036 0.7787+0.0020 0.7525+0.0034
OURS 0.72660.0014(T) 0.7829+0.0018(T) 0.7820+£0.0012(T) 0.7616£0.0022(T)
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TABLE 4: Comparisons among three deep networks on the
VOC2007 database.

‘ Accuracy F1  MicroF1 Macro F1
OURS-A 0.577 0.645 0.666 0.609
OURS-V 0.704 0.761 0.765 0.742
OURS-R 0.727 0.783 0.782 0.762

label-based metrics, the experimental results of OURS on
micro F1 are 0.92%, 1.38%, and 2.44% higher than those
of OURS-W respectively, and on macro F1, the results are
0.97%, 1.67%, and 4.16% higher than those of OURS-W,
respectively.

We also achieve significant improvements on other
databases in most cases. OURS-W ignores the constraint of
joint label distribution that contains all label correlations.
Unlike OURS-W, OURS takes advantage of the label correla-
tions by introducing an adversarial model that can make the
distribution of the predicted labels similar to the distribution
of the ground truth labels. Additionally, the adversarial
loss in OURS can be regarded as a regularization term,
which can further confine the searching space of learning
parameters to find a better locally optimal solution.

Table 3 shows that OURS does not make a significant im-

provement over OURS-W on the Tmc2007 database, Com-
pared to OURS-W, OURS only achieves 0.07% improvement
in accuracy, 0.09% improvement in F1, 0.03% improvement
in micro F1, and 0.14% improvement in macro F1. This may
be because OURS-W has already been able to achieve nearly
perfect classification performances. (Almost all testing sam-
ples have been correctly classified; four evaluation metrics
are close to 99%), and the distribution of the predicted labels
has been very close to the distribution of the ground truth
labels. The adversarial model in OURS cannot significantly
improve upon this performance.

On the VOC2007 database, we use three kinds of
deep network as the structure of multi-label classifier, i.e.,
Alexnet, Vgg19, and Resnet50. The comparisons among
three networks are shown in Table 4. We can find that
OURS-R performs best and OURS-A performs worst,
demonstrating the superiority of Resnet50.

5.6 Comparison to Related Work

Comparisons among the proposed method and related
works are shown in Tables 5, 6, 7, and 8. From these results,
we can obtain following observations.

First, when comparing nine multi-label methods, it’s
easy to find that high-order methods outperform second-
order methods and second-order methods outperform first-
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TABLE 5: The performances of multi-label approaches in terms of accuracy metric. In the first column, the content in
square bracket represents the degree of label correlations that the algorithm exploits. In detail, “1”, “2”, and “m” represent
the first-order, the second-order, and the high-order method, respectively. Besides, the word “full” indicates the method
exploits all label correlations. The number in round brackets shows the ranking of the algorithm. Bold numbers indicate
the best performance. The last column “mean rank” represents the average ranking of an algorithm on eleven databases.
The experiments of ML-C4.5 on the NUS-WIDE database have not been completed within one month under the available
resources. These notes are appropriate for Table 6, 7, and 8.

| Emotions ~ Scene Yeast Medical Enron Corel5k Tmc2007 Mediamill NUS-WIDE Eukaryote VOC2007 mean rank

BR[1] 0.361(8) 0.689(6) 0.520(7) 0.206(11) 0.446(5) 0.030(5) 0.891(4) 0.403(6) 0277(6) 0.119(9) 0.677(8)  6.818
CClm] 0.356(10) 0.723(3) 0.527(5) 0.211(10) 0.334(10) 0.030(6) 0.899(3) 0.390(7) 0.293(3) 0.325(2) 0.687(6)  5.909
CLR[2] 0.361(9) 0.686(7) 0.524(6) 0.656(6) 0.459(3) 0.195(1) 0.889(5) 0.095(10) 0.278(4) 0.113(10) 0.684(7)  6.182
HOMER[m] | 0471(4) 0.717(5) 0.559(1) 0.713(3) 0.478(1) 0.179(2) 0.888(6) 0.413(5) 0.231(8) 0.184(7) 0.487(9)  4.636
ML-C4.5[1] | 0.536(2) 0.569(10) 0.480(9) 0.730(2) 0.418(8) 0.002(9) 0.110(11) 0.052(11) - 0.237(5) 0.469(10)  7.700
ML-,KNN[1] | 0.319(11) 0.629(8) 0.492(8) 0.528(9) 0.319(11) 0.014(7) 0.574(9) 0.421(4) 0.317(2) 0.064(11) 0.7033)  7.545
RAKEL[m] | 0419(7) 0.734(2) 0531(4) 0.673(5) 0428(7) 0.000(11) 0.852(7) 0.337(9) 0.278(4) 0.127(8) 0.695(5)  6.273
ECC[m] 0432(5) 0.735(1) 0.546(2) 0.611(7) 0.462(2) 0.001(10) 0.808(8) 0.349(8) 0.265(7) 0.288(3) 0.699(4)  5.182
RE-PCT[1] | 0519(3) 0.541(11) 0.478(10) 0.591(8) 0.416(9) 0.009(8) 0.914(2) 0.441(1) 0.129(10) 0.190(6) 0.325(11)  7.182
GLOCAL[2] | 0.432(5) 0.624(9) 0351(11) 0.690(4) 0.442(6) 0.122(4) 0.559(10) 0.437(2) 0.18509) 0.265(4) 0.718(22)  6.000
BR+BN[m] | 0.552 0668 0521 - - - - - - -

OURS[full] | 0.581(1) 0.721(4) 0543(3) 0.750(1) 0.452(4) 0.128(3) 0.987(1) 0.436(3) 0.377(1) 0.365(1) 0.727(1)  2.091

TABLE 6: The performance of multi-label approaches in terms of F1 metric.

| Emotions ~ Scene Yeast Medical Enron Corel5k Tmc2007 Mediamill NUS-WIDE Eukaryote VOC2007 mean rank

BR[1] 0469(8) 0.714(6) 0.650(7) 0.328(11) 0.582(4) 0.047(6) 0.934(4) 0.557(5) 0.297(4) 0.124(9) 0.741(8)  6.545
CC[m] 0461(10) 0.742(5) 0.657(4) 0.337(10) 0.484(10) 0.048(5) 0.939(3) 0.539(7) 0.309(1) 0.341(3) 0.749(6)  5.818
CLR[2] 0465(9) 0.713(7) 0.655(5) 0.742(5) 0.600(3) 0.293(1) 0.933(6) 0.134(10) 0.299(3) 0.119(10) 0.748(7)  6.000
HOMER[m] | 0.614(3) 0.745(4) 0.687(1) 0.761(3) 0.613(1) 0.280(2) 0.934(5) 0579(2) 0271(8) 0.215(7) 0558(9)  4.091
ML-C45[1] | 0.651(2) 0.587(10) 0.614(9) 0.768(2) 0.546(9) 0.003(9) 0.126(11) 0.054(11) - 0263(6) 0.532(10)  7.900
ML-(NN[1] | 0431(11) 0.658(9) 0.628(8) 0.560(9) 0.445(11) 0.021(7) 0.699(9) 0.570(3) 0.172(10) 0.065(11) 0.755(5)  8.454
RAKEL[m] | 0.525(7) 0.754(2) 0.661(3) 0.704(6) 0.564(5) 0.000(11) 0.904(7) 0471(9) 0.3002) 0.131(8) 0.757(3)  5.727
ECC[m] 0.556(6) 0.771(1) 0.670(2) 0.652(7) 0.602(2) 0.001(10) 0.887(8) 0.483(8) 0279(6) 0.306(4) 0.756(4)  5.273
RE-PCT[1] | 0.611(4) 0.553(11) 0.614(10) 0.616(8) 0.552(8) 0.014(8) 0.948(2) 0.589(1) 0.192(9) 0.288(5) 0.429(11)  7.000
GLOCAL[2] | 0.573(5) 0.673(8) 0.467(11) 0.745(4) 0.562(6) 0.183(3) 0.671(10) 0.560(4) 0.272(7) 0.385(2) 0.782(2)  5.636
BR+BN[m] | 0.629 0680 0617 - - - - - - - - -
OURS[full] | 0.658(1) 0.746(3) 0.651(6) 0.778(1) 0.559(7) 0.181(4) 0.990(1) 0.553(6) 0.280(5) 0.413(1) 0.783(1)  3.273

TABLE 7: The performance of multi-label approaches in terms of micro F1 metric.

| Emotions  Scene Yeast Medical Enron Corel5k Tmc2007 Mediamill NUS-WIDE Eukaryote VOC2007 mean rank

BR[1] 0.509(9) 0.761(4) 0.652(6) 0.343(11) 0.564(6) 0.059(5) 0.932(4) 0.533(6) 0.208(8) 0.193(9) 0.742(8)  6.909
CClm] 0.503(10) 0.757(7) 0.650(7) 0.350(10) 0.482(10) 0.059(5) 0.936(3) 0.509(7) 0.204(9) 0.346(4) 0.743(7)  7.182
CLR[2] 0512(8) 0.758(6) 0.655(5) 0.721(5) 0.585(3) 0.293(1) 0.930(5) 0.118(10) 0213(7) 0.191(10) 0.749(6)  6.000
HOMER[m] | 0.588(4) 0.764(2) 0.673(1) 0.773(2) 0.591(2) 0275(2) 0.927(6) 0.553(4) 0.257(4) 0.266(7) 05759)  3.909
ML-C4.5[1] | 0.655(3) 0.593(11) 0.610(10) 0.756(4) 0.512(9) 0.004(9) 0.135(11) 0.007(11) - 0.287(5) 0.536(10)  8.300
ML-,KNNJ[1] | 0.457(11) 0.661(10) 0.625(8) 0.634(9) 0.466(11) 0.030(7) 0.682(10) 0.545(5) 0.322(2) 0.108(11) 0.752(5)  8.091
RAKEL[m] | 0533(7) 0.772(1) 0.656(4) 0.714(6) 0.548(7) 0.000(11) 0.890(7) 0.440(9) 0.214(6) 0.202(8) 0.756(4)  6.364
ECC[m] 0554(6) 0.762(3) 0.658(3) 0.714(6) 0.582(4) 0.002(10) 0.869(8) 0.453(8) 0.169(10) 0.368(3) 0.761(3)  5.818
RE-PCT[1] | 0.672(2) 0.669(9) 0.617(9) 0.693(8) 0.537(8) 0.018(8) 0.945(2) 0.563(3) 0.221(5) 0.279(6) 0.416(11)  6.455
GLOCAL[2] | 0581(5) 0.688(8) 0.491(11) 0.762(3) 0.593(1) 0.198(4) 0.684(9) 0.581(1) 0319(3) 0.373(2) 0.778(2)  4.455
BR+BN[m] | 0.660 0680  0.639 - - - - - - - -
OURS[full] | 0.704(1) 0.760(5) 0.666(2) 0.801(1) 0.567(5) 0.216(3) 0.992(1) 0572(2) 0.442(1) 0.462(1) 0.782(1)  2.091

TABLE 8: The performance of multi-label approaches in terms of macro F1 metric.

| Emotions ~ Scene Yeast Medical Enron Corel5k Tmc2007 Mediamill NUS-WIDE Eukaryote VOC2007 mean rank

BR[1] 04409) 0.765(5) 0.392(4) 0.361(3) 0.143(6) 0.021(5) 0.942(3) 0.056(6) 0.014(8) 0.049(10) 0.718(8)  6.091
CC[m] 0.420(10) 0.762(6) 0.390(6) 0.371(2) 0.153(4) 0.021(5) 0.947(2) 0.052(7) 0.018(6) 0.094(5) 0.721(7) 5455
CLR[2] 0443(8) 0.762(7) 0392(5) 0281(6) 0.149(5) 0.042(2) 0.938(4) 0.037(8) 0.016(7) 0.050(9) 0.726(5)  6.000
HOMER[m] | 0.570(5) 0.768(3) 0.448(1) 0.282(5) 0.167(2) 0.036(3) 0.924(5) 0.073(4) 0.066(3) 0.093(7) 0.519(9)  4.273
ML-C4.5[1] | 0.630(3) 0.596(11) 0.370(7) 0.250(7) 0.115(9) 0.008(8) 0.123(11) 0.003(11) - 0.094(5) 0.480(10)  8.200
ML-(NN[1] | 0.385(11) 0.692(9) 0.336(10) 0.192(11) 0.087(11) 0.010(7) 0.493(9) 0.113(2) 0.089(2) 0.023(11) 0.726(5)  8.000
RAKEL[m] | 0488(7) 0.777(1) 0.359(8) 0.210(8) 0.115(9) 0.000(11) 0.826(8) 0.019(10) 0.014(8) 0.056(8) 0.731(4)  7.455
ECC[m] 0.500(6) 0.770(2) 0.350(8) 0.203(10) 0.140(7) 0.001(10) 0.834(7) 0.022(9) 0.014(8) 0.1152) 0.737(3)  6.000
RE-PCT[1] | 0.650(2) 0.658(10) 0.322(11) 0.207(9) 0.122(8) 0.004(9) 0.857(6) 0.112(3) 0.065(4) 0.111(3) 0.335(11)  6.909
GLOCAL[2] | 0579(4) 0.699(8) 0.426(2) 0.393(1) 0.172(1) 0.303(1) 0.594(10) 0.175(1) 0.062(5) 0.111(3) 0.758(2)  3.455
OURS[full] | 0.697(1) 0.766(4) 0.399(3) 0.342(4) 0.162(3) 0.029(4) 0.989(1) 0.071(5) 0.144(1) 0.133(1) 0.762(1)  2.545
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order methods in most cases, as expected. For example,
compared with low-order methods BR, ML-C4.5, ML-kNN,
RE-PCT, and CLR, high-order method HOMER, CC, and
ECC have better performances in most scenarios; com-
pared with first-order methods BR, ML-C4.5, ML-kKNN,
and RF-PCT, second-order method CLR achieves better
performances in most cases. First-order methods ignore
label correlations, which makes it more difficult to train a
single-label classifier for each label when the training data
are imbalanced. Although second-order methods realize the
significance of the label correlations, they only use pairwise
label correlations, which are not enough to learn a satisfy-
ing multi-label classifier. However, there are always some
exceptions. High-order methods RAKEL underperforms the
second-order method CLR in most cases. RF-PCT is a first-
order method, but on the Mediamill database it achieves the
best performance in terms of accuracy and F1 and the third-
best performance in terms of micro F1 and macro F1. This
may be because RF-PCT is an ensemble through random
forest, which has strong discriminating power [55].

Secondly, when compared to nine multi-label learning
methods, the proposed method OURS achieves the best
overall performance. Following Zhu et al’s work [55],
we have provided the ranking of all algorithms on each
database. The proposed method achieves higher rank-
ing than any one of the compared methods on most
databases, and the “mean rank” of OURS is lowest in four
metrics, which demonstrates the superiority of the proposed
method that adopts an adversarial model to exploit all label
correlations. The nine multi-label learning methods either
ignore label correlations, exploit pairwise label correlations,
or exploit correlations embedded in the subsets of all labels.
Of the nine multi-label learning methods, HOMER achieves
the best performance. The HOMER algorithm constructs
a hierarchy of multi-label classifiers. Each classifier deals
with a much smaller set of labels, which is called the meta-
label [31]. At the leaf node, the classifier deals with one
single label, but the number of training samples distributed
to each single-label classifier may be too small for good
classification. Additionally, the HOMER algorithm is appro-
priate for large multi-label databases. Since the meta-labels
are built via balanced label clustering, obtaining good label
clusters requires a many labels [55]. So the performance
of the HOMER algorithm are not as good on the Emotion
database, the Scene database, the Tmc2007 database, the
Eukaryote database, and the VOC2007 database, as they
have smaller label dimensionality.

Thirdly, compared to GLOCAL, the proposed method
achieves better performance on most databases, i.e., the E-
motions, Scene, Yeast, Medical, Tmc2007, NUS-WIDE, Eu-
karyote, and the VOC2007 databases. This demonstrates
the advancement of the proposed adversarial framework.
GLOCAL captures both global and local label correla-
tions. However, GLOCAL only captures pairwise label
dependencies, while the proposed method models the
joint distribution of all labels, which contains all kinds
of label correlations.

Fourthly, when compared to BR+BN, the proposed
method OURS achieves better performances in all scenarios,
demonstrating the effectiveness of the proposed method in
exploiting joint label distribution. Specifically, on the Emo-
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TABLE 9: Comparisons between the proposed method and
the RBM-based methods on the Emotions database.

‘ Accuracy F1 Micro F1 ~ Macro F1
TRBM 0.554 0.645 0.675 0.676
FRBM 0.585 0.668 0.695 0.688
OURS 0.581 0.658 0.704 0.697

TABLE 10: Comparisons between the proposed method and
CGL on the VOC2007 database.

| Accuracy F1 Micro F1 Macro F1

CGL 0.676=+0.009 0.730+0.009 0.680+0.007 0.726=0.008
OURS-V|0.709+0.006 0.768-:0.006 0.768+0.004 0.741-+0.007

tion database, the performances of OURS are 2.9%, 2.9%,
and 4.4% higher than BR+BN in accuracy, F1, and micro
F1, respectively. On the Scene database, the performances
of OURS are 5.3%, 6.6%, and 8.0% higher than BR+BN
in accuracy, F1, and micro F1, respectively. On the Yeast
database, the performances of OURS are 2.2%, 3.4%, and
2.1% higher than BR+BN in accuracy, F1, and micro F1
respectively. BN+BR first learns the joint distribution of
the ground truth label and then adjusts the results of BR
according to the learned distribution. However, there are
flaws when using bayesian networks for learning distribu-
tion. Some weak label correlations are neglected to limit the
complexity of the network, so some nodes are not linked
directly. Also, due to the Markov assumption, bayesian
networks capture local and pair wised dependences among
labels. Learning distribution with bayesian networks cannot
exploit label correlations thoroughly and effectively. OURS
introduces an adversarial model to force similarity between
the distribution of the predicted labels and the distribution
of the ground truth labels. Therefore, OURS can exploit label
correlations more thoroughly and effectively.

fifthly, the comparisons between OURS and the RBM-
based methods are shown in Table 9. OURS performs better
that TRBM on all metrics, demonstrating the superiority
of the proposed method. TRBMs consist of three layers:
a measurement layer, a label layer, and a hidden layer.
Measurement is the output of the basic classifier, and BR
was selected as the measurement classifier in [16]. The
testing samples” multiple labels are inferred by combining
the measurement and the relations among multiple labels,
as well as the relations between labels and measurements.

When compared to FRBM, OURS performs better on
micro F1 and macro F1, but performs worse in accuracy and
F1. This may be because FRBM trains with more instances.
Specifically, FRBM uses a ten-fold cross-validation strategy
in which nine of the ten samples are training samples.
OURS wuses 391 samples as a training set, which is two-
thirds of the total. FRBM consists of four layers: a feature
layer, first hidden layer, label layer, and second hidden layer.
FRBM considers not only relations among multiple labels
but also relations between features and labels. The testing
samples” multiple labels are inferred from features directly,
so FRBM does not need a basic classifier. Although TRBM
and FRBM can capture joint label distribution for multi-label
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Fig. 2: Experimental results of four metrics on eleven databases varying the y parameter in the range from 0 to 0.9.

learning, both of them assume the form of joint distribution
of all nodes and need a complex inference algorithm. The
proposed method does not need any assumptions and has a
simple testing process.

Lastly, on the VOC2007 database, we also compare
to the state-of-the-art work, CGL. We use VGG model
and conduct five-fold cross validation experiments as Li
et al. [56] did. The comparison is shown in Table 10.
The results of CGL are copied from [56]. We find that
OURS-V performs better and more stable than CGL in
four metrics. CGL only captures pairwise correlations by
Bayesian framework, and is unable to exploit high-order
label dependency. The proposed method, by contrast,
exploits label distribution that contains all kinds of label
dependencies, and thus achieves better performance.

5.7 The Effect of Hyper Parameter

In Section 5.5, we conduct experiments on OURS-W, which
removes the adversarial model by setting the hyper param-

eter v = 0. In this section, we investigate the impact of the
hyper parameter v by running the same set of experiments
while varying the « from 0 to 0.9, and then seek a good
balance between the supervised loss and the adversarial
loss in Equation 5. Fig. 2 shows the results of four metrics
on eleven databases. On most databases, the performance
increases slightly and then decreases as «y increases, with
the rate of decline gradually increasing. This demonstrates
the validity of jointly optimizing the supervised loss and
the adversarial loss. When « is very small, the supervised
loss plays a major role in the parameter’s update, and the
adversarial model does not have as much of an impact.
When 7 is very large, the supervised information is not used
effectively. The best hyper parameters v on the Emotion,
Scene, Yeast, Medical, Enron, Corel5k, Mediamill, NUS-
WIDE, Eukaryote, and VOC2007 databases are 0.2, 0.01,
0.001, 0.5, 0.01, 0.001, 0.0001, 0.001, 0.1, and 0.1, respectively.
From the above experiments, we find the supervised loss is
more important than the adversarial loss, and the optimal
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v in all databases are no greater than 0.5. Therefore, for a
new database, we recommend the selection of v by varying
~ from 0.1 to 0.5. If the performance of the proposed
method decreases gradually, vary + from 0.1 to 0.0001.
We have analyzed that OURS can not achieve a significant
improvement over OURS-W on the Tmc2007 database, so
we can see that in Fig. 2(g), there is not an increasing phase.

6 CONCLUSION

In this paper, we propose a novel multi-label learning
method that not only minimizes the traditional supervised
loss but also leverages the joint label distribution containing
all label correlations. When learning joint label distribu-
tion, we do not assume the form of the distribution. We
propose an adversarial model to enforce distribution sim-
ilarity between the predicted labels and the ground truth
labels directly. We combine the adversarial model with
the traditional supervised model and find a good balance
between the two objectives by analysing the effect of trade-
off parameter . The experimental results on eleven databas-
es demonstrate the effectiveness of the proposed method.
The ablation study demonstrates that the proposed method
explicitly exploits the label correlations with the help of the
adversarial model, improving the performances on multi-
label classification task. Comparisons to nine multi-label
algorithms, GLOCAL, BN+BR, TRBM, FRBM, and CGL,
demonstrate the superiority of the proposed method in
exploiting label correlations.

The “mean rank” measure we use can qualitatively
represent the overall performance of methods to a certain
extent, but it is not a very rigorous measure. We will
consider more rigorous measure in our future work.
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