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Abstract—Binary representation of users and items can dramatically improve efficiency of recommendation and reduce size of

recommendation models. However, learning optimal binary codes for them is challenging due to binary constraints, even if squared

loss is optimized. In this article, we propose a general framework for discrete matrix factorization based on discrete optimization, which

can 1) optimize multiple loss functions; 2) handle both explicit and implicit feedback datasets; and 3) take auxiliary information into

account without any hyperparameters. To tackle the challenging discrete optimization problem, we propose block coordinate descent

based on semidefinite relaxation of binary quadratic programming. We theoretically show that it is equivalent to discrete coordinate

descent when only one coordinate is in each block. We extensively evaluate the proposed algorithms on eight real-world datasets. The

results of evaluation show that they outperform the state-of-the-art baselines significantly and that auxiliary information of items

improves recommendation performance. For better showing the advantages of binary representation, we further propose a two-stage

recommender system, consisting of an item-recalling stage and a subsequent fine-ranking stage. Its extensive evaluation shows

hashing can dramatically accelerate item recommendation with little degradation of accuracy.

Index Terms—Item recommendation, hashing, block coordinate descent, discrete optimization, two-stage recommender systems

Ç

1 INTRODUCTION

THE growing number of products and user evolving inter-
est challenge instant item recommendation. Hashing is a

very promising approach to address this challenge, which
has been applied in Google News Recommendation [1]. The
core idea of hash is to represent users and/or items by
binary vectors (also called binary codes or hash codes) so
that top-K preferred items can be retrieved very efficiently.
Being used for recalling potentially preferred items, hashing
can dramatically accelerate the recommendation of many
complex algorithms [2], [3], [4], [5], [6], [7], since they only
need to re-rank the recalled items.

In this article, we will study discrete matrix factorization
(DMF) since matrix factorization methods are very efficient
and effective for item recommendation [8]. Given an m� n
user-item rating/preference matrix, DMF maps m users
and n items into the same k-dimensional binary hamming
space. Each user and item are then represented by k-bit
binary codes. Compared to the real-valued model, the
model size is then reduced by 31=32 � 96:9%. The dot prod-
uct between binary codes estimates rating or preference,
and can be computed very efficiently via hamming distance
(using CPU instructions __popcnt and xor) [9]. Given a
user’s binary code, it is possible to exactly retrieve the top-K

preferred items from n candidate items in sublinear time
via multi-index hashing [10]. Approximated retrieval can be
even done in logarithmic or even constant time [11], [12].

Learning optimal binary codes is generally NP-hard [13]
due to binary constraints. To address this challenge, several
heuristic algorithms [14], [15], [16] have been proposed,
which first solves a relaxed optimization algorithm via dis-
carding the binary constraints, and then quantizes the
relaxed solutions. However, Zhang et al. observed that these
heuristic algorithms resulted in a large quantization loss [17]
and proposed to learn binary codes directly. Nevertheless,
several important issues are not addressed yet. First, their
proposed algorithm is based on rating-based prediction,
instead of item-based recommendation. It is well known that
item-based recommendation is the ultimate goal of practical
recommender systems [18] and that optimizing rating-based
metrics cannot guarantee better item-based recommendation
performance. Second, their proposed algorithm is optimized
via cyclic coordinate descent, which only updates one bit
each time. This is suboptimal for a combinatorial optimiza-
tion problem. Third, only rating data is modeled, but there
are other types of feedback (implicit feedback such as click,
view and like) in recommender systems. Fourth, auxiliary
information of users and items cannot be taken into account,
thus cold-start problems cannot be well handled. It is worth
noting that multi-modal hashing is very challenging and
simple aggregation may not work well. Finally, though the
efficiency improvement induced by binary representation
has been reported in [16], it is unclear how to balance the effi-
ciency and effectiveness of recommender systems, since
hashing inevitably incurs quantization loss.

To this end, we first propose a general framework of dis-
crete matrix factorization. It can take both explicit and
implicit feedback as input, by supporting squared loss and
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logistic loss. Whatever loss function is used, the optimiza-
tion of this framework can be boiled down to a binary qua-
dratic programming (BQP) problem. To avoid bad local
optimum, it is better to solve BQP via semidefinite relaxa-
tion (SDR) followed by Gaussian randomization (GR). SDR
is known as an excellent solver of BQP [19], but suffers from
computational issues. In particular, regarding k-variable
BQP with a positive semidefinite matrix, SDR+GR induces
less than 36.4 percent degradation of the objective value,
but costs Oðk3:5Þ for fixed precision [19]. This motivates the
proposal of block coordinate descent (BCD), compromising
between cyclic coordinate descent and SDR. Moreover, it
will be theoretically shown that BCD subsumes cyclic coor-
dinate descent when only one coordinate is in each block.
To better support item-based recommendation, an interac-
tion-based regularization is introduced, to penalize users’
non-zero estimated preference for unrated items. This also
helps to deal with the sparsity challenge of recommender
systems, particularly in implicit feedback. For the sake of
deriving more compact and informative binary codes, bal-
anced and decorrelated constraints are also imposed, as
suggested in [17]. To incorporate auxiliary information of
users and items, we extend this framework by introducing
extra hash codes for auxiliary information and propose to
learn hash codes for users and items with precluding
encoded knowledge in extra codes. Interestingly, the fusion
is hyperparameter-free, providing some insights for multi-
modal hashing. To better show the advantages of binary
representation, we further propose a two-stage recom-
mender system, consisting of a highly efficient item-recalling
stage and a highly accurate fine-ranking stage. The item-
recalling stage utilizes discrete matrix factorization, since
it can dramatically accelerate the retrieval of the top-K
preferred items.

Finally, we extensively evaluated the proposed frame-
work on 8 real-world datasets. The results show that the
proposed algorithms outperform the state-of-the-art base-
lines significantly. The proposed BCD-based optimization
can yield much lower objective values and significant
higher recommendation performance than cyclic coordinate
descent. In spite of hyperpameter-free, the extension for
auxiliary information performs much better than competing
baselines, revealing that simply aggregation can not deal
with multi-modal hashing. The evaluation of the two-stage
recommender system shows that discrete matrix factoriza-
tion can significantly accelerate item recommendation with
less than 4 percent degradation of NDCG@20 in most cases.

This paper is an extension of our preliminary paper [20],
in which we incorporate auxiliary information of users and
items by a regression-based modeling, consider the logistic
loss function and introduce an interaction regularization. In
this article, we further deliver the following contributions.

� We propose a block coordinate descent (BCD) to
directly learn binary codes for compromising the
efficiency and effectiveness of optimization. It is the-
oretically shown that BCD subsumes cyclic coordi-
nate descent when each coordinate is considered a
block. The evaluation results show that the optimiza-
tion algorithm yields lower loss value and higher
recommendation performance.

� We propose a hyperparameter-free method to model
auxiliary information. The evaluation on multiple
datasets shows that it is much better at retrieving
potentially preferred items than the regression-based
method and other baselines.

� We propose a two-stage recommender system, con-
sisting of highly efficient item-recalling stage and
highly accurate fine-ranking stage. The evaluation
results better show the advantage of discrete matrix
factorization in accelerating the recommendation of
practical recommender systems.

� We conduct more extensive experiments on more
and larger-scale datasets, report more performance
metrics of recommendation, and compare the pro-
posed algorithms with more competing baselines.
The evaluation results better show the significant
superiority of the proposed algorithms.

2 RELATED WORK

Wewill review recent advance of hashing-based recommen-
dation algorithms. For comprehensive reviews of hashing
techniques, please refer to [21], [22]. For better presentation,
we organize them into two categories: quantization-based
methods, which first solve relaxed problems and then quan-
tize relaxed solutions, and optimization-based methods,
which directly tackle optimization with binary constraints.

2.1 Quantization-Based Methods

Hashing can be categorized into data-independent or data-
dependent methods. The pioneer work of hashing in recom-
mender systems is to use data-independent hashing, i.e.,
Locality Sensitive Hashing (LSH), for clustering similar
GoogleNews readers, so as to find similar users efficiently [1].
Then a two-stage framework was proposed for scalable news
recommendation [23], by building hierarchical clustering on
the results of LSH. However, it is totally different from our
two-stage framework, which learns hash codes from rating
data and auxiliary information jointly. Data-dependent hash-
ing, depending on the actual points in the dataset, attracts
more attention in other scenarios of recommendation in
recent years. For example, random projectionwas applied for
mapping user/item latent factors from regularized matrix
factorization into a hamming space [24]. Similarly, Zhou and
Zha [15] exploited iterative quantization (ITQ) for generating
binary codes from real-valued user/item latent factors. In
order to derive compact hash codes, the decorrelated con-
straint was imposed on user/item real-valued latent fac-
tors [14] before quantization. However, because of the loss of
latent factors’ magnitudes induced by quantization, hashing
only preserves similarity between user and item, rather than
inner product based preference [16]. Therefore, Zhang et al.
proposed to impose a constant feature-norm constraint on
user/item real-valued latent factors, and then quantized
magnitudes and similarity separately. The relevant work can
be summarized as two independent steps: relaxed learning
of real-valued latent factors with specific constraints, and
subsequent binary discretization.

2.2 Optimization-Based Methods

The two-step methods suffer from a large quantization loss
according to [17]. Therefore, Zhang et al. proposed to directly
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learn binary codes in matrix factorization with binary con-
straints by cyclic coordinate descent [17]. For the sake of
obtaining informative and compact hash codes, the balanced
and decorrelated constraints were further imposed. How-
ever, this algorithm was only designed for rating data, but
not applicable for binary or implicit feedback. Hence, Zhang
et al. proposed to optimize the pairwise ranking between
interacted and non-interacted items for each user with binary
constraints [25]. The optimization was also based on cyclic
coordinate descent. Lian et al. proposed a unified framework
for both explicit and implicit feedback datasets by the intro-
duction of interaction regularization [20] and further incorpo-
rated auxiliary information by a regression-based method.
Zhang et al. built Deep Belief Network formodeling auxiliary
information and incorporated its representation into collabo-
rative filtering [26]. Liu et al. proposed discrete factorization
machine for better modeling auxiliary information [27] and
learned hash codes also based on cyclic coordinate descent,
but targeted rating data and only ranked rated items.

Compared to existing research, the proposed algorithm
has the following differences (also advantages) in addition
to the ones1 inherited from the preliminary work [20]. First,
the optimization problem is based on block coordinate
descent, which can subsume the widely-used cyclic coordi-
nate descent. Second, the proposed method for modeling
auxiliary information is hyperparameter-free, efficient and
effective for item recommendation. Finally, we propose a
two-stage recommender system, better showing the advan-
tages of binary representation in practical recommendation.

3 PRELIMINARY

Explicit feedback is usually represented by a rating matrix
while implicit feedback by a preference matrix. They are
collectively referred as a rating matrix in the sequel.
Assume there are m users and n items, then the rating
matrix RR is of size m� n, and its each non-zero entry rij
indicates a user’s rating/preference for an item j. The
observed entries are denoted by V ¼ fði; jÞjrij is knowng.
The set of items which a user i rates is denoted by Ii and the
set of users rating an item j by Uj.

3.1 Matrix Factorization With Priors on Missing
Values

Weighted Regularized Matrix Factorization (WRMF) is a
very effective method for collaborative filtering for implicit
feedback [28] and optimizes the following objective function

X
i;j

wijðrij � ppTi qqjÞ2 þ �
X
i

kppik2 þ k
X
j

qqjk2
 !

;

where wij denotes the weight of the rating rij, ppi and qqj 2 Rk

represent latent factors of user i and item j, respectively. wij

is set to 1 if ði; jÞ =2 V and to a tunable parameter a (� 0) oth-
erwise according to [28]. This weight is also considered the
confidence of the rating, so ratings have much higher confi-
dence than others. This first part of the objective function
can be decomposed into two components,

X
i;j

wijðrij � ppiqqjÞ2 ¼ a
X
ði;jÞ2V

ðrij � ppTi qqjÞ2 þ
X
ði;jÞ =2 V

ðppTi qqjÞ2;

where rij ¼ 0 if ði; jÞ =2 V. Therefore, in addition to classical
‘2-norm, WRMF intrinsically imposes an interaction regu-
larization on missing values, which penalizes non-zero pref-
erence prediction of unrated items for each user. It is very
nature to extend the regularization to rating data, as done
by [29], and the effect for improving item recommendation
was empirically studied on multiple datasets. The interac-
tion regularization, also dubbed implicit regularization [30],
has also been extended to tensor factorization. We will also
adopt this interaction regularization for handling both
explicit feedback and implicit feedback.

3.2 Binary Quadratic Programming

Binary quadratic programming (BQP) is a classical combi-
natorial optimization problem [19], which minimizes a qua-
dratic function with respect to binary variables, i.e.,

min
xx2Rn

xxTAAxx; s.t. x2d ¼ 1; d ¼ 1 . . . ; k; (1)

where AA is a real square matrix. The BQP is well-known as a
computationally difficult problem, particularly belonging to
the class of NP-hard problems. Computing good solutions
is quite a difficult task.

Semidefinite relaxation (SDR) technique is a powerful
computationally efficient approximation technique for
many difficult optimization problems including binary qua-
dratic programming. A crucial step in deriving a SDR of
BQP is to observe that xxTAAxx ¼ traceðAAxxxxT Þ. Introducing a
new variable XX ¼ xxxxT and noting that XX ¼ xxxxT is equiva-
lent to XX being a rank-one positive semidefinite (PSD)
matrix, we can obtain the following equivalent formulation

min
XX2Skþ

traceðAXAXÞs.t. Xd;d ¼ 1, rankðXXÞ ¼ 1;

where Skþ denote the set of PSD matrices of size k� k. The
re-formulation allows us to identify the fundamental diffi-
culty of solving BQP, i.e., rankðXXÞ ¼ 1. Thus, we may drop
it to obtain the following semidefinite relaxation of BQP:

min
XX2Skþ

traceðAXAXÞ; s.t. diagðXXÞ ¼ 11k: (2)

SDR can then be solved, to any arbitrary accuracy (�), in a
numerically reliable and efficient fashion, using customize
interior-point algorithms [31] with time complexity of
Oðk3:5 log ð1=�ÞÞ. However, it remains unknown how to con-
vert the optimum of Eq (2) into a feasible solution of Eq (1).

Algorithm 1. RoundðXXÞ: Gaussian Randomization

Input: The SDR solutionXX� 2 Rk�k

Output: xx� the best approximated feasible solution
1 for ‘ ¼ 1; 2; . . . ; k do
2 generate ��‘ � Nð0; XX�Þ;
3 construct a feasible point xx‘  signð��‘Þ;
4 determine ‘�  argmin‘2f1;			;kg xxT‘ AAxx‘;
5 xx�  xx‘� as the best approximated solution of BQP;1. Handling multiple loss function, taking both explicit and implicit

feedback as input.
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If the optimal XX� is of rank one, then XX� ¼ xx�xx�T , and xx�

is the optimal solution of BQP. Otherwise, Gaussian ran-
domization procedure can be applied, as shown in Algo-
rithm 1, since XX� is also the optimal solution to the
following stochastic BQP problem,

min
XX2Snþ

E��Nð00;XXÞ½�TA��TA�
; s.t. E���Nð00;XXÞ½�2i 
 ¼ 1:

According to [32], the approximation accuracy of the
SDR followed by Gaussian randomization is no worse than
2
p
� 0:63661 when AA is PSD. In other words, even though

BQP is NP-hard, this algorithm can obtain a solution whose
objective value is at most 2

p
times the optimal value of SDR.

4 DISCRETE MATRIX FACTORIZATION AND

EXTENSION

The proposed algorithm treats binary codes as parameters
and learns codes directly by optimization algorithms. Denot-
ing ffi 2 f�1gk binary code of user i and ccj 2 f�1gk binary
code of item j, the inner product is ffT

i ccj ¼ k� 2Hðffi;ccjÞ,
where Hðff;ccÞ denotes the hamming distance between
binary codes. Based on CPU instructions (xor and __popcnt),
hamming distance between binary codes is extremely effi-
cient. Below, we elaborate how to directly learn binary codes
for users and items.

4.1 Loss Function

Let’s first figure out the loss function. As mentioned above,
we need to introduce the interaction regularization. More-
over, we should take both explicit and implicit feedback as
inputs. Therefore, the loss function for discrete matrix fac-
torization is formulated as follows,

L ¼
X
ði;jÞ2V

‘ðrij;ffT
i ccjÞ þ r

X
ði;jÞ =2 V

ðffT
i ccjÞ2

s.t. ffi 2 f�1gk;ccj 2 f�1gk;
(3)

where ‘ðrij; r̂ijÞ is a convex loss function, which can be square

loss ‘ðrij; r̂ijÞ ¼ ðrij � r̂ijÞ2, and logistic loss ‘ðrij; r̂ijÞ ¼
log ð1þ e�rijr̂ijÞ in this article. Note that logistic loss can be

used for binary feedback or implicit feedback [33]. Therefore,

the capability of modeling both explicit and implicit feed-

back datasets benefits from the usage of different loss func-

tions and introduction of interaction regularization.
To ensure binary codes compact and informative, the bal-

anced and decorrelated constraints are usually imposed so
that shorter code can encode more information [34]. If
FF ¼ ½ff1; . . . ;ffm
T and CC ¼ ½cc1; . . . ;ccn
T , the balanced con-
straints are 11TFF ¼ 0; 11TCC ¼ 0, and the decorrelated con-
straints are FFTFF ¼ mIIk;CC

TCC ¼ nIIk. Since Eq (3) itself is a
combinatorial optimization problem, these constraints make
this optimization much more challenging. Previous work
usually softened these constraints by introducing real-valued
delegate variables with those constraints andminimizing the
distance between binary codes and real-valued delegations.
However, the effect of balancemay be different fromdecorre-
lation, so the jointmodelingmay not give play to their respec-
tive advantages. Therefore, we suggest the following two
regularizations to impose these two constraints separately,

R1 ¼ kFF�BBbk2F þ kCC�DDbk2F ;
s.t. 11TBBb ¼ 00 and 11TDDb ¼ 00;

(4)

and

R2 ¼ kFF�BBdk2F þ kCC�DDdk2F ;
s.t. BBT

d BBd ¼ mIIk and DDT
dDDd ¼ nIIk;

(5)

where BBb and BBd are delegations of FF for balanced and
decorrelated constraints respectively, and DDb and DDd are
delegations of CC. Therefore, discrete matrix factorization
optimizes the loss function:

min
F;BBb;BBd;C;DDb;DDd

L þ aR1 þ bR2: (6)

4.2 Optimization

We follow alternating optimization for optimizing the loss
in Eq (6). Alternating optimization takes turn learning
parameters iteratively. Being independent to ‘ð	; 	Þ, the
objective functions with respect to BBb;BBd;DDb;DDd are easy to
optimize but elaborated at the end of this section. In case of
squared loss, the objective functions related to ffi and ccj cor-
respond to binary quadratic programming problems, but
inhomogeneous2. Due to the symmetry of ffi and cci, below
we only take ffi as an example. The objective function with
respect to ffi is formulated as,

min
ffi2f�1gk

ffT
i

�ð1� rÞCCT
i CCi þ rCCTCC

�
ffi

�2ffT
i

�
CCT

i rri þ aBBbði; :Þ þ bBBdði; :Þ
�
;

(7)

where CCi is a submatrix of CC which only includes rows of
rated items by the user i, and rri is his/her rating vector over
rated items. BBði; :Þ is denoted the ith row of matrix BB.

In case of logistic loss, in spite of non-linearity, the objec-
tive function can also be boiled down to inhomogeneous
binary quadratic programming problems by seeking a
upper variational quadratic bound [35]. In particular, the
upper bound of log ð1þ e�rijff

0
iccjÞ, rij 2 f�1g, can be

obtained based on the following inequality,

log ð1þ e�rijff
T
i
ccjÞ

¼ log ð1þ eff
T
i ccjÞ � 1þ rij

2
ff0iccj

� �ðr̂ijÞ
�ðffT

i ccj

�2 � r̂2ijÞ �
1

2
ðrijffT

i ccj þ r̂ijÞ þ log ð1þ er̂ijÞ;

where �ðxÞ ¼ 1
4x tanhðx=2Þ ¼ 1

2x ðsðxÞ � 1
2Þ and the equality

holds only if r̂ij ¼ ffT
i ccj. Note that �ð0Þ ¼ 1

8 ; �ðxÞ ¼ �ð�xÞ.
Based on this upper bound, the objective function for user i

is to solve

min
ffi2f�1gk

ffT
i

�
CCT

i diagð��i � rÞCCi þ rCCTCC
�
ffi

�2ffT
i

�
CCT

i rri=4þ aBBbði; :Þ þ bBBdði; :Þ
�
;

(8)

where ��i ¼ ½�ðr̂ijÞ
j2Ii . In fact, the quadratic upper bound

exists for any convex loss functionswith Lipschitz continuous

2. Note that rating should be scaled to align with the range of prefer-
ence estimation [17].
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gradient, so this technique can be applied to many other con-

vex loss functions. It is worth noting that we need to keep

fr̂ijjði; jÞ 2 Vg up-to-date after updating ffi in this case. Below

we study how to solve the following inhomogeneous binary

quadratic programming problem,

min
xx2f�1gk

xxTAAxx� 2bbTxx; (9)

where AA is positive semidefinite.

4.2.1 Cyclic Coordinate Descent

As we investigated, most existing work of hashing-based
recommendation uses cyclic coordinate descent (CCD) for
optimizing binary quadratic programming problems. CCD
learns one bit each time given other bits fixed, so that the bit
is optimally updated each time. Assuming the bit xd to be
optimized, the objective function is then reformulated as

min
xd2f�1g

addx
2
d þ 2xdðaaTd xx� addxdÞ � 2bdxd; (10)

where add ¼ Aðd; dÞ and aad the dth row of the matrix AA. This
objective function is equivalent to

min
xd2f�1g

xdðaaTd xx� bdÞ: (11)

Then the optimal xd is obtained by

x
?

d ¼
1; if aaTd xx� bd < 0
�1; if aaTd xx� bd > 0
unchanged; otherwise

8<
: : (12)

Note that xd keeps unchanged when aaTd xx ¼ bd, implying that
it is very important to set a good initialization to xx. The
updating rule is applied for each bit iteratively until conver-
gence (e.g., xx doesn’t change any more).

4.2.2 Semidefinite Relaxation

Section 3.2 only discusses semidefinite relaxation of homo-
geneous binary quadratic programming. Here we discuss
inhomogeneous ones. We first introduce a variable
t 2 f�1g, and consider the problem,

min
xx;t
½xxT ; t
 AA �bb

�bbT 0

� �
xx
t

� �
; (13)

which can be solved by the aforementioned techniques, i.e.,
SDR followed by Gaussian randomization. Assuming
½~xx?

; t
? 
 is an optimal solution to this problem, xx

? ¼ ~xx
? � t

?
is

the optimal solution of the problem in Eq (9). This equiva-
lence can be observed by rewriting this problem as
minxx;t xx

TAAxx� 2tbbTxx. More particularly, if t
? ¼ 1, ~xx

?
is the

optimum of Eq (9); if t
? ¼ �1, �~xx?

is the optimum of Eq (9).

4.2.3 Block Coordinate Descent

Although SDR is known as an excellent solver for binary qua-
dratic programming, it suffers from computational issues
and its time complexity is up to Oðk3:5Þ for fixed precision.
Therefore, we strike a balance between accuracy (SDR) and
efficiency (CCD), by proposing a block coordinate descent

(BCD) algorithm for optimization. Assuming the block coor-
dinate to optimize is denoted by xxl 2 f�1gk1 of a block l, and
splitting theAA, xx and bb according to the dependence of xxl, the
problem in Eq (9) can be reformulated as

min
xxl2f�1gk1

xxT
l ; xx

T
�l

� � AAðl;lÞ AAðl;�lÞ
AAð�l;lÞ AAð�l;�lÞ

� �
xxl

xx�l

� �
� 2½bbTl ; bbT�l 


xxl

xx�l

� �
:

Due to the symmetry of AA, AAT
ðl;�lÞ ¼ AAð�l;lÞ. Ignoring the terms

independent to xxl, the objective function is then equivalent to

min
xl2f�1gk1

xxT
l AAðl;lÞxxl � 2xxT

l ðbbl �AAðl;�lÞxx�lÞ: (14)

The problem size can be much smaller than the original
problem in Eq (9) so that efficiency can be dramatically
improved. Compared to CCD, this problem learns xxl jointly
so that the approximation accuracy can be improved. Note
that AAðl;lÞ, i.e., the principle submatrix of PSD AA, is also PSD,
this returns to the inhomogeneous BQP.

Due to Gaussian randomization, it is still unknown how
BCD correlates with CCD when only one coordinate is in
each block. The following theorem answers this question.

Lemma 1. When k1 ¼ 1, xx and bb and AA are scalars in Eq (13),
denoted by x; b; a respectively, the optimum of its SDR is

ðxtÞ? ¼
1 b > 0
�1 b < 0
0 b ¼ 0

8<
: (15)

Proof. When k1 ¼ 1, Eq (2) can be rewritten to

min
x;t

a� 2bxt; s.t. � 1 � xt � 1:

Then the optimum of xt depends on the sign of b and is
yielded in Eq (15). Note that when b ¼ 0, the objective
function is constant, so the optimum is the initial value.
Here XX in Eq (2) is assumed to be initialized as an iden-
tity matrix. tu

Lemma 2. If
x
y

� �
� N 00;

1 p
p 1

� �� 	
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p
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pffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
 !

:
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
exp � 1

2
ðx2 þ y2 � 2pxyÞ

� 	
dxdy

¼ 1

p

Z 1
0

Z 1
� pffiffiffiffiffiffiffi

1�p2
p v

exp � 1

2
ðu2 þ v2Þ

� 	
dudv

¼ 1

p

Z 1
0

Z p
2
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Theorem 1. CCD is almost equivalent to BCD when only one
coordinate is in each block.

Proof. It is easy to show that Gaussian randomization fol-

lows
h ~x
t

i
� N

�
00;
h

1 ðxtÞ?
ðxtÞ? 1

i�
when k1 ¼ 1. Lemma 2

implies P ðx ¼ 1Þ ¼ P ð~xt > 0Þ ¼ 1
2þ 1

p
arctan

�
ðxtÞ?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ððxtÞ? Þ2
p

�
According to Lemma 1, x ¼ signðbÞ if b 6¼ 0 and P ðx ¼ 1Þ ¼
0:5 otherwise. Therefore, solving Eq (10) via SDR yields the

same solution if bd � aaTd xx 6¼ 0. The differences lies in the

rare case of bd � aaTd xx ¼ 0, where BCD performs uniform

sampling from f�1gwhile CCD remains it unchanged. tu

Algorithm 2. BCD(AA; bb): Block Coordinate Descent for
BQP

Input: a psd matrix AA and bb
Output: xx

?
forminxx xxTAAxx� 2bbTxx

1 Initialize xx;
2 repeat
3 Randomly divide f1; . . . ; kg into #bk blocks ;
4 for l ¼ f1; . . . ;#bkg do
5 XX

?  Solve SDR of Eq (14) // Oðk3:51 Þ
6 xxl  Round(XX

?
) // Oðk31Þ

7 until Convergent
8 xx�  xx;

The overall procedure of block coordinate descent for BQP
is shown Algorithm 2 where k is assumed a multiple of #bk.
Note that random grouping is done in each iteration for the
sake of better optimization. The time complexity is Oðk2:51 kÞ,
where k1 ¼ k

#bk. The empirical comparison between BCD and
CCD for discrete matrix factorization on multiple datasets is
illustrated in Figs. 1 and 2. They clearly show that BCD ismuch
better than CCD at minimizing the loss function, though BCD
costs more time. With the growing block size, the loss can be
further reduced, but the running time also increases. As a
result, block coordinate descent indeed strikes a balance
between efficiency and effectiveness of optimization.

We next investigate how to learn delegate variables,
including BBb, BBd, DDb and DDb. The updating equation of BBb is
similar to DDb, and the updating equation of BBd is also simi-
lar toDDd, so we only consider BBb and BBd.

Updating BBb. We use Lagrangian multiplier method to
solve the following optimization

min
BBb;hh
kFF�BBbk2F þ 11TBBbhh: (16)

The optimal hh
? ¼ 2

mFFT11 and optimal BB
?

b ¼ FF� 1
2 1ðh

? Þ1ðh? ÞT ¼
ðII � 1

m 1111T ÞFF. Therefore, the optimal BBb is the centralized FF

since IIm � 1
m 1111T is known as a centering operator. Substitut-

ing them back to Eq (16), this equals to

1

n
1111TFF











2

F

¼ FFT1111TFF ¼ 11TFF


 

2

F
: (17)

Therefore, the proposed regularization for balanced con-

straints is equivalent to k11TFFk2, constraining column-sum
to be small.

Updating BBd. The objective function for learning BBd is
equivalent to

max
BBd

traceðFFTBBdÞ; s.t. BBT
d BBd ¼ mIIk: (18)

Let ~BBd ¼ 1ffiffiffi
m
p BBd, then the problem is the same as the projec-

tion of a matrix onto the Stiefel manifold fAA 2 Rm�kjAAT

AA ¼ IIkg. The projection can be solved analytically [36]. In
particular, let FF ¼ UUSSVV T is the thin SVD of FF, where each
column of UU 2 Rm�k and VV 2 Rk�k corresponds to a left and
right singular vector respectively, then the optimal BBd is
given as follows:

BB
?

d ¼
ffiffiffiffiffi
m
p

UVUV T : (19)

The optimality can be easily established by the Von Neu-
mann’s trace inequality [37], that is traceðABABÞ �Pi si

ðAAÞsiðBBÞ, where siðAAÞ is the ith largest singular value
of AA.

4.3 Initialization

Optimizing discrete matrix factorization is NP-hard, and
an approximation algorithm is suggested. A good ini-
tialization algorithm is important for faster convergence
and for approaching better local optimum. Here we first
solve a relaxed problem of Eq (6) by ignoring the binary
constraints, and then quantize the real-valued latent fac-
tors to generate hash codes for users and items. It is
worth noting that balanced and decorrelated constraints
are also imposed, which can lead to a smaller quantiza-
tion error [17].

The relaxed problem of Eq (6) is also optimized by
alternating optimization. The optimized loss function is
the same as Eq (7) for squared loss and as Eq (8) for
logistic loss. The updating equations are the same except
FF and CC because of ignorance of binary constraints. Due
to advantages of efficiency and effectiveness, coordinate

Fig. 1. Convergence curve of the overall objective function. Fig. 2. Trade-off between efficiency and effectiveness.
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descent is used for optimization, and the updating equa-
tions can be derived according to [20], [38], but not elab-
orated any more in this extension. Its time complexity is
OðjVjkþ ðmþ nÞk2Þ.

Let the solution of the relaxed problem of Eq (6) be
ðF̂F�; ĈC�Þ, then FF;CC is initialized to feasible solution
signðF̂F�Þ and signðĈC�Þ respectively, where sign : R! f�1g
is a sign function. Alternatively, ITQ can be used to obtain a
better solution, as suggested in [15].

4.4 Extension With Side Information

Users and items usually have auxiliary information,
which can significantly improve recommendation perfor-
mance, particularly in cold-start cases. The modeling
capacity of each binary dimension is finite and so much
smaller than a real dimension, so many real-valued mod-
els for auxiliary information may be not suitable for
binary ones. In our preliminary paper, a regression-
based model was proposed, to propagate information
from auxiliary information to binary codes. In particular,
if item’s auxiliary information is available, the following
constraint is added into Eq (6),

R4 ¼
X
j

kcjcj � UUTyyjk2; (20)

where yyj 2 Rf is a feature vector of an item j and UU is a
regression coefficient, or called a mapping matrix, from
yyj to ccj. Due to data heterogeneity and limited modeling
capacity, it is difficult for cjcj to sufficiently encode auxil-
iary information of items. Therefore, this method may
not work very well. This is also verified in the experi-
ments. Moreover, the coefficient for the constraint needs
to be fine-tuned in the validation set. Motivated by col-
laborative topic regression [39], we propose a novel
parameter-free model, called DMF-AUX, for incorporat-
ing auxiliary information. Due to the symmetry between
user and item, below we only consider how to incorpo-
rate items’ auxiliary information. Particularly, in addition
to binary code ccj, each item is also encoded with qqj due
to its auxiliary information. The final representation is
then ccj þ qqj according to [39]. This is in contrast to the
regression-based model only with item code ccj. In this
case, the preference estimation r̂ij can still be efficiently
computed based on the following equation,

r̂ij ¼ ffT
i ðccj þ qqjÞ ¼ ½ffT

i ;ff
T
i 


ccj

qqj

� �
: (21)

Since ccj þ qqj 2 f�2; 0;þ2gk, is not binary any more,
we can not use the parameter learning of CTR [39],
which learns vvj ¼ ccj þ qqj and qqj alternatively. To this
end, we propose the following objective function in the
DMF-AUX model3 to learn ccj and qqj separately,

L ¼ lim
�!1

X
ði;jÞ2V

�
rij � 1

2

�
ffT
i ðccj þ qqjÞ

��2

þ r
X
ði;jÞ =2 V

1

2
ffT
i ðccj þ qqjÞ

� 	2

þ�
X
j

kWWqqj � yyjk2

s.t. ffi;ccj; qqj 2 f�1gk and WWTWW ¼ IIk;

(22)

where � approaching 1 indicates that the model is hyper-
parameter-free and that qqj is only determined by its auxil-
iary information. The coefficient 1

2 keeps the preference
estimation r̂ij in the same range as before. The last term is
motivated by SVD of the feature matrix YY . Without binary
constraints, the optimal WW

?
and QQ

?
can be yielded by

SVD [40]. Essentially, the learning of qqj seamlessly integra-
tes SVD with a well-known hashing methods – ITQ [41].
The column-orthogonal WW plays roles in reducing the
dimension and balancing the variance.

Its optimization is not identical to Eq (3), but the updat-
ing rule of ffi is quite similar as long as introducing
~ccj ¼ 1

2 ðccj þ qqjÞ. Below we elaborate to derive the updating
rule of ccj. First we only keep the terms dependent on ccj,

Lj ¼
X
i2Uj

1

4
ffT
i ccjff

T
i ccj � ðrij �

1

2
ffT
i qqjÞffT

i ccj

� 	

þ r
X
i =2 Uj

1

4
ffT
i ccjff

T
i ccj þ

1

2
ffT
i ccjff

T
i qqj

� 	
:

This is equivalent to

4Lj ¼ ccT
j HHjccj � 2ccT

j ð2FFT
j rrj �HHjqqjÞ; (23)

where HHj ¼ ð1� rÞFFT
j FFj þ rFFTFF. Therefore, minimizing

this objective function can also be solved by binary qua-
dratic programming using aforementioned algorithms.

Since �!1, the learning of QQ and WW is independent to
the rating data, and particularly rewritten as follows:

min
WW2Rf�k;QQ2f�1gn�k

kYY �QQWWTk2F ; s.t. WWTWW ¼ IIk: (24)

The optimization is prior to the learning of FF and CC, and
achieved by taking turns updating QQ and WW until
convergence.

Given WW fixed, each column of QQ can be updated inde-
pendently to each other. Particularly, the optimal dth col-
umn qqðdÞ is only determined by

min
qqðdÞ2f�1gn

kqqðdÞ � YY wwðdÞk2; s.t. 11T qqðdÞ ¼ 0; (25)

where wwðdÞ is the dth column of WW . Here the balanced con-

straint 11TQQ is additionally imposed, to ensure each bit be as

informative as possible. In this case, the optimum qq
?

ðdÞ ¼
signðYY wwðdÞ �medianðYY wwðdÞÞÞ.

Given QQ fixed, the objective function with respect to WW
can be reformulated as follows,

min
WW
kQWQWT � YY k2F ¼ kWW � YY TQQk2F þ const;

s.t. WWTWW ¼ IIk:
(26)

3. For brevity, we ignore the balanced and decorrelation constraints
and focus on the squared loss function.
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which is the same as projection of YY TQQ onto the Stiefel man-
ifold as discussed before.

Algorithm 3. DMF-AUX

Input: Rating matrix RR, item feature YY , bit length k, regular-
ization coefficient r.

Output: FF;CC; QQ

1 F̂F�; ĈC�  DMF_i(RR, k, r) // OðjVjkþ ðmþ nÞk2Þ
2 FF;CC signðF̂F�Þ; signðĈC�Þ;
3 �;�;W�;�;W  SVD(YY ; k) // OðkTmult þ ðf þ nÞk2Þ
4 repeat
5 for d ¼ f1; . . . ; kg do
6 qqðdÞ  Solve Eq (25); // OðTmultÞ
7 WW  Solve Eq (26); // OðkTmult þ fk2Þ
8 until Convergent;
9 repeat

10 ~CC ¼ 1
2 ðCCþQQÞ;

11 Prepcompute ~CCT ~CC; // Oðnk2Þ
12 for i ¼ f1; . . . ; mg do
13 AAi  ð1� rÞ ~CCT

i
~CCi þ r ~CCT ~CC; // OðjIijk2Þ

14 bbi  ~CCT
i rri; // OðjIijkÞ

15 ffi  BCD(AAi; bbi); // Oðk2:51 k#iterÞ
16 Precompute FFTFF; // Oðmk2Þ
17 for j ¼ f1; . . . ; ng do
18 HHj  ð1� rÞFFT

j FFj þ rFFTFF; // OðjUjjk2Þ
19 ggj  2FFT

j rrj �HHjqqj; // OðjUjjkþ k2Þ
20 ccj  BCD(HHi; ggi); // Oðk2:51 k#iterÞ
21 until Convergent;

4.5 Complexity Analysis

The overall optimization procedure with detailed time com-
plexity is shown in Algorithm 3. In the algorithm, we first
initialize FF;CC via the initialization algorithm of DMF as dis-
cussed in Section 4.3 (Line 1-2) and WW via the k right

singular vectors of YY (Line 3-4). In the iteration, we first
update user binary codes (Line 6-11) and then item binary
codes (Line 12-16) via block coordinate descent. In this arti-
cle, YY is assumed a sparse matrix, so the major cost of
partial decomposition based on Krylov subspace methods
is from a matrix-vector multiplication of YY . This cost
is denoted Tmult. The cost of learning QQ is
OðkTmult þ ðnþ fÞk2Þ [42]. The overall cost of learning FF
andCC is Oððmþ nÞk2:51 k#iterþ jVjk2Þ, where k1 is the block
size and #iter is the number of iterations in BCD until con-
vergence. In practice,#iter ¼ 1works well.

5 TWO-STAGE RECOMMENDER SYSTEM

Several hashing-based recommendation algorithms were
proposed [15], [16], [17], but its practical value for real-world
recommender systems is not sufficiently discussed. The
knowledge these literatures deliver is that these algorithms
can improve the efficiency at the expense of recommendation
performance. However, if the recommendation performance
degrades a lot, these algorithms may be not useful in prac-
tice. Deviation from evaluation of real-world recommender
systems makes the reported results about small recommen-
dation performance degradation untrusted. Therefore, we
propose a two-stage recommender system, consisting of a
hashing-based item-recalling stage and a fine-ranking stage.
The framework is demonstrated in Fig. 3.

In the first stage, hashing-based recommendation algo-
rithms will be trained on the input rating matrix, the auxil-
iary information of users and items. These algorithms will
output user binary codes and item binary codes. Given each
user’s binary code, we can estimate his coarse preference
for all unrated items based on the extract/approximated
top-K nearest neighbor (NN) search. Since preferences are
estimated as hamming distance between binary codes, its
computation can be very efficient via bit-wise operations.
And preferences are integer-valued and bounded, so the
full ranking of all unrated items with respect to each user is
also very efficient. Furthermore, the extract knn search can
be accelerated by multi-index hashing [10], whose time
complexity can be sublinear. The returned items by the
item-recalling stage are considered item candidate, in which
the user may be interested. Note that the number of candi-
date items is much smaller than unrated items.

In the second stage,many complex recommendation algo-
rithms will be also trained on input rating matrix, the auxil-
iary information of users and items. Currently, we assume
the second stage algorithms are trained independently to the
first stage algorithms. Guiding the training of the second-
stage model with the first-stage model is left for future
work. These complex recommendation can be Factorization
Machine [43], Collaborative Topic Regression [39], Neural
Factorization Machine [44], Collaborative Knowledge
Embedding [45] and Variational Autoencoders [46]. In these
models, user parameters are usually interacted with items’
and even dot product will be replaced some non-linear func-
tions, so the estimation of preference may be highly time-
consuming. Therefore, it is often the case that only a small
part of randomly-drawn items are considered as item candi-
date [44]. This is not very reasonable from the perspectives of
real-world recommender systems. Instead, it is much more
reasonable that these complex algorithms, outputting a

Fig. 3. The framework of the two-stage recommender system.
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scoring function after training, score and rank the candidate
items returned by the item-recall stage. Since the number of
candidate items is much smaller than unrated items, time
cost of this step has been dramatically reduced.

Therefore, the proposed two-stage recommender system
also addresses the efficiency issues of recommendation of
complex models, at the same time of better understanding
the benefit of hash-based recommender systems in real-
world scenarios. This plays an important role in incorporat-
ing more complex recommendation algorithms into practi-
cal recommender systems.

6 EXPERIMENTS

6.1 Datasets

The evaluation of discrete matrix factorization is conducted
on 4 explicit feedback datasets and 4 implicit feedback data-
sets. The 4 explicit feedback datasets are also converted into
implicit feedback by treating ratings of higher than each
user’s average score as “like” preference. Table 1 summa-
rizes statistics of these datasets. The datasets vary in the
numbers of items and ratings. The Yelp dataset includes
users’ ratings for points of interest. The Amazon dataset is a
subset of customers’ ratings for Amazon books [47]. The
Netflix dataset is from the well-known Netflix Prize. The
rating scores of these three datasets are integers from 1 to 5.
The MovieLens dataset is from the classic MovieLens10M
dataset. The rating scores are from 0.5 to 5 with 0.5 granu-
larity. Following convention of evaluating CF algorithms,
we filter these 4 datasets such that users rated at least 20
items that were rated by at least 20 users. The first implicit
dataset is CiteULike [48], where articles are collected by
users into their reference libraries. The Gowalla dataset
includes users’ check-ins at locations. Because of low den-
sity, it is less strictly filtered such that users check-in at least
10 locations which were checked in by 10 users. The LastFM
and EchoNest dataset are based on users’ play count of
songs. Following [49], we include songs a user listened to at
least 5 times as positive feedback.

When evaluating the extension of discrete matrix factori-
zation, we only choose the Amazon dataset and the Yelp
dataset, where most items are associated to a set of textual
reviews. For each item, we aggregate all textual reviews,

filter stop words and represent them by bag of words. We
follow [39] to use tf-idf for picking up the top 8,000 distinct
words into the vocabulary. To better show the effect of aux-
iliary information, we only remove users and items with
fewer than 10 items. Table 2 summaries data statistics.

For each user, we randomly sample his 80 percent ratings
as training set and the rest 20 percent as testing test. We fit a
model to the training set and evaluate it in the test set. We
repeat 5 random splits and report the averaged recommen-
dation performance metrics.

6.2 Evaluation Metrics

The recommendation performance is assessed by how well
rated items in the test set are ranked among all unrated items
in the training set. We exploit three widely-used metrics in
ranking evaluation: Area under ROC curve (AUC) [50],
Recall [28], [39] andNDCG [18]. AUCmeasures the probabil-
ity that a randomly “liked” (i.e., rating larger than user’s
average score) items in the test set ranks above a randomly
chosen “disliked” items. Recall at cutoff K, denoted as
Recall@K, is the fraction of “liked” items in the top-K ranking
list over the total number of “liked” items in the test set.
NDCG at cutoff K, denoted as NDCG@K, rewards method
that ranks “liked” items at the top of the top-K ranking list.
The “liked” items ranked at low positions of ranking list con-
tribute less than “liked” items at top positions. In contrast to
NDCG, no discount factors are used in AUC and Recall so
that items in the ranking list are treated equally. AUC and
Recall differ in the length of ranking list, and AUC consider
the ranking list of all unrated items in the training set.

We also report the NDCG computed only on the rated
items in the testing set. This metric was used in previous
studies on binary representation of recommender sys-
tems [15], [16], [17], but does not consider the real world case
scenario in which all unrated items in the training set should
be ranked [29].

6.3 Parameter Settings

The code length of binary representation is set 64 by default.
The parameters (r, a, b) are tuned by held-out validation,
i.e., 10 percent of the training split. r (� 1) is tuned within
f10�6; 10�5; . . . ; 10�1; 1g, both a and b are tuned within
f10�4; 10�3; . . . ; 101; 102g. The number of iteration is set to
20. The algorithms are implemented via MATLAB with
MEX C++ and released in a open-source framework of a
MATLAB-based recommender system.4

TABLE 1
Statistics of Eight Datasets for Evaluating Discrete Matrix Factorization

Datasets Yelp Amazon MovieLens Netflix CiteULike Gowalla Lastfm EchoNest

#users 18,454 35,736 69,838 429,584 7,947 29,858 357,847 766,882
#items 14,670 38,121 8,939 17,764 25,975 40,988 156,122 260,417
#ratings 869,126 1,960,674 9,983,739 99,884,887 134,860 1,027,464 16,893,651 7,261,443
Density 3.21e-03 1.44e-03 1.60e-02 1.31e-02 6.53e-04 8.40e-04 3.02e-04 3.64e-05

TABLE 2
Statistics of the Yelp and Amazon Datasets for Evaluating

the Extension of Discrete Matrix Factorization

Datasets #users #items #ratings Density Feature size

Yelp 77,277 45,638 2,103,895 0.06% 51,056,602
Amazon 158,650 128,939 4,701,968 0.02% 127,755,615

4. https://github.com/DefuLian/recsys
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6.4 Baselines of Comparison

We compare discrete matrix factorization with the following
baselines.

� DCF [17], the state-of-the-art regression-based
method without auxiliary information and also
directly tackles a discrete optimization problem via
cyclic coordinate descent, subject to the decorrelated
and balanced constraints. The parameters a and b

for the decorrelated and balanced constraints are
tuned within f10�4; 10�3; . . . ; 101; 102g.

� BCCF [15], is a binary code learningmethod for collab-
orative filtering. It solves a relaxedmatrix factorization
but imposes a balanced regularization for latent fac-
tors instead of the ‘2-norm regularization. It then uses
the ITQ method [41] to derive the binary codes for
users and items. The coefficient for the balanced regu-
larization is tuned within f0:01; 0:03; 0:05; 0:07; 0:09g
according to the results of their sensitive analysis.

� PPH [16], is a preference preserving hashing based
matrix factorization. Different from BCCF, PPH
imposes constant feature norm constraints so that
users’ preferences can be well approximated by simi-
larities, since the authors argued that quantization
would loss the magnitude information of latent fac-
tors. PPH then quantizes each latent factor into k-bit
phrase codes and 2-bit magnitude codes. The coeffi-
cient for the constant feature norm is tuned within
f0:01; 0:5; 1; 2; 4; 8; 16g.

� CH [14], Collaborative Hashing is also a heuristic
method for learning binary codes. CH first solves
matrix factorization on the full-matrix, by treating all
unrated items as zero-rated. Following [17], we also

implement CH as argminUU;VV kRR� UUVV Tk2F ; s.t. UUT

UU ¼ mIIk; VV
TVV ¼ nIIk. CH then quantizes the UU and

VV based on the sign function.
The comparison with real-valued matrix factorization

will be studied when evaluating the two-stage recom-
mender system. The source codes of these baselines and the
two-stage recommender system are also released in the
github repository.

We then compare the extension of discrete matrix factori-
zation for auxiliary information, denoted as DMF-AUX,
with the following baselines.

� DCMF, the extension of DMF in our preliminary
work [20] based on the regression-based modeling.
In this work, we assumes binary codes are deter-
mined by ratings and auxiliary information jointly.
The parameter �2 for modeling item textual features
is tuned within f0; 1; 10; 50; 100; 500; 1000g. It is
worth noting that this parameter in the DCMF ini-
tialization algorithm should be re-tuned, since loss
value in the rating-based part may change a lot from
real-valued latent factors to binary codes.

� DMF+DH, this is a straightforward baseline, which
learns item Document Hash (DH) codes and binary
codes in DMF independently. Then each item is rep-
resented by direct addition between document hash
code and item binary code. The difference from
DMF-AUX lies in the optimization algorithm.

� DMF, without auxiliary information considered.
Also, the comparison with a real-valued method, i.e., col-

laborative topic regression [39] will be studied when evalu-
ating the two-stage recommender system at the presence of
auxiliary information of items.

6.5 Results and Analysis

6.5.1 Comparison with the State of the Art

Table 3 shows the recommendation performance, including
NDCG@100, Recall@100, and AUC, as well as NDCG-RI
(NDCG on the rated items only) of DMF and competing
baselines on explicit feedback. We have the following key
observations.

First, the proposed DMF algorithm consistently and sig-
nificantly outperforms the state of the art with respect to
Recall@100 and NDCG@100. The improvements in the
denser datasets such as MovieLens and Netflix are higher
than 300 percent. DMF is also significantly better than the
state of the art with respect to AUC in all datasets except
Yelp. In contrast, though DCF shows better recommenda-
tion performance with respect to NDCG-RI, the differences
from other algorithms are marginal. Therefore, biasing the
objective function with the interaction regularization may
loose performance of ranking rated items only but result in
the superior performance of DMF of ranking all unrated
items in the training set to baselines. Of course, the superior
performance of DMF is also induced by the balanced and
decorrelated constrains.

TABLE 3
Comparison With the State of the Art on Explicit Feedback Datasets

NDCG-RI NDCG@100 Recall@100 AUC DDCG-RI NDCG@100 Recall@100 AUC

Yelp Amazon

PPH 0.9456 � 0.0004 0.0117 � 0.0005 0.0328 � 0.0010 0.6751 � 0.0023 0.9671 � 0.0002 0.0088 � 0.0002 0.0218 � 0.0004 0.6949 � 0.0011

BCCF 0.9472 � 0.0003 0.0265 � 0.0003 0.0757 � 0.0010 0.8541 � 0.0008 0.9630 � 0.0002 0.0468 � 0.0003 0.1015 � 0.0005 0.8139 � 0.0007

DCF 0.9484 � 0.0003 0.0220 � 0.0004 0.0635 � 0.0015 0.7725 � 0.0046 0.9686 � 0.0001 0.0216 � 0.0005 0.0518 � 0.0015 0.8248 � 0.0020

CH 0.9304 � 0.0003 0.0484 � 0.0011 0.1320 � 0.0023 0.7737 � 0.0015 0.9590 � 0.0002 0.0632 � 0.0005 0.1394 � 0.0011 0.8339 � 0.0010

DMF 0.9423 � 0.0002 0.0733 � 0.0007 0.1656 � 0.0021 0.7375 � 0.0011 0.9673 � 0.0002 0.0920 � 0.0006 0.2015 � 0.0012 0.8850 � 0.0004

MovieLens Netflix

PPH 0.9534 � 0.0002 0.0367 � 0.0004 0.0735 � 0.0008 0.7409 � 0.0019 0.9529 � 0.0001 0.0235 � 0.0001 0.0397 � 0.0003 0.7190 � 0.0011

BCCF 0.9475 � 0.0002 0.0725 � 0.0002 0.1169 � 0.0002 0.7476 � 0.0003 0.9473 � 0.0001 0.0564 � 0.0001 0.0752 � 0.0002 0.7003 � 0.0002

DCF 0.9620 � 0.0001 0.0944 � 0.0011 0.1780 � 0.0010 0.8237 � 0.0005 0.9630 � 0.0000 0.0661 � 0.0006 0.1093 � 0.0008 0.8225 � 0.0005

CH 0.9302 � 0.0001 0.0854 � 0.0012 0.1463 � 0.0017 0.6836 � 0.0013 0.9378 � 0.0002 0.0729 � 0.0013 0.1011 � 0.0020 0.6724 � 0.0017

DMF 0.9576 � 0.0001 0.2999 � 0.0011 0.4984 � 0.0005 0.9025 � 0.0005 0.9571 � 0.0000 0.2274 � 0.0004 0.3339 � 0.0007 0.8562 � 0.0003
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Second, CH shows good recommendation performance
compared to BCCF and PPH, and sometimes even better
than DCF. One important potential reason is the consider-
ation of all unrated items as zero-rated. This is similar to
DMF by setting r ¼ 1, meaning that the interaction regulari-
zation plays the same important role in the rating-regres-
sion loss. Another possible reason is that CH incorporates
the de-correlated constraints for learning relaxed latent fac-
tors of users and items.

Table 4 shows the recommendation performance includ-
ing NDCG@100, Recall@100 and AUC of DMF and compet-
ing baselines in the 8 implicit feedback datasets. Note that
there is no rating in implicit feedback, so that NDCG-RI can
not be computed any more. These results can not be com-
pared against that of explicit feedback, since the testing set
is not of the same size. DMF has two versions, denoted as
DMF-l with logistic loss and DMF-s with squared loss,
respectively. From this table, we observe that DMF-s out-
performs the state of the art significantly with respect to
NDCG@100 and Recall@100 in all 8 datasets. However,
DMF-l only shows better performance than baselines in
some datasets, such as Movielens, Netflix and LastFM. This,
on one hand, shows the effectiveness of the proposed algo-
rithm based on Majorization-Minimization, on the other
hand, reveals that DMF-l easily suffers from sparsity issues.
This also implies the difficulty of learning binary represen-
tation in case of non-squared loss functions. The exploration
of non-squared loss function will be reserved for future
work. Similar to results in explicit feedback, CH still shows

good performance, mainly induced by the consideration of
all items in the loss function instead of only “liked” items.

6.5.2 Sensitivity Analysis - I

After illustrating the superior recommendation performance
of DMF, we then conduct sensitivity analysis with respect to
optimization algorithms, code length k, coefficients a and b

for balanced and decorrelated constraints respectively. The
results of optimization algorithms are shown in Fig. 4. We
can see that on three denser datasets, the BCD-based optimi-
zation algorithm shows better recommendation performance
with respect to Recall.5 The improvements with respect to
Recall@100 are up to 9.8, 5.1, 7.7 percent in the Yelp, Movie-
lens, Netflix dataset respectively.With the increase of coordi-
nate block size, the loss function is reduced more and more,
as shown in Figs. 1 and 2. Recall becomes better in the Yelp
dataset, but worse in the MovieLens and Netflix datasets.
This is mainly because the loss function is not based on the
ranking metric—Recall. However, this implies that we can
choose a smaller size of coordinate blocks for optimization
and a lower-precision SDR solver for BQP. The other results
of sensitivity analysis are shown Fig. 5. With the increase of
code length from 16 to 256, the recommendation perfor-
mance gradually improves in all of the four datasets and
more rapidly in the sparser datasets. The importance of inter-
action regularization can be shown again in Fig. 5b. This

TABLE 4
Comparison With the State of the Art on Implicit Feedback Datasets

NDCG@100 Recall@100 NDCG@100 Recall@100 NDCG@100 Recall@100 NDCG@100 Recall@100

Yelp Amazon MovieLens Netflix

PPH 0.0197 � 0.0011 0.0558 � 0.0024 0.0133 � 0.0007 0.0342 � 0.0019 0.0412 � 0.0058 0.0940 � 0.0118 0.0345 � 0.0076 0.0569 � 0.0119

BCCF 0.0316 � 0.0002 0.0885 � 0.0014 0.0461 � 0.0008 0.1021 � 0.0013 0.0520 � 0.0002 0.0857 � 0.0004 0.0290 � 0.0000 0.0370 � 0.0001

DCF 0.0558 � 0.0006 0.1577 � 0.0017 0.0588 � 0.0003 0.1385 � 0.0005 0.0545 � 0.0013 0.1154 � 0.0026 0.0046 � 0.0001 0.0083 � 0.0001

CH 0.0353 � 0.0005 0.0969 � 0.0017 0.0528 � 0.0005 0.1160 � 0.0009 0.0652 � 0.0010 0.1154 � 0.0025 0.0620 � 0.0012 0.0866 � 0.0017

DMF-l 0.0524 � 0.0006 0.1299 � 0.0013 0.0522 � 0.0002 0.1187 � 0.0005 0.2136 � 0.0008 0.3807 � 0.0016 0.1631 � 0.0001 0.2583 � 0.0002

DMF-s 0.0930 � 0.0010 0.2467 � 0.0021 0.1004 � 0.0006 0.2255 � 0.0010 0.2840 � 0.0011 0.5203 � 0.0014 0.2265 � 0.0016 0.3629 � 0.0029

CiteULike Gowalla LastFM EchoNest

PPH 0.0514 � 0.0013 0.1350 � 0.0023 0.0201 � 0.0012 0.0536 � 0.0031 0.0167 � 0.0010 0.0362 � 0.0027 0.0051 � 0.0005 0.0169 � 0.0024

BCCF 0.0570 � 0.0009 0.1559 � 0.0022 0.0834 � 0.0008 0.1968 � 0.0015 0.0464 � 0.0001 0.0868 � 0.0002 0.0333 � 0.0001 0.0774 � 0.0002

DCF 0.0707 � 0.0015 0.1854 � 0.0029 0.0898 � 0.0016 0.2234 � 0.0036 0.0434 � 0.0028 0.0895 � 0.0055 0.0159 � 0.0005 0.0462 � 0.0013

CH 0.0345 � 0.0011 0.1032 � 0.0022 0.0563 � 0.0008 0.1365 � 0.0019 0.0257 � 0.0002 0.0506 � 0.0003 0.0074 � 0.0003 0.0224 � 0.0008

DMF-l 0.0473 � 0.0019 0.1171 � 0.0029 0.0983 � 0.0012 0.2064 � 0.0016 0.1403 � 0.0003 0.2483 � 0.0005 0.0386 � 0.0002 0.0977 � 0.0003

DMF-s 0.1144 � 0.0016 0.2857 � 0.0027 0.1390 � 0.0012 0.3049 � 0.0015 0.1826 � 0.0006 0.3228 � 0.0008 0.0788 � 0.0006 0.2102 � 0.0004

Fig. 4. Sensitive analysis of the DMF model in the four datasets.

5. Only Recall is reported since the retrieval of the top-K potentially
preferred items is the most concerned.
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figure also shows that r 2 ½10�3; 1Þ can lead to quite good rec-
ommendation performance and r should be set to a smaller
value in sparser datasets. According to Fig. 5c, we observe
that balanced regularization can take effect at deriving more
informative binary codes in the Yelp and Netflix datasets.
And in the Yelp dataset, the improvements of recommenda-
tion performance can be up to 5 percent. However, the effect
of the decorrelation constraint looks marginal, except in
the Netflix dataset. This doesn’t mean that the decorrelation
constraint is not useful for deriving the compact binary
codes, but implies such a method may be not effective for
very sparse data, such as rating/preference matrix in recom-
mender systems. This direction will also be reserved for
future work.

6.5.3 Evaluating the Effect of Auxiliary Information

After studyingDMF,we are then concernedwith the effect of
auxiliary information. The results are shown in Fig. 6. It is
easily observed that the proposed DMF-AUX consistently
outperforms DMF in the both datasets, showing the effec-
tiveness of DMF-AUX for modeling auxiliary information.
However, DCMF only shows superior performance in the
Yelp dataset to DMF, revealing the problems of DCMF for
modeling auxiliary information in case of data heterogeneity

and limitedmodeling capacity. Note that DCMF is proposed
based on feature-aware matrix factorization [51], [52], so that
the methods being appropriate for real-valued algorithms
may not work well for binary-valued ones. Comparing
DMF-AUX with DCMF, DMF-AUX shows much better per-
formance than DCMF in the Amazon dataset and the Yelp
dataset. The straightforward baseline, DMF+DH, is even
much worse than DMF, indicating simple aggregation of
multi-modal hash codes can not workwell.

6.5.4 Evaluating the Two-Stage

Recommender Systems

Evaluating the two-stage recommender system can help us
better understand how DMF can accelerate practical recom-
mender systems. In this evaluation, the first stage is to exploit
DMF for retrieving the top-K potentially preferred items,
and the second stage is to use real-valued MF with interac-
tion regularization [28], [29], [30] for fine-ranking. Such a
choice of the fine-ranking algorithm lies in its simplicity and
superiority compared to other more complex algorithms.
The results in the four datasets are shown in Fig. 7 when the
number of recalled items varies. We can see that when
the number of recalled items is 600, the degradation of
NDCG@20 is 9.2 percent in the Yelp dataset and less than

Fig. 5. Sensitive analysis of the DMF model in the four datasets, where Normalized NDCG@100 is obtained by dividing each NDCG@100 by the
maximum with respect to the parameter.

Fig. 7. Results of evaluating the two-stage model in the four datasets.

Fig. 6. Results of evaluating the extension of DMF for auxiliary information in the Yelp and Amazon datasets.
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3.8 percent in the other datasets. There is usually larger deg-
radation of NDCG at the lower cutoffs. In spite of degrada-
tion of recommendation performance, the recommendation
can be accelerated by more than 8 times, and even up to
around 22 in the Amazon dataset with the largest number of
items. With the increasing number of recalled items, the deg-
radation of recommendation performance will be smaller
and smaller, but the speedup ratio is decreasing. Therefore,
we usually need to strike a balance between efficiency and
effectiveness of recommender systems. Though the speedup
ratio is not so large, the efficiency can be further improved
based on fully C++ implementation and more advanced
algorithms likemulti-index hashing as observed in [16].

When auxiliary information is available, the results of
evaluation are shown in Fig. 8, where the recalled items
only occupy smaller than 7 percent. Here collaborative topic
regression [39] is placed in the second stage of fine-ranking
for recalled items. For understanding the effect of auxiliary
information, both DMF and DMF-AUX are placed in the
first-stage item-recall algorithm. From this figure, we
observe that, similar to Section 6.5.3, auxiliary information
can take significant effect in retrieving the better top-K pre-
ferred items. This means the performance degradation
resulting from quantization can be further reduced by mak-
ing use of auxiliary information.

6.5.5 Sensitive Analysis II

We observe that speedup ratio in the datasets of more items
is usually larger, but it is unknown how the efficiency and
effectiveness of this two-stage recommender system varies
with the change of item size and code length. Therefore, we
conduct the sensitivity analysis in the two-stage recom-
mender system by placing DMF in the first stage in the Ama-
zon dataset, since the number of its items is much larger and
over 1 million without any filtering. The evaluation results
are shown in Fig. 9. We can easily observe that with the
increasing number of items, the speedup ratio grows larger
and larger.When item size is round 500K, item recommenda-
tion can be 60+ times faster. However, the recommendation
performance degrades more, by up to 7, 10 and 14 percent
with respect to NDCG@20, NDCG@50 and NDCG@100. This
again shows that DMF easily suffers from sparsity issues.
With the increase of code length, the performance degrada-
tion begins a gradual drop toward a nadir around k = 128
and then stays at a very low value. Online item recommenda-
tion speeds up more and more with the increase of dimen-
sion since the computational cost of dot product growsmuch

faster than that of hamming distance. Therefore, we can
strike a balance between efficiency and effectiveness by
growing code length in addition to incorporating auxiliary
information as discussed in the previous section. Moreover,
we believe that discrete matrix factorization and extension
can be integrated with other methods, such as popularity-
based ranking and content-based filtering, for recalling better
potentially preferred items.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a general framework for discrete
matrix factorization and its extension. The framework can
optimize multiple loss functions, handle both explicit and
implicit feedback datasets, and incorporate auxiliary infor-
mation without hyperparameters. The evaluation on 8 real-
world datasets showed that the proposed algorithms out-
performed the state of the art significantly and consistently,
and that item auxiliary information dramatically improved
the recommendation performance. Moreover, the frame-
work was optimized by a novel block coordinate descent
algorithm, so that the loss function was reduced much more
and the recommendation performance was significantly
improved. DMF was then treated as the first stage of the
proposed two-stage recommender system for recalling the
top-K potentially preferred items, and shown its advantages
for striking a balance between efficiency and effectiveness of
practical recommender systems.

Future work includes carefully designing optimization
algorithms for non-squared loss functions, investigating
how to deal with sparsity issues in recommender systems,
and extensively studying more first-stage algorithms and
their combination in the two-stage recommender systems.
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