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ABSTRACT
The factorization-based models have achieved great success in on-
line advertisements and recommender systems due to the capability
of efficiently modeling combinational features. These models en-
code feature interactions by the vector product between feature
embedding. Despite the improvement of generalization, the mem-
ory consumption of these models grows significantly, because they
usually take hundreds to thousands of large categorical features as
input. Several existing works try to reduce the memory footprint
by hashing, randomized embedding composition, and dimension-
ality search, but they suffer from either substantial performance
degradation or limited memory compression. To this end, in this
paper, we propose an extremely memory-efficient Factorization Ma-
chine (xLightFM), where each category embedding is composited
with latent vectors selected from codebooks. Based on the charac-
teristics of each categorical feature, we further propose to adapt
the codebook size with the neural architecture search techniques
for compositing the embedding of each categorical feature. This
further pushes the limits of memory compression while incurring
negligible degradation or even some improvements in prediction
performance. We extensively evaluate the proposed algorithm with
two real-world datasets. The results demonstrate that xLightFM
can outperform the state-of-the-art lightweight factorization-based
methods in terms of both prediction quality and memory footprint,
and achieve more than 18x and 27x memory compression compared
to the vanilla FM on these two datasets, respectively.
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1 INTRODUCTION
Many modern predictive systems, such as online advertisements
and recommender systems, suffer from data or feature sparsity. For
data sparsity, some works [18, 21, 28] suggest using cross-domain
data or negative samples to solve the problem. For the latter, model-
ing the interactions between features is essential for these systems.
Traditional feature engineeringmethods like feature crossing would
make engineered features more sparse, greatly increasing the com-
plexity of learning models and easily suffering from the over-fitting
problem. Factorization Machine (FM) [32] uses pairwise factor-
ized interactions between variables to address this issue, leading
to high prediction quality and achieving great success in online
advertisements and recommender systems. Since FM only encodes
the second-order feature interactions, FM has been extended to
modeling high-order interactions explicitly [2, 23, 37] or implic-
itly [8, 9]. Since some interactions may not be useful for prediction,
these interactions could not be selected into the models with the
attention techniques [38] or architecture search techniques [17, 24].

Despite the improvement of generalization, the memory con-
sumption of these FM models grows significantly, because the FM
models usually take hundreds to thousands of large categorical
features as input. For example, when the standard FM is trained
for real-world recommender systems with billions of items and
users, FM requires hundreds of Gigabytes memory footprint in the
absence of other side features, so that it is challenging for them to
be deployed in real-world online serving systems. Moreover, the
FMmodels have become an important machine learning method for
sparse features, so they have a wide range of application scenarios.
When these applications are tailored for mobile devices, lightweight
FM models are urgently needed at the inference stage1. Therefore,
it is meaningful and necessary to design the lightweight FM models
for enjoying economic memory consumption of inference.

To reduce thememory footprint of FM, Discrete FM [25] has been
proposed to binarize latent factors (i.e., embedding) of each feature.
1The learning of the FM models is usually finished in the computing servers, so the
compression is not our goal at the training stage
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However, this method suffers from substantial performance degra-
dation since binarization leads to much information loss. To pre-
serve more information while still achieving low memory footprint,
product quantization [13] has been adapted to matrix factoriza-
tion [20] by compositing feature embedding from codebooks, each
of which is a fixed-size set of latent factors (i.e., codewords). Other
existing work focuses on reducing the memory consumption of rec-
ommender systems by randomized embedding composition [16, 35],
AutoML-based dimensionality search [47], or dimension scaling
along with feature popularity [7]. However, some of them still
suffer from comparatively large performance degradation due to
data-independent hashing. Another of them lead to a much smaller
magnitude of memory compression than binarization and quan-
tization since they still use real-valued embedding. Therefore, it
is worth adapting product quantization to the FMs, but this is not
straightforward, because each categorical feature2 has distinct char-
acteristics, so that the codebook size (i.e., the number of codewords
in the codebook) or the number of codebooks should vary from
feature to feature.

To this end, in this paper, we propose an extremely memory-
efficient Factorization Machine (xLightFM for short), with the aim
of minimizing memory footprint at small or even no price of accu-
racy degradation. Particularly, xLightFM composites each category
embedding with multiple codebooks, from each of which only one
codeword could be selected. The codeword selection is guided by
the loss of FMs and the Euclidean distance between composited
representation and each category’s original embedding. To further
push the limits of memory compression, we propose to leverage the
Neural Architecture Search (NAS) techniques [10, 26, 39] for adapt-
ing the codebook size to the categorical feature’s characteristic,
including the number of categories and the category frequency.

The contributions delivered in this paper are summarized as
follows:

• To the best of our knowledge, we propose an end-to-end
quantization-based factorization machine for the first time,
to greatly reduce the memory footprint of the model while
lowering the quantization loss as much as possible.

• Based on each categorical feature’s characteristic, we pro-
pose to adapt the codebook size for compositing category
embedding based on the AutoML techniques. This pushes
the limits of memory compression of the FM models.

• We evaluate the proposed algorithm (xLightFM for short)
on two real-world datasets for the CTR prediction. The re-
sults demonstrate that xLightFM only has 18x and 27x less
memory footprint than the vanilla FM on the two datasets,
respectively and outperforms the state-of-the-art baselines
in terms of both prediction quality and memory footprint.

2 RELATEDWORK
In this section, we will review the recent advance of memory-
efficient recommendation algorithms and factorization-based rec-
ommendation models.

2For concise, we assume FMs take categorical features as input. Each categorical
feature contains many categories, and categorical feature is also called field in FM

2.1 Memory-Efficient Recommendation
Usually the embedding sizes are the same for all items and features
in recommender systems. However, this representation can be a
waste of memory footprint, because certain items or features can
be encoded by low-dimensional vectors. To solve this problem,
recent methods [7, 14, 47] suggest assigning varying dimensions
to different items or categorical features. However, the memory
compression is limited since they still use real-valued embedding.
The more memory-efficient recommendation can be organized into
the following two categories.

The first taxonomy is hashing-based recommendation, to trans-
form continuous user and item embeddings into binary codes. The
binary representation benefits memory efficiency a lot, since bi-
nary codes can be encoded into integers. The learning can be data-
independent [5, 11, 16, 29, 35, 36, 40], or from pre-trained contin-
uous representation [27, 46, 48], or from data directly [19, 22, 41,
44, 45]. However, the hashing-based methods usually suffer from
poor accuracy of approximate recommendation, because the binary
representation is more difficult to optimize and less expressive than
the continuous representation.

The second taxonomy is quantization-based recommendation,
representing each item embedding via a semi-structured vector.
They usually use a small number of representative vectors to ap-
proximate the continuous representation. The representative quan-
tization methods include PQ [13], OPQ [6], CQ [42], AQ [1], etc.
However, they suffer from two significant flaws: 1) they are data-
independent quantizationmethods, i.e. they quantize the pre-trained
item representation, which can not be trained jointly with rec-
ommendation model in an end-to-end way, and 2) their objective
functions are reconstruction errors based on Euclidean distance,
which is incompatible with user-item’s relevance. One recent work
most close to ours is LightRec [20], which is an end-to-end quan-
tization model recommendation. Unfortunately, it is devised for
matrix factorization-based models, which can not handle enormous
numbers of categorical features.

2.2 Factorization-based Recommendation
How to learn patterns from categorical feature interactions is a
significant challenge in recommendation. Researchers apply fac-
torization machine (FM) [31] and its variant FFM [15] to design
second-order cross features automatically. However, the impor-
tance of each feature interaction may be different, and therefore,
attentional FM (AFM)[38] is proposed. Nonetheless, these models
all simply develop second-order feature interaction, suffering from
the same expressiveness issue for modeling complex real-world
data accurately. With the benefit of DNNs, researchers adopt deep
models to design high-order interactions. FNN [43], Deep Cross-
ing [34], Wide&Deep [4], PNN [30], DeepFM [8], and NFM [9] are
representative models to build up implicit high-order interactions.
CrossNet [37] and xDeepFM [23] are representative models to build
up explicit high-order interactions. Unfortunately, the aforemen-
tioned models simply enumerate all feature interactions and ignore
the difference of complexity among features. Thus, AutoFIS [24] and
AutoFeature [17] are proposed to find crucial feature interactions
automatically. However, whatever FM or deep factorization-based
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models, all incur high memory consumption and computation com-
plexity when there are an enormous number of categorical features.
There is no work proposing models to alleviate the memory effi-
ciency problem of FM based on quantization. The only one light-
weight model for FM is based on hashing [25] while hashing-based
methods may suffer from low accuracy as we discuss in Section 2.1.

3 METHOD
In this section, we will first briefly overview the entire model
pipeline, then introduce the preliminaries and specific analysis
of memory footprint, and finally, elaborate the technical details
of two proposed models LightFM and xLightFM. xLightFM differs
from LightFM in the adaptive size of codebooks in each field.

3.1 Overview
Before introducing the proposed models, we will first illustrate
the typical online recommendation model – Factorization Machine
(FM), which is the backbone of LightFM and xLightFM, and analyze
its memory footprint in the inference stage. Considering extensive
memory overhead in the vanilla FM model, we propose a novel
memory-efficient model (LightFM for short), which composites
each category embedding with multiple codebooks and from each
of codebooks only one codeword is selected. Since only the indexes
of the selected codewords in codebooks are stored for each item
while the size of codebooks is irrelevant to data, the FMmodel could
be substantially compressed. Then, the composited embedding of
each category, after continuous relaxation, is forwarded into the
FM model for end-to-end training.

Meanwhile, it’s worth noting that the cardinality and frequency
distribution of categorical features are different from each other.
This indicates that the number of codewords, an indicator of repre-
sentation ability, should be adaptive to characteristics of categorical
features. However, LightFM directly uses the same number of code-
words in each codebook for categorical features, lacking the ability
of dynamically allocating the appropriate number of codewords for
each categorical feature. To this end, we further propose a variant
– xLightFM, which adopts the Neural Architecture Search (NAS)
techniques to adapt the codebook size to each feature’s characteris-
tics. This further reduces the memory footprint of each category
embedding, and the overall architecture of the xlightFM is shown
in Fig. 1. Specifically, the codebook size of each categorical feature
is used to define the search space of NAS, and then the parameters
and architecture of the xLightFMmodels were iteratively optimized
under the memory constraints on the training set and the validation
set, respectively, by a differentiable architecture search algorithm.
Next we will further elaborate on the technical details of each part.

3.2 Preliminary and Analysis
In the real-world scenario of recommendation or advertisements,
training samples are often composed of hundreds to thousands of
categorical features. Feature interactions are important for high
prediction quality in these systems. To address the sparsity prob-
lem resulting from feature crossing, Factorization Machine (FM) is
proposed for efficiently modeling the second-order feature inter-
actions by pairwise factorized interactions and has achieved great
success in these predictive systems. FM has been further extended

for modeling high-order interactions explicitly or implicitly, which
improves the prediction quality. Without loss of generality, we only
consider FM as the backbone of LightFM and xLightFM, but it is
straightforward to extend our methods to the FM variants. Formally,
in the FM model, the output can be represented as follows:

𝑦 (𝒙) = 𝑤0 +
𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖+1

〈
𝒗𝑖 , 𝒗 𝑗

〉
𝑥𝑖𝑥 𝑗 , (1)

where 𝒙 is a sparse feature vector of length 𝑛, and clearly 𝑥𝑖 indicate
the 𝑖-th element of the vector 𝒙 while 𝒗𝑖 being the corresponding
embedding of feature 𝑖 . The output 𝑦 of FM consists of two parts.
The linear weight𝑤𝑖 in the former part represents the importance
of the first-order feature 𝑥𝑖 , and inner product

〈
𝑣𝑖 , 𝑣 𝑗

〉
in the latter

part measures the importance of the second-order features 𝑥𝑖 · 𝑥 𝑗 .
Though the length 𝑛 is usually very large, the sparsity of the vector
𝒙 makemany inner product being zero. Each occurrence of a feature
pair will update the embedding of these two features, so FM can
address the sparsity to improve the generalization ability. Here we
stack the embedding of features by rows, and obtain the embedding
matrix 𝑽 ∈ R𝑛×𝑙 , where 𝑛 denotes the number of features and 𝑙
indicates the embedding size. As aforementioned, we consider to
use categorical features for illustration, 𝑛 equals the total number of
categories in all categorical features. For example, in collaborative
filtering, there is only user id and item id, then 𝑛 equals the number
of users plus the number of items. Then the embedding matrix 𝑽 is
obtained by stacking user embedding matrix with item embedding
matrix by row.

It’s no doubt that FM model has proved its effectiveness in var-
ious scenarios including large-scale industrial recommendation
system. However, since the feature embeddings 𝑽 may be a large
size matrix (over million rows), the memory consumption is an
essential bottleneck for FM in practice. For example, if 1 billion
products are for sale on the E-commerce website, which serves 100
millions of users each day on average, FM (𝑙=128) occupies more
than 524 GB of memory. In this case, such substantial memory cost
may not be afforded by real-world online serving systems, limiting
the application of FM model. Therefore, it’s necessary to design a
memory-efficient FM so that the FM model can be applied in many
real-world scenarios.

3.3 LightFM: Memory-Efficient Factorization
Machine

For alleviating the memory overhead problem, researchers have
proposed different types of memory-efficient methods, like hashing-
based, index-based, and quantization-based methods. Although
hashing-based methods can significantly compress the memory
overhead, they also sacrifice predictive capacity. For quantization-
based methods, they can not be directly applied here due to numer-
ous categorical features. Motivated by the much stronger represen-
tation of multi-codebook composition [13], it’s valuable to apply it
to FM for reducing memory. Therefore, we propose LightFM based
on multi-codebook composition.

3.3.1 Product Quantization. Product quantization(PQ) [13] is a
multi-codebook quantization technique, which first decomposes
the embedding space into the Cartesian product of subspaces and
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Figure 1: Framework of xLightFM.

conducts the k-means clustering in each subspace for obtaining
center vectors. Then each embedding vector can be represented by
a set of indexes, each of which indicates the cluster indicator in each
subspace. Since the center vector (cluster vector for unification)
of each subspace is independent to each other, both Euclidean dis-
tance and inner product between feature vectors can be efficiently
computed based on the precomputed lookup tables.

The definitions and notations of PQ when applied to FM are
presented as below. For the FM model, each feature 𝑖 belongs to
a unique field 𝐹 (𝑖), and the cardinality and distribution between
these fields are different, so we need to use a separate quantizer
to compress the embedding for each field. That is, in our task, 𝑀
quantizers should be applied for quantifying the embedded matrix
𝑽 , where𝑀 is the number of fields. And then in the framework of
PQ, each 𝒗𝑖 can be represented as the concatenation of𝐷 subvectors
of length 𝑙 ′ = 𝑙/𝐷 , i.e. , 𝒗𝑖 = [𝒗1

𝑖
, ..., 𝒗𝑑

𝑖
, ..., 𝒗𝐷

𝑖
], and the quantizer

for the field 𝐹 (𝑖) will have 𝐷 distinct codebooks, C𝑑
𝐹 (𝑖) , 1 ≤ 𝑑 ≤ 𝐷 .

Specifically, C𝑑
𝐹 (𝑖) ≡ {𝒄𝑑

𝐹 (𝑖),𝑘 |𝑘 = 1, ..., 𝐾} ∈ R𝑙 ′×𝐾 is composed of a
fixed number𝐾 of codewords, each of which represents a clustering
center in the 𝑑-th subspace of embedding in the field 𝐹 (𝑖).

Below, for simplicity, we abbreviate C𝑑
𝐹 (𝑖) to C𝑑

𝑖
and 𝒄𝑑

𝐹 (𝑖),𝑘 to

𝒄𝑑
𝑖,𝑘
. Assuming the indexes of embedding 𝒗𝑖 in 𝐷 subspaces are

denoted by 𝑘1
𝑖
, · · · , 𝑘𝐷

𝑖
, the concatenation of all selected codewords

𝒒𝑖 ≡ [𝒄1
𝑖,𝑘1

𝑖

, · · · , 𝒄𝐷
𝑖,𝑘𝐷

𝑖

] forms the approximate vector. The objective
function of PQ for FM model is formulated as follows:

min
C,𝒃

∑
𝑖∈𝐹

𝐷∑
𝑑=1




𝒗𝑑𝑖 − C𝑑𝑖 𝒃
𝑑
𝑖




2 , (2)

where 𝐹 is a field and 𝒃𝑑𝑖 is an one-hot vector to represent cluster
indicator 𝑘𝑑

𝑖
of 𝒗𝑖 in the 𝑑-th subspace. Hence, we compress the

embedding matrix 𝑽 of𝑀 fields into 𝐾-way 𝐷-dim discrete codes.
Suppose there are 20 fields, each field is represented by code-

books with 𝐾 = 256, 𝐷 = 4, 𝑙 = 128, the compressed FM model only
cost 20 ∗ (256 ∗ ⌈𝑙𝑜𝑔256⌉/8 ∗ 4 + 256 ∗ 128 ∗ 4)/1024/1024 = 2.52MB
memory for storage. In our problem, indexes can be stored numeri-
cally, where 𝐾 indexes, only cost 𝐾 ⌈𝑙𝑜𝑔𝐾⌉ bits.

3.3.2 Objective Function. It’s intuitive to first obtain the feature
embeddings learned from the vanilla FM and directly utilize the PQ

algorithm to obtain the compressed codewords. However, the inner
product based similarity between features in FM is incompatible
with Euclidean distance used for vector quantization. Moreover, the
learned feature embedding may not be the most suitable for direct
vector quantization. Therefore, it’s necessary to simultaneously
learn codebooks and assign codewords for category embeddings
of FM in an end-to-end manner. Along this line, we propose the
LightFM to integrate the learning of feature embeddings into quan-
tization, as illustrated in Fig. (2). Specifically, based on Eq. (2), which
aims to minimize distortion error between feature embedding and
composited codewords, we can regard the C𝑑

𝑖
𝒃𝑑𝑖 as the quantized

representation of 𝒗𝑖 from another perspective. Then, we utilize
these quantized vectors to estimate the predicted score:

𝑦 (x) = 𝑤0 +
𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 +
∑

1≤𝑖< 𝑗≤𝑛

∑
𝑑

〈
C𝑑𝑖 𝒃

𝑑
𝑖 , C

𝑑
𝑗 𝒃
𝑑
𝑗

〉
𝑥𝑖𝑥 𝑗 . (3)

Furthermore, we adopt the widely-used differentiable Binary
Cross Entropy (BCE) loss as the objective function, which is formu-
lated as follows:

L𝑏𝑐𝑒 (𝑦,𝑦) =
∑

(𝒙,𝑦) ∈D
−𝑦log𝜎 (𝑦 (𝒙)) − (1 − 𝑦)log(1 − 𝜎 (𝑦 (𝒙))),

(4)
where D represents the whole training set and 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ).
During the training process, the only gradient information for each
category embedding vector is from the 𝒃𝑑𝑖 , which is insufficient for
guiding their learning. To this end, we add the regularizer term
into the original loss function, for the sake of penalizing the large
difference between embedding vector and composite representation.
The overall loss function is then formulated as follows:

L(𝑦,𝑦) = L𝑏𝑐𝑒 + 𝜆L𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ,

L𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≡
𝑛∑
𝑖=0

𝑤𝑖 ∗ s(𝑣𝑖 , 𝑞𝑖 ),
(5)

where𝑤𝑖 = log 𝑓𝑖/
∑𝑁
𝑘=1 log 𝑓𝑘 is calculated based on the popularity

of each feature 𝑖 , and 𝑓𝑖 is the frequency that the feature 𝑖 appears.
𝑣𝑖 and 𝑞𝑖 is the embedding vector and composite representation.
Note that the distance loss is weighted with the popularity. The
idea of this design is that we believe that the higher the popular-
ity of the category, the more accurate the results will be in the
pre-training process, and the greater the impact on the prediction
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Figure 2: The optimization process of LightFm.

quality. And later in the experiment part of the paper, we also verify
the correctness of this idea.

3.3.3 Optimization. However, this objective function Eq. 4 cannot
directly be optimized in an end-to-end manner, since the maxi-
mum selection operator in codeword assignment process is non-
differentiable. In order to address this problem, we utilize the con-
tinuous relaxation to the one-hot index 𝒃 of the corresponding
codeword. Concretely, for a specific codeword assignment 𝒃𝑖 , the
selection operation is defined as follows:

𝒃𝑖 = one-hot(argmax
𝑘

s(𝒗𝑖 , 𝒄𝑖,𝑘 )), (6)

where 𝒗𝑖 is the embedding of the category 𝑖 , and 𝒄𝑖,𝑘 is the𝑘-th code-
word. 𝒃𝑖 is the one-hot representation of codeword index of feature
𝑖 , and s(𝒗𝑖 , 𝒄𝑘 ) measures the similarity between the embedding vec-
tor 𝒗𝑖 and the codeword 𝒄𝑘 . Then, the most similar codeword could
be computed as C𝑖𝒃𝑖 . For addressing this non-differentiable maxi-
mum operation, we adopt tempered softmax to relaxed it, which
can be regarded as a soft variant of the max function. For a specific
𝑘-th element of 𝑏𝑖 , the definition is illustrated as follows:

𝑏𝑖 [𝑘] ≈ 𝑏𝑖 [𝑘] =
exp

(
s
(
𝒗𝑖 , 𝒄𝑖,𝑘

)
/𝑇

)∑
𝑘 exp

(
s
(
𝒗𝑖 , 𝒄𝑖,𝑘

)
/𝑇

) , (7)

when the temperature 𝑇 → 0, the formula Eq. 7 is a complete ap-
proximation to discrete index 𝑏𝑖 [𝑘]. Furthermore, the maximization
selection of the most similar codeword could be related by 𝑪𝑖𝑏𝑖 .
It’s worth noting that we adopt the continuous relaxation 𝑏𝑖 for the
back-propagation of the gradient. However, we directly utilize the
original𝑏𝑖 in the forward process tomake the consistentwith the on-
line recommendation. To close the difference between forward pass
and backward pass, we follow a similar idea to Straight-Through
Estimator [3, 20] and rewrite the codeword index 𝑏𝑖 as follows:

𝑏𝑖 = 𝑏𝑖 + stop_gradient(𝑏𝑖 − 𝑏𝑖 ), (8)

where the stop_gradient operator will prevent the gradient from
back-propagating through it. In the forward pass, stop_gradient
does not work and the most similar codeword is directly utilized for
inference: 𝑏𝑖 = 𝑏𝑖 . Besides, in the backward pass, the stop_gradient
operator will take effect to make ∇

𝑏𝑖
L = ∇

𝑏𝑖
L by taking a larger

Figure 3: The quatization module in xLightFM.

𝑇 to back-propagate gradient through it. Therefore, with the com-
bination of tempered softmax and stop_gradient trick, LightFM
can optimize the compressed representation of feature embeddings
with loss function of original FM in an end-to-end training manner.

3.4 xLightFM: Extremely Memory-Efficient
Factorization Machine

Although LightFM has quantized the feature embeddings to effi-
ciently reduce the memory overhead, it compresses the embeddings
with a fixed number of codewords in the codebooks for different
fields, which leads to the failure to achieve maximum performance
under memory constraint. As observed, the cardinality and distri-
bution of each categorical feature are not consistent. For example,
the values of feature fields Gender are always binary and perform
a Bernoulli distribution, while the values of feature fields Age are
often represented in multi-valued intervals satisfied with the Gauss-
ian distribution. It’s intuitive that different types of fields contain
different amounts of information, which encourages us to propose
an adaptive method to dynamically assign the suitable numbers to
codewords, so as to further reduce memory. However, it’s difficult
to manually allocate an appropriate number of codewords for a
large number of fields. Therefore, we aim to dynamically search for
the number of codewords via AutoML techniques, and formulate it
as a one-shot search problem. The xLightFM is then proposed to
search for the optimal number of codewords for different feature
fields under memory constraints.

3.4.1 Codebook Search Space. In this work, the search space is
the different number of codewords for different feature fields and
we transfer the problem as the selection from the codebooks with
different numbers of codewords. Specifically,𝐺 candidate codebook
spaces with different codeword numbers are set for each codebook
C in Eq. 3. Each codebook is assigned with a real-valued weight 𝛼𝑔 ,
indicating the probability of being chosen. Thus, the continuous
codebook search space is defined. At each time, we predict the
weights corresponding to the codebooks and choose the codebook
with the maximum probability. After the introduction of the search
space, the representation of embedding C𝑏 is transformed into the
following equation:

𝒄 (𝜶 , C̃, 𝑏) =
∑𝐺

𝑗=1
𝛼 𝑗C𝑗𝑏 𝑗 , where 𝜶 ∈ {𝜶 | ∥𝜶 ∥2 = 1}, (9)
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Algorithm 1: Memory-efficient Codebooks Search

Input: Training dataset D, Validation dataset D
1 while not converged do
2 Sample a mini-batch from validation dataset;
3 Update 𝜶 by descending ∇𝜶H (𝑇,𝜶 ) according to

Eq(12);
4 if 𝜶 does not meet memory constraints then
5 Update 𝜶 according to Eq(14);
6 end
7 Sample a mini-batch from trainning dataset;
8 Update model parameters 𝑇 by descending ∇𝑇 F𝜶 (𝑇 )

according to Eq(12);
9 end

10 return Searched codebooks described by 𝜶 ,𝑇 .

where C𝑗 , 𝑏 𝑗 is the 𝑗-th codebook matrix and index in search space,
and ·̃ denotes the set of candidate search spaces for specified param-
eter, for example C̃ ≡ {C1, ..., C𝑗 , ..., C𝐺 }. 𝜶 denotes the continuous
vector of choosing codebooks. The constraint ∥𝜶 ∥2 = 1 ensures
that only one codebook is selected each time. A more detailed
explanation is shown in Fig. 3 .

After obtaining the relaxation space representation 𝒄 (𝜶 , C̃, 𝑏),
we further integrate it with the former LightFM framework, and
obtain the prediction score of xLightFM as:

𝑦 (x) =
∑

1≤𝑖< 𝑗≤𝑛

∑
𝑑

〈
𝒄 (𝜶𝑑𝑖 ,𝑇

𝑑
𝑖 ), 𝒄 (𝜶

𝑑
𝑗 ,𝑇

𝑑
𝑗 )

〉
𝑥𝑖𝑥 𝑗 , (10)

where 𝑇 = {𝑪, 𝑏} denotes the model parameters involving the
codebookmatrix and the discrete indices, and𝜶𝑑

𝑖
terms architecture

parameter for the 𝑑-th codebook of feature 𝑖 . Then 𝒄 (𝜶𝑑
𝑖
,𝑇𝑑
𝑖
) =

𝒄 (𝜶𝑑
𝑖
, C̃𝑑
𝑖
, 𝑏𝑑
𝑖
). For simplicity, only the second order part of the

prediction score is given.

3.4.2 Differentiable Searching Strategy. Note that the objective
function of xLightFM in Eq. 10 contains both discrete (architecture
parameters 𝜶 ) and continuous (model parameters 𝑇 ) variables.
Therefore, similar to the optimization of discrete variable (index)
in Section 3.3.3, the architecture parameters 𝜶 should be relaxed to
a continuous vector to make training differentiable, and here we
adopted the Gumbel-Softmax [12] operation to Eq. 9:

𝒄 (𝜶 , C̃, 𝑏) =
∑𝐺

𝑗=1
exp

( (
log

(
𝛼 𝑗

)
+ 𝑔 𝑗

)
/𝜏
)∑𝑁

𝑖=1 exp ((log (𝛼𝑖 ) + 𝑔𝑖 ) /𝜏)
C𝑗𝑏 𝑗 , (11)

where 𝑔𝑖 is gumbel noise which sampled i.i.d from Gumbel(0,1)
and 𝜏 is the temperature which controls the smoothness of the
distribution of sampling results. As the temperature approaches 0,
the output of Gumbel-Softmax is similar to the one-hot vector.

With the continuous representation of the space, the objective
function can be formalized as a one-shot search problem, which
jointly optimizes the model parameters 𝑇 and architecture parame-
ters 𝜶 . The objective function is as follows:

min𝜶 H (𝑇,𝜶 ) ≡ ∑
(𝑥,𝑦) ∈D ℓ (𝑦 (𝑥,𝜶 ,𝑇 ∗), 𝑦)

s.t. 𝑇 ∗ ≡ argmin𝑇 F𝛼 (𝑇 ) ≈ 𝑇 − 𝜉∇𝑇 F𝜶 (𝑇 ),
(12)

where F𝜶 is the training objective, derivated from the Eq. 5.

F𝜶 (𝑇 ) ≡
∑

(𝑥,𝑦) ∈D
ℓ (𝑦 (𝑥,𝜶 ,𝑇 ), 𝑦) + 𝜆L𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (13)

Based on this formulation, xLightFM alternately updates the
model parameters 𝑇 on the training dataset D and optimizes the
architectural parameters 𝜶 on the validation dataset D. However,
the global optimization of 𝑇 ∗ makes the update of the architecture
gradient extremely expensive and even impracticable. To allevi-
ate this calculation problem, we conduct the same approximation
scheme as the differentiable architecture search (DARTS) [26] to
calculate 𝑇 ∗ in Eq. 12, and 𝜉 is the learning rate. In particular, 𝜉 is
usually set to 0 to perform the first-order approximation. In this
case, the𝑇 ∗ is assumed to be the same as current𝑇 for simpl, which
could reduce the training time for xLightFM.

Different from other tasks, memory is always a tight resource
here, and the tradeoff between memory and performance is one
that needs to be considered. While traditional NAS only considers
whether the current architecture is conducive to the optimization
of the objective function, we add a memory-efficient constraint in
the search algorithm. When the step results of 𝜶 does not meet
the constraint of memory, for example, the selected structure con-
sumes more than 100MB of memory. We update 𝜶 as the follow
formulation, and 𝛼𝑖 is the 𝑖-th element of vector 𝜶 :

𝛼𝑖 = min(𝛼𝑖 , 𝛼𝑖,𝑙𝑎𝑠𝑡 ) if 𝑖 ≥ 𝑆𝑙𝑎𝑠𝑡 , (14)

where 𝑆𝑙𝑎𝑠𝑡 denotes the subscript of the codebook selected previ-
ous, and we assume that the larger the codebook is, the larger the
corresponding subscript is. 𝛼𝑖,𝑙𝑎𝑠𝑡 represents the value of 𝛼𝑖 before
updating. Under such updating rules, the algorithm will further
search within a smaller range of memory consumption, so that the
final result can meet the memory constraint.

The detailed optimization procedure for codebook search is illus-
trated in Algorithm. 1. In this way, we can simultaneously quantize
the feature embeddings and search for the optimal codebook spaces
in a joint framework.

3.4.3 Re-train and Inference. When the learned architectural pa-
rameters corresponding to codebook spaces are obtained, we aban-
don the Gumbel-Softmax trick and directly select the optimal code-
book by the maximum operation on weight 𝜶𝒈 , to derive the ar-
chitecture which contains the most suitable size of the codebook
for each field. C, 𝑏 denotes the selected codebook and cluster in-
dex. Besides, based on these selected codebook, we further re-train
xLightFM based on former objective function of LightFM Eq. 4 to
finetune the codebook matrices and indexes for better performance.
Finally, the formal definition is illustrated as follows:

𝑦 (x) =
∑

1≤𝑖< 𝑗≤𝑛

∑
𝑑

〈
C𝑑𝑖 𝑏

𝑑

𝑖 , C
𝑑

𝑗 𝑏
𝑑

𝑗

〉
𝑥𝑖𝑥 𝑗 (15)

In the inference stage of xLightFM, only the codebooks and
indexes need to be stored, and the similarity between feature em-
beddings can be computed rapidly by the pre-defined lookup table.
The former greatly reduces the memory footprint of xlightFMwhile
the latter further reduces the inference time. The final framework
for xLightFM is shown in Fig. 1 .
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4 EXPERIMENT
In this section, we conduct experiments to verify the efficiency and
effectiveness of our proposed LightFM and xLightFM.

4.1 Dataset
Two different datasets are utilized to validate the performances of
proposed models. Table 1 details the statistics of these datasets. The
Criteo dataset3, an industry dataset available on Kaggle, is a collec-
tion of user clicks during one week for predicting ad click-through
rate (CTR). We follow the data preprocessing version described
in [47]. And the numerical features are normalized and converted
into categorical features via bucketing. The second benchmark
dataset is Avazu4, which is also provided on Kaggle for CTR pre-
diction. It contains user clicks over 11 consecutive days, indicating
whether the user clicked the displayed mobile advertisement.

During our experiments, we split all the interaction data into
three parts. The 80% part of interactions are sampled as the training
set and the rest are equally divided into the validation and test set.

Dataset #Interactions #Feature Fields #Features

Criteo 45,840,617 39 1,086,810
Avazu 40,428,968 22 2,018,012

Table 1: The summary of Datasets

4.2 Baselines
We compare our proposed method with the following competing
lightweight factorization machine based approaches. The parame-
ters are fine-tuned according to the AUC metric.
• FM [33], factorization machine, decodes the feature embeddings
with same size for each feature field.

• DFM [25], discrete factorization machine, binarizes the real-
valued embeddings into the binary codes, so as to store it ef-
ficiently and speed up the calculation of prediction.

• QR [35], Quotient-Remainder, utilizes the quotient and the re-
mainder function to calculate two different embeddings and com-
bines these two embeddings as the final embedding. This ap-
proach allows the embedding size to decrease from 𝑂 ( |𝑆 |𝐷) to
𝑂 (

√
|𝑆 |𝐷), where |𝑆 | denotes the number of the features and 𝐷

denotes the embedding size. We set collection to 8.
• MD [7], mixed dimension embedding, is a memory-efficient al-
gorithm for recommendation systems, which allocates different
embedding sizes for different feature fields depending on the sta-
tistical frequency. The popular features embedding have a larger
size depending on its heuristic search method.We set 𝛼 to 0.2.

• DHE [16], deep hashing embedding, embeds the non-one-hot
encodings into the dense and real-valued vectors via the multiple
hashing. The final embeddings are then transformed by the deep
neural networks. The dense encoding size is set to 256.

4.3 Evaluation Metrics
We test the algorithms on the three popular metrics, AUC, Logloss
and Params. The AUC (Area Under the ROC Curve) awards the
3https://www.kaggle.com/c/criteo-display-ad-challenge/
4https://www.kaggle.com/c/avazu-ctr-prediction/

higher rank of the positive items (i.e. the samples with label 1) than
the negative one. A higher AUC means a better performance of
recommendation. The Logloss measures the likelihood of the user
clicks depending on the prediction and the ground-truth labels,
which consider the certainty. The Logloss is consistent with the
objective function and a smaller Logloss is better. For the CTR pre-
diction tasks, it is worth noticing that even a slight improvement is
considered a significant promotion as it may lead to a remarkable
increase in revenue. Apart from the common metrics for CTR pre-
diction, we also pay attention to the memory cost of parameters,
shorted as Params here, since the memory efficiency is the focus
of our work. .Specifically, we define a float parameter to require
32 bits, a bool parameter to require 1 bit, and a codebook index to
require log𝑊 bits, where𝑊 is the size of the codebook.And the
cost of the linear part of factorization machine model is neglected
here as they just constitute a small part.

4.4 Experimental Settings
The experiments are implemented in the Pytorch framework with
NVIDIA 2080ti GPUs. Although the larger number of dimensions
may lead to better performance, we set the dimension to 32 within
the memory constraints. For the proposed LightFM, the number
of codebooks for each feature field is set to 4 and there are 1,024
codewords for each codebook. And for the xLightFM ,the candidate
codebook sizes are {64,128,256,512,1024,2048}. Those fields with
fewer features than the number of codewords will be replaced by
the original embedding. Finally, the codebook size ranges from 64
to 2048 for inference.

The batch size is set to 2,048. We utilize the Adam optimizer
with the learning rate tuning with {0.0001, 0.0005, 0.0003, 0.001}. Fi-
nally, we set the learning rate 0.0003, 0.0005 for LightFM, xLightFM
respectively. As for the architecture weight 𝛼 , the temperature
𝜏 =𝑚𝑎𝑥 (0.001, 1− 0.00003∗𝑏𝑎𝑡𝑐ℎ) is used for the Gumbel-softmax,
where 𝑏𝑎𝑡𝑐ℎ is the number of training steps.

Regarding the DFM, the embeddings are first pre-trained via the
basic FM models. And the discrete binary embeddings are learned
from the real-value embedding through a two layers perceptions
for each feature field and are utilized for inference.

4.5 Comparisons with Baselines
Experiments are conducted on the two datasets with all the com-
peting baselines and we report the overall results in Table 2. From
them, we have the following findings.

Finding 1: The compression of embeddings alleviate the massive
burden of parameters and benefit improving the performance of recom-
mendation. The number of parameters in vanilla FM is the greatest
among all the compared approaches but almost all compression
algorithms are better than it in AUC. The reason may lie in that the
full embeddings result in the overfitting problem, where unpopular
features are encoded into large embeddings. This brings the noise
for training and harm the optimization. The superior performance
of MDE among the baselines also demonstrates that it has great ben-
efits for training to represent different fields with different amounts
of information. The MDE heuristically allocates the appropriate
dimensions for diverse feature fields, where the popular features
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FM DFM QR DHE MD LightFM xLightFM

Avazu
AUC 0.7768 0.74005 0.7743 0.7709 0.7790 0.7824 0.7823

LogLoss 0.3816 7.218 0.3832 0.3847 0.3802 0.3788 0.3792

Params(MB) 246.3 7.70 30.86 23.72 22.74 10.66 8.9125

Criteo
AUC 0.7985 0.7692 0.7990 0.8040 0.8023 0.8055 0.8057

LogLoss 0.4532 14.17 0.4530 0.4472 0.4484 0.4464 0.4460

Params(MB) 132.7 4.14 16.74 40.34 17.95 7.38 7.29

Table 2: Comparisons with baselines

may be embedded with larger sizes for more efficient representa-
tion. Meanwhile, the unfrequent features are encoded into smaller
sizes which reduces the memory consumption while preventing the
overfitting problem. Again, xLightFM does not change the size of
embeddings but instead tunes the number of codewords to achieve
the same effect. As the number of codewords increases, the average
distance between the centroid and the embedding becomes smaller.
That is, more information is preserved with a larger codebook.

Finding 2: Our product quantization based algorithm performs
better than the hashing based algorithm. Compared with the hash-
ing based efficient methods, our proposed method LightFM and
xLightFM lead to relative 3.60% and 3.59% performances respec-
tively on average. And obviously, DFM achieves the best utilization
of storage with the binary code embedding, but performs poorly
due to the weak fitting ability of the binary codes. Although the
hashing based models try their best to enhance the expressiveness
from DFM to DHE, a lot of information is still discarded due to the
limited representation of binary codes. On the contrary, our meth-
ods utilizing quantizers to reconstruct the vectors of embeddings
with closer real-value centroids to preserve more information, as
the distance between the original embedding and the reconstructed
vectors are much smaller than binary codes. Moreover, the product
quantization based algorithms are also memory efficient methods,
since only the codebooks and the indices would be stored.

Finding 3: LightFM shows superior performances over all the algo-
rithms with the effort of compressing the embeddings of each feature
field. LightFM shows at least a 0.7% improvement over the other
efficient methods, QR or MD, while the parameters only cost around
45% of memory space. LightFM associates feature with each other
through multiple codebook interactions.In this way, features with
low popularity are aggregated to train the clustering center towhich
they belong, thus ensuring higher accuracy and stronger general-
ization ability of the centroid. For example, the number of features
in a field can reach hundreds of thousands, and multiple Codebooks
connect these large numbers of features through clustering, so that
they can conduct joint training on specific parameters, which has
never been added in previous works.

Finding 4: xLightFM further reduces the memory consumption and
shows comparable performance with LightFM.Although the LightFM
shows superior performance, there is still room for a reduction in
memory cost. Further, the xlightFM is proposed to search the size
of codebooks for each feature field. Compared with the fixed size
of codebooks in LightFM, xLightFM not only trains parameters for
each embedding, but also intelligently searches for the size of code-
books within a specific memory constraint. xlightFM uses less than

Figure 4: Comparisons between LightFM and xLightFM. The
x-coordinate denotes the number of codewords in LightFM
for the first 4 histograms.

20x less memory than vanilla FM, while the best performance of
other baselines cost 10x less memory. With less parameter memory
consumption, xlightFM still shows competitive performance.

4.6 Effectiveness & Efficiency of Automatic
Codebooks Search

To test the efficiency of xLightFM, we design experiments with
different numbers of codewords for the LightFM and compare
them with xLightFM. The experiments are conducted on the Avazu
dataset and we report the results of AUC and Params in Fig. 4.

Finding 1: When the number of the codewords increases, LightFM
model performs better but results in a sharp increase in memory
consumption. With the increasing number of codewords, the recon-
structed vectors are closer to the original embedding, thus capturing
more interactions, but large codebooks also increase storage con-
sumption. As shown in the figure, when the number of codewords
is doubled, the AUC only has an improvement of 0.001. This can
be explained by the heuristic algorithm’s inability to find the ex-
traction requirements for every feature field, some of which are
now assigned redundant sizes of codebooks. These redundant code-
words are figured to make noise in training process, which leads to
worse performances.

Finding 2: The xLightFM achieves the same level of AUC within
remarkably fewer parameters. xLightFM only needs about 8.9MB
parameters to achieve the AUC of 0.783 while LightFM achieves
similar performance with 10.9MB of parameters, 1.2 times the cost
of xLightFM. The memory cost in xlightFM is strictly limited and
can be loosened by parameter, so the model learns to search for the
most appropriate number of codewords for each feature field under
the constraints. So xlightFM can get better performance under the
same memory cost.
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Figure 5: Curves of logloss and AUC w.r.t. loss functions

4.7 Scalability of the proposed approaches.
We exploit LightFM and xLightFM into the generic factorization
machine based models to figure out the good scalability of our
methods. The AUC results are detailed in Table 3. The experiments
are conducted on the Avazu dataset. The number of codewords is
set to 1,024 and the learning rate is set to 0.0003.

DeepFM NFM

FM(emb) 0.78202 0.77865
LightFM(emb) 0.78498 0.78308

Table 3: Scalability of the algorithm.

Finding: Regarding the famous factorization machine based models,
our proposed memory-efficient methods are easy to extend into the
models and perform well. LightFM performs well when applied in
both models, achieving better performance than the normal model
while costing less memory. This further illustrates that the full
embeddings would result in the occurrence of noises and make it
difficult for training.

4.8 Effects of different loss functions
To verify the effect of the designed loss function claimed in Section 5,
we capture the curves of the logloss on the training set and AUC on
the validation set during training, as shown in Figure 5. The func0
here indicates the original binary cross-entropy loss. The func1
refers to the version with the average distance while the func2
represents the distance loss which is weighted by the popularity.

Finding: The loss functions, introducing a popularity-weighted
distance, help prevent overfitting and increase the performance of AUC.
At the beginning of training, all the logloss decreases remarkably
and the AUC improves quickly. However, the AUC performance on
validation of the func0 drops a lot when more batches of data are
fed into the model while the logloss on training set still decreases. It
shows the binary cross-entropy loss only focuses onmaximizing the
likelihood function between the prediction and the ground truth but
ignoring the quantization module which leads to serious overfitting.
Introducing the distance loss penalizes the huge distances between
the raw embeddings and the estimated vector and prevents the
parameters from fluctuating greatly with the current batch data
distribution during the training process. And the func2 performs
better than the func1, demonstrating the rationality of the addition
of popularities. This is because the popularity is correlated with

Figure 6: Times of Training and Inference

the overall data distribution or feature distributions, and it can be
concluded that better performances can be obtained if the distance
loss contains more information about data distributions.

4.9 Time Efficiency
In this part, we further study the training and inference efficiency,
which are another important indicator. The training time is obtained
in the model training, while the inference time is the forward time
of a batch with 2048 pieces of data. Each method is run 100 times,
with the average time declared in Figure 6.

Finding: The proposed LightFM shows the best performance in time
efficiency. The hashing based algorithms, DFM and DHE take the
most time in both training and inference as they construct the deep
neural networks. The QR method needs to calculate the quotient of
the huge embeddings which takes additional time compared with
FM and LightFM. As for xLightFM, it has to conduct computation
of the structure parameters on the validation, so it takes more time
than the LightFM. But xLightFM is still competitive compared with
other baselines. In the aspect of inference, all the methods that
do not involve deep network show sufficient competitiveness, and
LightFM also shows its certain advantages because of the least
number of parameters.

5 CONCLUSION
In this paper, we proposed an end-to-end quantization-based factor-
ization machine named xLightFM, to extremely reduce the memory
footprint of vanilla FM and maintain the lower quantization loss.
Specifically, xLightFM decomposed each feature field into multiple
codebooks, and directly learned the corresponding codeword as-
signments with loss of FMs and the Euclidean distances between
compressed representation and original feature embedding. Further-
more, xLightFM adopted the Neural Architecture Search(NAS) tech-
niques to adaptively allocate themost suitable number of codewords
in codebooks of different fields. Extensive experiments on two
datasets demonstrated the effectiveness and efficiency of xLightFM
by comparing with state-of-the-art baselines, and achieve more
than 18x and 27x memory compression compared to the vanilla FM.
In the future work, we will explore more efficient NAS methods to
further reduce the memory requirements and running time, so as
to apply xLightFM to more general application scenarios.
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