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Dual Learning for Facial Action Unit Detection
Under Nonfull Annotation

Shangfei Wang , Senior Member, IEEE, Heyan Ding , and Guozhu Peng

Abstract—Most methods for facial action unit (AU) recogni-
tion typically require training images that are fully AU labeled.
Manual AU annotation is time intensive. To alleviate this,
we propose a novel dual learning framework and apply it
to AU detection under two scenarios, that is, semisupervised
AU detection with partially AU-labeled and fully expression-
labeled samples, and weakly supervised AU detection with fully
expression-labeled samples alone. We leverage two forms of aux-
iliary information. The first is the probabilistic duality between
the AU detection task and its dual task, in this case, the face
synthesis task given AU labels. We also take advantage of the
dependencies among multiple AUs, the dependencies between
expression and AUs, and the dependencies between facial fea-
tures and AUs. Specifically, the proposed method consists of a
classifier, an image generator, and a discriminator. The classi-
fier and generator yield face–AU–expression tuples, which are
forced to coverage of the ground-truth distribution. This joint
distribution also includes three kinds of inherent dependencies:
1) the dependencies among multiple AUs; 2) the dependencies
between expression and AUs; and 3) the dependencies between
facial features and AUs. We reconstruct the inputted face and AU
labels and introduce two reconstruction losses. In a semisuper-
vised scenario, the supervised loss is also incorporated into the
full objective for AU-labeled samples. In a weakly supervised sce-
nario, we generate pseudo paired data according to the domain
knowledge about expression and AUs. Semisupervised and weakly
supervised experiments on three widely used datasets demon-
strate the superiority of the proposed method for AU detection
and facial synthesis tasks over current works.

Index Terms—Adversarial learning, dual learning, facial action
unit (AU) detection, semisupervised, weakly supervised.
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I. INTRODUCTION

FACIAL behavior analysis is one of the fastest growing
research areas in affective computing and computer vision

research. We can learn about people’s emotions through facial
behavior. There are two commonly used ways to describe
facial behavior: 1) facial expression and 2) facial action unit
(AU). Facial expression is an intuitive description of facial
behavior, most commonly identified as one or more of six
expressions (i.e., anger, disgust, fear, happiness, sadness, and
surprise) [1]. These labels, however, are not complex enough
to describe the full range of emotions. There are many other
expressions, including pain, awe, embarrassment, hatred, etc.
The number and definition of expressions are not universally
agreed upon by researchers.

AUs are patterns of muscular activation as defined in
Ekman’s facial action coding system (FACS) [2]. Compared
to expressions, which describe the global facial behavior, AUs
describe facial behavior in more detail and subtlety. AU detec-
tion is a basic affective computing problem that has been
studied for decades [3]–[5]. The successful recognition of AUs
could greatly assist the analysis of human facial behavior
and expression. Traditional supervised AU detection meth-
ods need a large number of AU-annotated facial images.
However, AUs represent subtle local facial changes and, thus,
should be annotated by experts. AU labeling is time consuming
and expensive. To reduce reliance on AU labels, we propose
semisupervised and weakly supervised AU detection methods,
in which we train AU classifiers from images with expressions
and partial AUs, and images annotated with expressions only,
respectively.

Expression labels are easier and less time consuming to
annotate than AUs. Expressions are also strongly associated
with AUs. For example, Du et al. [6] found that people
almost always lower their jaws (AU26) when they show sur-
prise, and the lip corner puller (AU12) rarely appears in
sad faces. Many expression-dependent AU combinations are
detailed in the emotion FACS (EMFACS) [7]. Prkachin and
Solomon [8] found that pain intensity is mainly determined by
six AUs (AU4, AU6, AU7, AU9, AU10, and AU43). In addi-
tion, multiple AUs are closely related because of the structure
and anatomy of the human face. Each AU is controlled by
at least one facial muscle. For example, the inner and outer
brow raisers (AU1 and AU2) typically appear together, since
they are both related to the muscle group frontalis. Lip corner
puller (AU12) and lip corner depressor (AU15) rarely appear
together, since they are formed by the contraction or relaxation
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of the same muscle. These dependencies exist whether or not
a facial image has been annotated. They are crucial for learn-
ing the AU classifier, especially when samples are partially
annotated or not annotated at all.

Many machine-learning tasks emerge in dual form [9]. For
AU detection, the dual task is facial synthesis using the AU
labels. There are intrinsic probabilistic connections between
the recognition of AUs and the facial synthesis tasks, and such
connections are independent of annotation status. Dual tasks
help each other when they are trained together. However, there
has not been much research on the simultaneous recognition
of AUs and face synthesis. In this article, we leverage the
connections between these tasks to improve the results of both.
Generative adversarial network (GAN) [10] is also used in
many fields [11], [12]. In this article, we also use GAN to
learn joint distributions.

We suggest a dual GAN (DGAN) to jointly learn an AU
classifier and a face generator. DGAN regularizes the learn-
ing process by exploring the probabilistic duality between the
dual tasks [9]. The joint distribution of the input and out-
put of the primal and dual models should be equal to the
distribution of the paired data. DGAN utilizes an adversarial
framework to force convergence between the joint distribution
of the input and output of the AU classifier and face generator
and the distribution of the paired face–AUs data. Such dis-
tribution includes not only the dependencies among multiple
AUs but also dependencies between facial features and AUs.
Furthermore, we leverage the assistance of expression labels as
extra conditional information. In addition, we reconstruct the
inputted face or AU labels and introduce two reconstruction
losses since the AU classifier and face generator form a closed
loop. We apply DGAN to semisupervised and weakly super-
vised learning scenarios. In the former scenario, we also utilize
supervised loss for AU-labeled samples. There are no face–
AUs data in the latter scenario, so we generate pseudo paired
data through domain knowledge about expression and AUs.

A preliminary version of this article appeared as [13],
in which a semisupervised dual learning framework for AU
detection with partially labeled data is proposed. Compared to
the previous version, the present version applies the proposed
dual learning framework to weakly supervised AU detection
scenarios when only expression-labeled data are available. We
also add experiments and comparisons of the weakly super-
vised AU detection task on three benchmark sets of data,
demonstrating the effectiveness of the proposed method in this
scenario.

This article is organized in the following manner. Section II
reviews relevant works on dual learning and AU detection
without full AU annotations. In Section III, we present the
dual learning method DGAN. In Sections IV and V, we apply
the proposed DGAN to semisupervised and weakly super-
vised AU detection problems, respectively. In Section VI, we
conduct experiments on three benchmark databases. Finally,
Section VII summarizes our work.

II. RELATED WORK

A. Dual Learning

Machine-learning tasks often have a primal and dual
form [9]. For example, an image generation task is the dual

task of an image classification task. The primal task and the
dual task form a closed loop, generating informative feedback
signals that benefit both tasks.

He et al. [14] first proposed unsupervised dual learning for
neural machine translation with unpaired monolingual corpora.
They trained two translators through a reinforcement learning
process. In this process, training consists of two agents: each
understands one language. One sentence is translated from the
first agent by the primal translator and then sent to the second
agent. The sentence is then evaluated by the second agent and
returned to the first by the dual translator. The two translators
can be iteratively updated based on the feedback signals (i.e.,
the pretrained language model likelihood of the translator out-
put and the post-translation reconstruction error of the original
sentence) until convergence.

Yi et al. [15] proposed another unsupervised dual learn-
ing method, applying a GAN to image-to-image translation.
They introduced two image discriminators as the evaluation
model for two image domains. Unlike He et al.’s work [14],
in which models are pretrained, two image discriminators
and two image translators are simultaneously trained using
adversarial learning.

Unlike the aforementioned unsupervised dual learning meth-
ods, Xia et al. [9] proposed dual supervised leaning (DSL)
from paired data. They minimized the empirical risk of dual
tasks under a necessary condition, that is, the probabilistic
duality between the dual tasks. They explored probabilistic
duality by minimizing the KL-divergence of the joint dis-
tribution of the inputs and outputs of the primal and dual
models.

The above three works explore dualities at the data level. In
contrast, Xia et al. [16] suggested a model-level dual learning
method to explore dualities between the dual tasks by sharing
partial parameters of dual models.

In Xia et al.’s work [9], the marginal distribution of the
input is estimated to represent the joint distribution of the input
and output. This may lead to errors in the learning process. To
avoid the estimation of marginal distribution, in this article, we
adopt an adversarial manner to make the input and output joint
distributions of the primal and dual models close by forcing
them to converge to the distribution of the paired data. Unlike
DSL [9], we introduce reconstruction loss.

Until now, there has not been any research on dual learn-
ing in semisupervised scenarios or that applies dual learning
to AU detection. Here, we formulate AU detection and face
synthesis as dual tasks, which can be trained at the same time.
The proposed dual learning method for this face–AU dual task
works when there are only partially AU-annotated samples or
samples lacking AU annotation entirely.

B. AU Detection

The background and details of facial AU recognition are
detailed in [17]–[19]. This section is limited in scope to
recognition methods that learn the AU classifier from images
without full AU annotations. Specifically, we briefly review the
semisupervised and weakly supervised AU detection works.

1) Semisupervised Works: The current semisupervised AU
detection works can be categorized into two approaches
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based on whether or not they use the help of expression
labels.

For semisupervised AU detection without expressions, miss-
ing AUs are handled using label smoothness or AU dependen-
cies. Niu et al. [20] proposed a multilabel co-regularization
method for semisupervised facial AU recognition via co-
training. This method uses the graph convolutional network
(GCN) to embed AU relationships and optimizes multiview
feature generation and AU classification via multiview loss and
multilabel co-regularization loss. Song et al. [21] suggested a
Bayesian group-sparse-compressed sensing (BGCS) model to
encode AU co-occurrence structure and sparsity for AU detec-
tion. During the inference procedure, this method marginalizes
over the unobserved values to handle partially observed labels.
Wu et al. [22] put forth a multilabel learning method with
missing labels (MLMLs). They handled the missing labels by
examining how consistent the predicted labels were with the
provided labels. They also looked at local smoothness among
the assigned labels. Unlike the above work, which uses the
same features for all AUs, Li et al. [23] proposed an improved
version of MLML that classified each AU using the most
related features. Wu et al. [24] adopted a restricted Boltzmann
machine (RBM) model with the goal of capturing the joint
distribution of all AUs using the given AU labels as the
prior distribution. This was accomplished by minimizing errors
between predicted and ground truth AUs for AU-labeled sam-
ples while simultaneously maximizing the log likelihood of
the AU classifier with regard to the learned prior distribution.

In semisupervised AU detection scenarios enhanced by
expressions, dependencies between AUs and expressions are
exploited to handle missing AUs. A Bayesian network (BN)
was proposed by Wang et al. [25] to capture the relations
among AUs and the relations between facial expressions and
AUs. Hidden knowledge in the form of expression labels
complement any AU labels that are missing. In the testing
phase, the AU–expression relationships encoded in the BN are
combined with the AU measurements obtained from a basic
classifier (SVM) to infer the AU labels. The previous ver-
sion of this article [13] proposed a dual semisupervised GAN
(DSGAN) for semisupervised AU detection. The expression
labels act as auxiliary information and are fed into the dis-
criminator. This article extends DSGAN to weakly supervised
AU detection scenarios.

2) Weakly Supervised Scenarios: The above AU detection
methods successfully reduce the reliance on AU labels but still
depend on AU-labeled samples. Recently, some AU detection
methods learned AU classifiers when expression-labeled sam-
ples are available but AU-labeled samples are not. All of them
utilized domain knowledge about expressions and AUs. Some
works used domain knowledge as the constraints and incorpo-
rated some losses into the full objective; others used domain
knowledge to generate pseudo AU labels under each expres-
sion category. All of these weakly supervised methods can
be extended to semisupervised methods by adding supervised
loss for AU-labeled samples.

Specifically, Ruiz et al. [26] suggested hidden-task learn-
ing (HTL), which uses facial image features to develop the
AU classifier. They introduced the visible task to learn the

expression classifier from AUs in advance. Pseudo samples
generated under the expression condition act as the train-
ing set of the visible task. They concatenated two tasks as
hidden–visible tasks and used expression labels to update the
parameters of the hidden task. They extended HTL to semi-
HTL (SHTL), assuming that the AU labels of partial samples
are also provided. Visible and hidden tasks are trained sepa-
rately, so any errors made by the expression classifier affect the
AU classifier as well. Furthermore, HTL only uses the proba-
bility of one AU, given expressions, and requires an extra-large
set of expression-annotated facial images.

Wang et al. [27] proposed a similar model to [24]. They
suggested an RBM prior (RBM-P) model to learn the prior
joint distribution of all AUs. Unlike [24], Wang et al. learned
the prior distribution under each expression and used the gen-
erated pseudo AU labels according to the domain knowledge.
Like HTL, RBM-P leverages the probability of AUs under
each expression.

Peng and Wang [28] used the same domain knowledge as
Wang et al. [27], and also sampled the pseudo samples under
each expression. They employed adversarial learning to mini-
mize the distance between the predicted AU label distribution
and the pseudo AU label distribution, thus avoiding any error
caused by the estimation of AU prior distribution.

Zhang et al. [4] put forth a multiple AU classifier learn-
ing method (LP-SM) using SVM as the basic classifier. They
introduced five kinds of extra loss according to the inequality
relations among the AU probabilities and incorporated them
into the full objective. They used an iterative optimization
algorithm to learn multiple AU classifiers and AU labels of
training samples simultaneously.

Wang et al. [29] leveraged the rank relations among the
probabilities of all AUs, given expression. They formulated
weakly supervised AU detection as a multilabel ranking
problem, proposing a rank loss for it. They only considered
relations between expressions and AUs, and the rank relations
among the AU probabilities miss a lot of useful information.

Compared to related works, this work offers the following
primary contributions.

1) We formulate a novel dual learning framework that
explores the probabilistic duality through a GAN, which
is proven a necessary condition [9] when training the
primal and dual models using paired data. The proposed
method avoids the errors caused by the estimation of the
marginal distribution.

2) Currently, there are few works considering both AU
detection and face synthesis. The proposed dual learn-
ing method is applied to AU detection in semisupervised
and weakly supervised scenarios.

3) The proposed method is evaluated on widely used
benchmark datasets. At the submission of this article,
the results of our experiments exceed those of other
methods.

III. DUAL GENERATIVE ADVERSARIAL NETWORK

Given two spaces X and Y , a general dual learning scheme
can be created as the primal task C : X → Y , which maps
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a sample taken from space X to space Y , and its dual task
G : Y → X , which maps a sample taken from space Y to
space X .

Let (x, y) denote the paired data in X × Y . Inputting x
to C, we can obtain ŷ = C(x), and (x, ŷ) ∈ X × Ŷ . Similarly,
inputting y to G can obtain x̂ = G(y), and (x̂, y) ∈ X̂ ×Y . Let
P denote the distribution of paired data in X ×Y . PC signifies
the distribution of data in X × Ŷ . PG denotes the distribution
of data in X̂ × Y . According to the probabilistic duality [9],
for any paired data (x, y), the primal model C and the dual
model G should make the following equality valid:

P(x, y) = PC(x, y) = PG(x, y). (1)

In order to avoid the estimation of the marginal distribution
of data in X or Y , we propose a DGAN to make both PC and
PG converge to P. Specifically, we introduce a discriminator D.
(x, ŷ) ∈ X × Ŷ and (x̂, y) ∈ X̂ × Y , generated by C and G,
respectively, are regarded as “fake” and sent to discriminator D
for judgment. (x, y) ∈ X × Y is regarded as “real” and also
sent to D. Then, the adversarial loss of DGAN is as follows:

Ladv = E(x,y)∼X×Y
[
log D(x, y)

]

+ αE
(x,ŷ)∼X×Ŷ

[
log

(
1 − D

(
x, ŷ

))]

+ (1 − α)E
(x̂,y)∼X̂×Y

[
log

(
1 − D

(
x̂, y

))]
(2)

where α ∈ (0, 1) weighs the importance of the distribution of
data in X × Ŷ in the mixed distribution.

Since the primal and dual models form a closed loop, they
impose constraints on one another. In consideration of this,
we introduce two reconstruction losses as Yi et al. [15] and
Zhu et al. [30] did. ŷ is inputted into G and the output G(ŷ)

is the reconstruction of x. Similarly, x̂ is inputted into C and
the output C(x̂) is the reconstruction of y. The reconstruction
loss for C (Lc

rec) and G (Lg
rec) is as follows:

Lc
rec = Ex∼X Dis(x, G(C(x)))

Lg
rec = Ey∼YDis(y, C(G(y))) (3)

where Dis is the distance measurement, which is different for
C and G, and varies by the specific task.

Compared to other recent dual learning frameworks,
DualGAN [15] is the most similar to the proposed DGAN as
both are based on GAN. However, there are some significant
differences. First, DualGAN is an unsupervised dual learn-
ing framework that trains with unpaired data in two domains,
while DGAN explores the duality inherent in paired data.
Second, DualGAN contains two discriminators corresponding
to two data domains, while DGAN only has one discrimina-
tor and the input is the paired data. Third, through adversarial
learning, DualGAN makes the distribution of the generated
data from one domain converge with the distribution of the
true data of another domain. DGAN forces the distributions of
the input and output of the primal and dual models to converge
to the distribution of the true paired data. Finally, DualGAN
only uses reconstruction loss to explore the duality between
the dual tasks, while DGAN also explores the probabilistic
duality between the dual tasks.

IV. SEMISUPERVISED AU DETECTION

The AU detection task and face synthesis are dual tasks.
This section applies the proposed DGAN to semisupervised
AU detection. All samples have expression labels and some
also have AU labels. The face space is space X , the AU
label space is space Y , and the expression is conditional
information. Facial feature points represent the face.

A. Problem Statement

Let � = T ∪ U denote the training set, where T =
{(xi, yi, Ei

xy)}N
i=1 contains N AU-labeled training samples with

feature vectors x ∈ R
d, AU labels y ∈ {1, 0}l, and expres-

sion label Exy ∈ {1, 2, . . . , P}. d represents the dimension of
x, l stands for the number of AUs, and P is the number of
expressions. U = {(xj, Ej

x)}M
j=1 contains M training samples

annotated with expression labels only. X = {(xi, Ei
x)}N

i=1 stores
all feature vectors and their corresponding expression labels
in T , and B = {(yi, Ei

y)}N
i=1 stores all AU labels and their corre-

sponding expression labels in T . A = X∪U denotes the subset
of X storing all training feature vectors and their correspond-
ing expression labels. This section’s goal is to jointly train the
AU classifier C : Rd → {1, 0}l and a facial image generator
G : {1, 0}l → R

d with the training set �, thus exploring the
connections between the dual tasks to boost the performance
of both tasks.

B. Proposed Approach

The framework of the proposed DGAN for semisuper-
vised AU detection is shown as Fig. 1. Since we consider
the assistance of expression, the input of discriminator D is
a feature—AU–expression tuple, that is, the real (x, y, Exy)

from T , and the fake (x, ŷ, Ex) and (x̂, y, Ey), generated by C
and G, respectively. When generating the face, we introduce
the Gaussian noise z ∼ pz(z), so x̂ = G(y, z). Then, the adver-
sarial loss of DGAN for AU detection and face synthesis is
as follows:

Ladv = E(x,y,Exy)∼T

[
log D

(
x, y, Exy

)]

+ αE(x,Ex)∼A
[
log(1 − D(x, C(x), Ex))

]

+ (1 − α)E(y,Ey)∼B,z∼pz(z)

[
log

(
1 − D

(
G(y, z), y, Ey

))]
.

(4)

We set α = 0.5 in our experiments to balance the distribu-
tions of pseudo-tuples generated from C and G. The classifier
C and generator G try to minimize this loss; discriminator D
attempts to maximize it. Since the objectives for D, C, and G
are different, we define Ld

adv = Ladv, and Lc
adv for C and Lg

adv
for G as follows:

Lc
adv = −E(x,Ex)∼A

[
log D(x, C(x), Ex)

]

Lg
adv = −E(y,Ey)∼B,z∼pz(z)

[
log D

(
G(y, z), y, Ey

)]
. (5)

For the reconstructed feature and AU labels, we adopt the
L1 distance and cross-entropy loss (CE) to calculate the differ-
ence between the reconstruction and the original, respectively.
So the reconstruction losses for C (Lc

rec) and G (Lg
rec) are as
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Fig. 1. Framework of the proposed DGAN, which is applied to semisupervised AU detection. Since there are true paired data, we introduce two supervised
losses for AU-annotated samples.

follows:

Lc
rec = E(x,Ex)∼A,z∼pz(z)

[‖x − G(C(x), z)‖1
]

Lg
rec = E(y,Ey)∼B,z∼pz(z)

[
CE(C(G(y, z), y)

]
. (6)

In the semisupervised scenario, there are some AU-labeled
samples (training set T), so the standard supervised loss must
be included in the full objective for AU-labeled data (x, y, Exy).
The supervised losses for C (Lcl) and G (Lreg) are defined as

Lcl = E(x,y,Exy)∼T

[
CE(C(x), y)

]

Lreg = E(x,y,Exy)∼T,z∼pz(z)

[‖x − G(y, z)‖1
]
. (7)

Finally, the objectives for D, C, and G are to minimize LD,
LC, and LG, respectively, and are written as

LD = −Ld
adv

LC = Lc
adv + λcLc

rec + λclLcl

LG = Lg
adv + λgLg

rec + λregLreg (8)

where λc and λg are weight coefficients of reconstruction
loss for C and G, respectively, and λcl and λreg are weight
coefficients of supervised loss for C and G, respectively. Like
the training procedure of Vanilla GAN [10], D, C, and G
are updated alternately like so: first, update D while fixing
C and G, then update C while fixing D and G, and then
update G while fixing D and C. The process is repeated
until convergence. Algorithm 1 outlines the detailed training
procedure.

All of the networks of discriminator D, classifier C, and
generator G are parameterized through a four-layer feedfor-
ward network since the dimensions of feature and AU labels
are not very high. We use the TensorFlow [31] framework to
implement the proposed DGAN. The Adam [32] optimization
method is the best choice to update the parameters of GAN.
A validation set and grid search strategy are used to determine
other hyperparameters, such as weight coefficients λc, λcl, λg,
and λreg, training step K, and batch size s, which varies by
database.

V. WEAKLY SUPERVISED AU DETECTION

This section applies the proposed DGAN to weakly super-
vised AU detection scenarios in which no true paired data exit.
We generate pseudo paired data as the real sample according
to the summarized domain knowledge about expressions and
AUs.

A. Problem Statement

A = {(xi, Ei
x)}N

i=1 denotes the training set annotated with
expression labels only. The aim is to jointly train an AU
classifier C : Rd → {1, 0}l and a facial image generator
G : {1, 0}l → R

d with the training set A only.

B. Proposed Approach

1) Domain Knowledge: In our previous work [28], we
detailed the current domain knowledge regarding facial expres-
sions and AUs. Here, we briefly introduce the domain knowl-
edge. The domain knowledge is represented as the conditional
probability of any single AU. The likelihood of an AU can
be categorized into one of the three kinds according to the
conditions.

The first is the likelihood of any one AU, given one expres-
sion. From Du et al.’s work [6], we can obtain the conditional
probability of each AU given one of the six basic expres-
sions. From Prkachin and Solomon’s work about Prkachin and
Solomon pain intensity (PSPI) [8], [33], we can obtain the
domain knowledge regarding the likely presence of six AUs
(AU4, AU6, AU7, AU9, AU10, and AU43) given the pain
expression.

The second is the conditional probability of an AU given
one expression as well as another AU. From EMFACS [7],
we obtain many AU combinations that are often noticed dur-
ing one of the six basic expressions, from which we can
summarize the conditional probabilities.

The third is the conditional probability of a single AU when
another AU is absent or present. This shows the co-existent
and mutually exclusive relations between two AUs. FACS and
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Algorithm 1 Training of DGAN in Semisupervised Scenario
Require: Training sets T , A, and B; max number of training steps K, batch size s; weight coefficients λc, λcl, λg, and λreg.
Ensure: Classifier C and generator G

1: Randomly initialize parameters θd, θc, and θg of discriminator D, classifier C, and generator G, respectively.
2: for k = 1, 2, ..., K do
3: Sample mini-batch of s samples {(xd

i , yd
i , Exyd

i
)}s

i=1 from T , sample mini-batch of s samples {(xc
i , Exc

i
)}s

i=1 from A, sample

mini-batch of s samples {(yg
i , Eyg

i
)}s

i=1 from B, and sample mini-batch of s noise samples {zi}s
i=1 from pz(z).

4: Update discriminator D by descending the gradient:

∇θd

[

−1

s

s∑

i=1

(
log D(xd

i , yd
i , Exyd

i
) + α log(1 − D(xc

i , C(xc
i ), Exc

i
)) + (1 − α) log(1 − D(G(yg

i , zi), yg
i , Eyg

i
))

)]

5: Sample mini-batch of s samples {(xc
i , Exc

i
)}s

i=1 from A, s1(s1 ≤ s) of which are annotated with AU labels, {(xc
j , yc

j , Exc
j
)}s1

j=1.
Sample mini-batch of s noise samples {zi}s

i=1 from pz(z).
6: Update classifier C by descending its gradient:

∇θc

[
− 1

s

s∑

i=1

log D(xc
i , C(xc

i ), Exc
i
) + λc

s

s∑

i=1

||xc
i − G(C(xc

i ), zi)||1 + λcl

s1

s1∑

j=1

CE(C(xc
j ), yc

j )

]

7: Sample mini-batch of s samples {(xg
i , yg

i , Eyg
i
)}s

i=1 from T and sample mini-batch of s noise samples {zi}s
i=1 from pz(z).

8: Update generator G by descending its gradient:

∇θg

[

−1

s

s∑

i=1

log D(G(yg
i , zi), yg

i , Eyg
i
) + λg

s

s∑

i=1

CE(C(G(yg
i , zi)), yg

i ) + λreg

s

s∑

i=1

||xg
i − G(yg

i , zi)||1
]

9: end for

Li et al.’s work [34] pinpoint some AUs that usually or rarely
appear together, from which we can summarize the third type
of AU conditional probability (see [28] for more details).

2) Pseudo Data Generation: According to Section IV, we
can see that in addition to the training set A, which stores
features, we also need the training set B to store labels and the
paired training set T in order to learn DGAN. In this section,
we generate pseudo B and T according to the summarized
kinds of AU conditional probability.

From [28], we find that for many AU
conditional probabilities, we only know the
range. For example, P(AU7 = 1|anger) ≥ 0.7,
P(AU2 = 1|happiness) < 0.2, P(AU6 = 1|pain) ≥ 0.5,
P(AU7 = 1|AU9 = 1) > 0.5, P(AU12 = 1|AU15 = 1) < 0.2,
and P(AU6 = 1|AU12 = 1,happiness) > 0.5. So before
generating A and B, we use uniform random sampling to
sample a certain value for these AU conditional probabilities.
After that, we adopt the sampling algorithm used by Peng and
Wang [28] to create pseudo AU labels for every expression.

For each expression Ep, p ∈ {1, 2, . . . , P}, we sample a
pseudo AU label set Yp = {yp

i }Q
i=1. Q is the sampling number,

set to Q = 5000 in our experiments. Then, the pseudo train-
ing set B can be represented as B = ⋃P

p=1
⋃Q

i=1{(yp
i , Ep)}.

After obtaining B, we generate pseudo T by connecting
the samples in A and B using the expression label as the
bridge. Specifically, the pseudo T can be represented as
T = {(x, y, Exy) : (x, Exy) ∈ A, (y, Exy) ∈ B}.

3) AU Classifier Learning With DGAN: After obtaining
pseudo training sets B and T , we can learn DGAN as out-
lined in Section IV. We do see adversarial loss as (4) and

reconstruction loss as (6). However, there is no supervised loss
in the full objective (8), since there are no true paired samples
in the training set. So the new objectives for D, C, and G are
to minimize L′

D, L′
C, and L′

G, respectively, written as

L′
D = −Ld

adv

L′
C = Lc

adv + λcLc
rec

L′
G = Lg

adv + λgLg
rec. (9)

The training process is similar to Algorithm 1. The detailed
training procedure is described in Algorithm 2.

VI. EXPERIMENTS

A. Experimental Conditions

Three benchmark databases are used in our experiments:
1) the extended Cohn-Kanade database (CK+) [35]; 2) the
MMI database [36]; and 3) the UNBC-McMaster shoulder
pain expression archive database (Pain) [37]. Several samples
from the three databases are shown in Fig. 2.

The CK+ database consists of 593 facial sequences from
the posed expressions of 123 subjects. From 106 of those
subjects, 309 sequences annotated with six basic expressions
are selected. The apex frame (the last frame) of each of 309
sequences is used. Similar to [28], we consider 12 AUs (AU1,
AU2, AU4, AU5, AU6, AU7, AU9, AU12, AU17, AU23,
AU24, and AU25) with occurrence frequencies greater than
10%.

The MMI database is also composed of posed expressions
and contains 2900 videos from 27 subjects. Among them,
apex frames are taken from 171 sequences of 27 subjects.
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Algorithm 2 Training of DGAN in Weakly Supervised Scenario
Require: Training sets T , A, and B; max number of training steps K; batch size s; weight coefficients α, λc, and λg.
Ensure: Classifier C and generator G

1: Randomly initialize parameters θd, θc, and θg of discriminator D, classifier C, and generator G, respectively.
2: for k = 1, 2, ..., K do
3: Sample mini-batch of s samples {(xd

i , yd
i , Exyd

i
)}s

i=1 from T , sample mini-batch of s samples {(xc
i , Exc

i
)}s

i=1 from A, sample

mini-batch of s samples {(yg
i , Eyg

i
)}s

i=1 from B, and sample mini-batch of s noise samples {zi}s
i=1 from pz(z).

4: Update discriminator D using gradient descent:

∇θd

[

−1

s

s∑

i=1

(
log D(xd

i , yd
i , Exyd

i
) + α log(1 − D(xc

i , C(xc
i ), Exc

i
)) + (1 − α) log(1 − D(G(yg

i , zi), yg
i , Eyg

i
))

)]

5: Sample mini-batch of s samples {(xc
i , Exc

i
)}s

i=1 from A and sample mini-batch of s noise samples {zi}s
i=1 from pz(z).

6: Update classifier C using gradient descent:

∇θc

[
− 1

s

s∑

i=1

log D(xc
i , C(xc

i ), Exc
i
) + λc

s

s∑

i=1

||xc
i − G(C(xc

i ), zi)||1
]

7: Sample mini-batch of s samples {yg
i , Eyg

i
)}s

i=1 from B and sample mini-batch of s noise samples {zi}s
i=1 from pz(z).

8: Update generator G via gradient descent:

∇θg

[

−1

s

s∑

i=1

log D(G(yg
i , zi), yg

i , Eyg
i
) + λg

s

s∑

i=1

CE(C(G(yg
i , zi)), yg

i )

]

9: end for

Fig. 2. Several samples from the three databases. (a) Samples from the CK+ database. (b) Samples from the MMI database. (c) Samples from the Pain
database.

Frames are annotated with AUs and one of the six expres-
sions. Thirteen AUs (AU1, AU2, AU4, AU5, AU6, AU7,
AU9, AU10, AU12, AU17, AU23, AU25, and AU26) with
occurrence frequencies greater than 10% are considered.

The Pain database is spontaneous and contains 200 video
sequences from 25 patients with shoulder pain as they exhibit

“pain” or “no pain” expressions. Each frame is coded with
PSPI, used to evaluate pain intensity. Similar to [28], frames
with PSPI > 4 are regarded as pain, and frames with PSPI = 0
are regarded as no pain. We select all pain and no pain frames
(7319 frames in total) from 30 sequences of 17 subjects. Six
AUs related to pain expression are considered.
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Although the representations of pretrained deep nets may
carry more information for facial appearance, such repre-
sentations could dramatically increase the complexity of the
joint probability of facial features, expressions, and AUs com-
pared to that of facial feature points, expressions, and AUs.
Therefore, 2-D positions of landmarks are used as the fea-
tures in this work. They effectively capture face shape and are
crucial for facial expression analyses. On the CK+ database,
we use 49 feature points and on the Pain database, we use
66 feature points. The feature points for these databases are
provided by database constructors. The MMI database does
not provide feature points, so we detect 49 feature points
through IntraFace [38]. An affine transformation is used to
make the centers of the eye fall on the appropriate positions,
and Gaussian normalization is performed for each feature
dimension. The average F1 score of all AUs is used to evaluate
the performance of AU detection. Face synthesis is evaluated
by the root mean-square error (RMSE). Higher F1 scores and
lower RMSE indicate better performance on the dual tasks.

In both semisupervised and weakly supervised scenarios,
within-database experiments are conducted using five-fold
subject-independent cross-validation. We also conduct cross-
database experiments, and each of the experiments is per-
formed five times. In cross-database experiments, we use
common AUs for experiments. The common AUs between
the MMI dataset and the CK + dataset are AU1, AU2, AU4,
AU5, AU6, AU7, AU9, AU12, AU17, AU23, and AU25. The
common AUs between the Pain dataset and the CK + dataset
are AU4, AU6, AU7, and AU9. The common AUs between
the Pain dataset and the MMI dataset are AU4, AU6, AU7,
AU9, and AU10. To simulate semisupervised scenarios, AU
labels are randomly missed according to certain probabilities:
0.1, 0.2, 0.3, 0.4, and 0.5.

Ablation studies are performed on within-database exper-
iments to demonstrate the impacts of expression and recon-
struction loss. The proposed method is compared to a method
that does not consider the assistance of expression labels,
referred to as DGANne, which removes the expression label
in feature–AU–expression tuple. This comparison is only for
semisupervised scenarios since the expression labels are nec-
essary for weakly supervised scenarios. We also compare the
results of our proposed method to one that removes the recon-
struction loss, referred to as DGANnr, by setting λc = λg = 0
in both semisupervised and weakly supervised scenarios.

The results of the proposed method are compared to those
achieved by state-of-the-art works. For semisupervised scenar-
ios, the compared methods are BGCS, MLML, BN, SHTL,
RBM-P, RAN, and Wang et al.’s work Rank [29] on within-
database experiments; and to SHTL, RBM-P, and RAN on
cross-database experiments. For weakly supervised scenar-
ios, the compared methods are HTL, RBM-P, RAN, Rank,
and SVM (only on cross-database experiments). We copy the
results of RBM-P, RAN, and Rank from the original papers,
since the experimental conditions of these three methods are
as same as ours, except that Wang et al. [29] used all frames
with PSPI>0 and considered ten AUs (AU4, AU6, AU7,
AU9, AU10, AU12, AU20, AU25, AU26, and AU43) and
13 AUs (AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU12,

AU17, AU23, AU24, AU25, and AU27) on the Pain and CK+
database respectively. The comparison to Rank on the Pain and
CK+ database is only for reference. Wang et al. [29] only con-
ducted semisupervised experiments with missing rates set to
0.5 and only conducted cross-experiments between the CK+
and MMI databases. For completeness of comparison, we con-
duct the semisupervised experiment as the author’s condition.
The results of common AUs are outside parentheses, and the
results of all AUs are in parentheses. Since the experimen-
tal conditions of these three works are different from ours,
the results of BGCS, MLML, and HTL (SHTL) are copied
from [27], as the authors reconducted those experiments. We
do not compare the proposed method to LP-SM or Wu et al.’s
work [24], since Zhang et al. [4] considered different AUs on
the MMI and CK+ databases and different frames on the Pain
database, and Wu et al. [24] did not perform experiments on
any of those databases.

For the face synthesis task, the proposed method is com-
pared to the discriminative RBM (DRBM) [39] in which
feature and AU label vectors constitute the visible layer. A
Gibbs sampling method is used to infer facial features from
input AU labels.

B. Experimental Results and Analyses

1) Experimental Results of Semisupervised AU Detection:
Table I shows the results of semisupervised AU detection on
within-database experiments with five missing rates on the
three databases. From this table, we can observe the following.

First, when comparing methods using the assistance of
expressions to methods ignoring expressions, the methods
considering expressions perform better overall. For example,
DGAN performs better than DGANne in all cases, and RAN
and RBM-P perform better than MLML and BGCS in all
cases. This demonstrates that expression is definitely help-
ful for AU detection due to the strong dependencies between
expressions and AUs. When AUs are missing, expression
labels can provide weak supervisory information.

Second, compared to the other two methods that do not
consider the help of expressions, DGANne achieves the best
performance in every scenario, proving the supremacy of the
proposed method. For example, when the missing rate is
0.1 on the CK+ database, DGANne achieves 12.99% and
32.33% improvements over BGCS and MLML, respectively.
Although expression labels are not present, DGANne captures
the joint distribution of features and AUs to leverage the weak
supervisory information inherent in the dependencies between
features and AUs in addition to the dependencies among AUs
for samples without AU labels. BGCS and MLML do not cap-
ture this distribution. DGANne also considers and trains the
AU detection task and the face synthesis task simultaneously,
while BGCS and MLML only consider the AU detection task.

Third, compared to BN, SHTL, RBM-P, RAN, and Rank,
the proposed DGAN performs best in most cases. For exam-
ple, when the missing rate is 0.1 on the MMI database, DGAN
achieves improvements of 17.05%, 5.43%, 4.43%, and 4.03%
over BN, SHTL, RBM-P, and RAN, respectively, demonstrat-
ing the effectiveness of DGAN. BN can only explore pairwise
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TABLE I
RESULTS OF WITHIN-DATABASE EXPERIMENTS OF SEMISUPERVISED AU

DETECTION WITH FIVE MISSING RATES ON THE THREE DATABASES

(BOLD NUMBERS INDICATE THE BEST PERFORMANCE)

dependencies among AUs, while DGAN can explore global
relations among all AUs since DGAN captures their joint dis-
tribution. For SHTL, any error of the expression classifier
propagates to the AU classifier, since they are trained sepa-
rately rather than simultaneously, as DGAN does. Although
both RBM-P and RAN explore global relations among AUs,
they ignore relations between features and AUs. DGAN cap-
tures the joint distribution of features, AUs, and expression.
Rank uses the rank relations but not the specific value of the
AU probabilities, and ignores AU condition probability given
another AU. Furthermore, all four methods only handle the
AU detection task, ignoring the helpful intrinsic connections
between AU detection and face synthesis. We optimize the
dual tasks, thus achieving better performance.

Finally, comparing DGANne to methods considering expres-
sions, we find that DGANne performs better than some of
them in some cases. For example, DGANne performs better

Fig. 3. Cross-database experimental results of semisupervised AU detection.

than BN, SHTL, and Rank on the CK+ database; better than
BN, SHTL, RBM-P, and RAN on the MMI database; and bet-
ter than BN, SHTL, RAN, and Rank on the Pain database.
Although DGANne does not use the assistance of expression,
DGANne successfully exploits the duality between the tasks
to improve the AU classifier.

In order to visually see the specific AU value of the DGAN
variant, we also list AU-specific semisupervised results of
variants of DGAN with 0.5 missing rate as Table II. From
Table II, we can see that the F1 score of most AUs in DGAN
is better than DGANne and DGANnr. This is because DGAN
adds expression labels as auxiliary information and uses dual
structures.

Fig. 3 shows the results of cross-database experiments on
the semisupervised AU detection task. DGAN performs best
in most cases when training is performed on the CK+ or
MMI databases (the first two rows of Fig. 3). The experi-
ments testing on the Pain database are particularly difficult
for the AU detection task. The CK+ and MMI databases
use the six basic expressions, so pain is not included. Thus,
there are large biases between the training and testing sets.
The superior performances of DGAN demonstrate the bet-
ter generalization ability of DGAN. DGANne also performs
better than SHTL in all cases. Although DGANne does not
use expression labels, it makes use of the duality between the
tasks. However, DGAN performs poorly when training on the
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TABLE II
WITHIN-DATABASE EXPERIMENTAL RESULTS OF SEMISUPERVISED FOR DGAN VARIANTS WITH 0.5 MISSING RATE ON THE THREE DATABASES

TABLE III
WITHIN-DATABASE EXPERIMENTAL RESULTS OF WEAKLY SUPERVISED AU DETECTION ON THE THREE DATABASES

Pain database and testing on the CK+ and MMI datasets (the
last row of Fig. 3). SHTL performs best in these two sce-
narios since SHTL trains with the Pain database as well as
an extra-large facial image database annotated with six basic
expressions, reducing database biases. Furthermore, only six
AUs are considered on the Pain database. This might not carry
enough information to generate faces, so the assistance of face
synthesis is less significant.

2) Experimental Results of Weakly Supervised AU
Detection: Table III shows the results of weakly supervised
within-database experiments. DGAN achieves the best aver-
age F1 scores on all datasets. For the CK+ database, the
average F1 scores of DGAN are 62.15%, 8.06%, 6.46%, and
1.44% higher than those of HTL, RBM-P, RAN, and Rank,
respectively.

Both HTL and Rank only consider the probability of a
single AU given one expression. The performance of HTL

is constrained by the accuracy of the expression classifier.
Rank only uses the rank relations between the AU probabil-
ities. RBM-P needs the pretrained RBM model. None of the
compared methods consider the face synthesis task. However,
DGAN considers the dual task of AU detection, takes advan-
tage of the probabilistic duality and reconstruction loss, makes
use of comprehensive AU condition probabilities, and uses
adversarial learning to explore the joint distribution and avoid
the complex distribution estimation process, thus achieving the
best performance.

Tables IV–VI show the results of cross-database experi-
ments in weakly supervised scenarios. Table IV shows gener-
ally improved results compared to Tables V and VI, since
the CK+ and MMI databases use the six basic expres-
sions, but the Pain dataset uses the pain expression. Although
SVM is fully supervised, the proposed DGAN performs bet-
ter. For example, DGAN achieves 34.5% improvement over
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TABLE IV
CROSS-DATABASE EXPERIMENTAL RESULTS OF WEAKLY SUPERVISED AU DETECTION BETWEEN THE CK+ AND MMI DATABASES

TABLE V
CROSS-DATABASE EXPERIMENTAL RESULTS OF WEAKLY SUPERVISED

AU DETECTION BETWEEN THE CK+ AND PAIN DATABASES

TABLE VI
CROSS-DATABASE EXPERIMENTAL RESULTS OF WEAKLY SUPERVISED

AU DETECTION BETWEEN THE MMI AND PAIN DATABASES

SVM when training is performed on the CK+ database
and testing is performed on the MMI database. SVM
learns in a data-driven manner, so it is less generalizable.

DGAN uses domain knowledge, which is not dependent on
the database.

Compared to RBM-P, RAN, and Rank, DGAN achieves
superior performance in most cases, as it has greater gener-
alization ability. For example, when the CK+ dataset is used
for training and the MMI dataset is used for testing, DGAN
achieves 9.23%, 6.57%, and 9.07% improvement over RBM-P,
RAN, and Rank, respectively.

Compared to HTL, DGAN performs better in most cases,
apart from two scenarios that train on the Pain database. This
is similar to the cross-database experiments in semisupervised
scenarios. HTL uses the facial images of the pain expression
as well as the six basic expressions.

3) Evaluation of Reconstruction Loss: To determine the
relevance of the reconstruction loss, the ablation study is con-
ducted by removing the reconstruction loss in the full objective
(DGANnr) in both semisupervised and weakly supervised sce-
narios, and then comparing it to DGAN on the three databases.
Tables I and III show the results of within-database experi-
ments of DGANnr in semisupervised and weakly supervised
scenarios, respectively.

DGANnr performs worse than DGAN in all cases, demon-
strating the contribution of the reconstruction loss. The recon-
struction loss reflects the constraint of the dual task to
the primal task. When reconstruction loss is removed, AU
detection performance typically decreases.

4) Comparisons to Fully Supervised Methods: The results
of performances of the proposed method in semisupervised
scenarios (with 0.5 missing rate) and weakly supervised sce-
narios are compared to fully supervised methods and displayed
in Table VII. On the CK+ and Pain databases, the proposed
method is compared to MC-LVM [40] and HRBM [41]. For
the MMI dataset, the results achieved using the proposed
method are compared to the results of SVM-HMM [42] and
FFD [43]. The results of HRBM are from [40]. These compar-
isons are only for reference since their experimental conditions
differ from ours. Please note that the compared supervised
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TABLE VII
COMPARISON TO THE FULLY SUPERVISED METHODS

TABLE VIII
RMSE OF DRBM AND THE PROPOSED METHODS FOR FACE SYNTHESIS

approaches maybe not state of the art. Still, the comparison
demonstrates the effectiveness of the proposed method since
it achieves comparable performance with several supervised
approaches.

Table VII shows that on the MMI and Pain databases,
DGAN performs worse than fully supervised methods. This
is expected since DGAN uses the training set. Only half of
the samples in this set are annotated with AUs in semisuper-
vised scenarios, and none are labeled in weakly supervised
scenarios. The fully supervised methods use complete super-
visory information. However, on the CK+ database, DGAN
performs better than other methods when half of the samples
have AU labels. Surprisingly, DGAN also performs better than
HRBM even if samples lack AU labels. This demonstrates the
ability of the suggested method to consider the assistance of
expression labels as well as the face synthesis task.

To illustrate the effect of the proposed semisupervised
DGAN comprehensively, we also compare the results of
DGAN with missing rate 0.5 to one whose training set con-
tains only the labeled part of the training dataset of DGAN,
referred to as DGANnf . DGANnf performs worse than DGAN
in all cases, demonstrating the contribution of the unlabeled
data.

5) Experimental Results and Analyses of Face Synthesis:
This section analyzes the performance of the face generator G.
Table VIII shows the results of the RMSE of the proposed
DGAN (under semisupervised conditions with a missing rate
of 0.2, and weakly supervised scenarios) and the compared
method, DRBM.

From Table VIII, we can see the following. First, perfor-
mances on the Pain database are worse than those on the other
two databases. This may be because we consider fewer AUs
but more feature points on the Pain database. Six AUs may
be insufficient to generate 66 feature points. Second, com-
pared to DRBM, DGAN performs better in semisupervised
scenarios on the three databases, despite the fact that DRBM

utilizes fully AU-labeled samples. This shows that DGAN
is more suitable for face synthesis tasks. Third, the perfor-
mances of DGAN in semisupervised scenarios are better than
those in weakly supervised scenarios. This is reasonable since
additional AU-labeled samples could improve AU detection
performance, which in turn, benefits the dual task.

VII. CONCLUSION

This work proposed DGAN, a novel dual learning method
that explores probabilistic duality through a GAN while lever-
aging the reconstruction loss. DGAN considered the joint
distribution of features, AUs, and expressions, simultaneously
capturing the dependencies between expressions and AUs,
among AUs, and between features and AUs. The proposed
DGAN was applied to weakly supervised and semisupervised
AU detection. In the latter scenario, we also minimized the
supervised loss for AU-labeled samples. In weakly super-
vised scenarios, we sampled pseudo paired data according
to the summarized domain regarding AUs and expressions.
The proposed method achieved better results than the fore-
most works in both semisupervised and weakly supervised
scenarios.
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