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Abstract
Cognitive psychology research shows that humans have the
instinct for abstract thinking, where association plays an es-
sential role in language comprehension. Especially for Chi-
nese, its ideographic writing system allows radicals to trigger
semantic association without the need of phonetics. In fact,
subconsciously using the associative information guided by
radicals is a key for readers to ensure the robustness of se-
mantic understanding. Fortunately, many basic and extend-
ed concepts related to radicals are systematically included in
Chinese language dictionaries, which leaves a handy but un-
explored way for improving Chinese text representation and
classification. To this end, we draw inspirations from cogni-
tive principles between ideography and human associative be-
havior to propose a novel Radical-guided Associative Model
(RAM) for Chinese text classification. RAM comprises two
coupled spaces, namely Literal Space and Associative Space,
which imitates the real process in people’s mind when un-
derstanding a Chinese text. To be specific, we first devise a
serialized modeling structure in Literal Space to thorough-
ly capture the sequential information of Chinese text. Then,
based on the authoritative information provided by Chinese
language dictionaries, we design an association module and
put forward a strategy called Radical-Word Association to use
ideographic radicals as the medium to associate prior con-
cept words in Associative Space. Afterwards, we design an
attention module to imitate people’s matching and decision
between Literal Space and Associative Space, which can bal-
ance the importance of each associative words under specif-
ic contexts. Finally, extensive experiments on two real-world
datasets prove the effectiveness and rationality of RAM, with
good cognitive insights for future language modeling.

Introduction
Due to the uniqueness of ideography and great potential for
future applications, the research of Chinese text classifica-
tion has been appealing in recent years (Liao, Sun, and Gu
2019; Tao et al. 2019). However, traditional Chinese tex-
t classification methods usually ignore the essence of Chi-
nese ideographic characteristics (DeFrancis 1986), that is,
associative information guided by ideographic radicals.

Most of the time, when people receive a certain text,
they will not only grasp it according to the literal features
∗Corresponding author
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Figure 1: The cognitive process when understanding a Chi-
nese text and inferring its possible label, where radical of
each Phono-semantic Compound Character is circled in red.

of the text, but also expand a series of association in their
minds based on those features (Kuvska et al. 2016). In fac-
t, the language symbols in a text that we can directly ob-
tain or perceive are literal features. For Chinese, its writ-
ing system derived from pictographs makes its literal fea-
tures ideographic (Unger 2004). Moreover, as the seman-
tic component used to compose Phono-semantic Compound
Characters (Tung 2012) which take up over 80% of all Chi-
nese characters, each radical has a pictorial glyph origin.
This vivid feature has been inherited for thousands of years,
often allowing readers to understand the meaning of Chi-
nese characters without knowing their pronunciation, which
forms a unique cognitive process in the mode of conveying
semantics compared with English and other phonetic lan-
guages (Tzeng et al. 1979). As shown by the example in
Figure 1, ideographic radicals prompt us to associate prior
concepts with corresponding Chinese characters: “climate”
for “snow”, “foot” for “road”, “water” for “slippery”, etc.,
which helps us grasp relevant attributes of characters and
approximate the core idea of classification label “Traffic”.

Meanwhile, association in psychology refers to the psy-
chological connection between concepts, events or men-
tal states, usually derived from specific experiences (Klein
2018). It allows people to use prior concepts outside a given
text to assist comprehension during reading. Actually, asso-
ciative behavior is a fundamental and effective principle in
psycho-linguistics for explaining examples of cognition and
knowledge learning through accumulated experience (Dick-
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inson 2012). More importantly, language research is insep-
arable from cognitive science (Marslen-Wilson et al. 1980;
Elman 1990), and more and more researchers have regard-
ed language learning as a cognitive phenomenon (Isac and
Reiss 2013; Huth et al. 2016; Ellis 2019). However, based on
these interdisciplinary theories of psychology and cognitive
science, how to leverage association mechanism to import
desired human prior concepts into Natural Language Pro-
cessing (NLP) is an urgent problem for current deep learn-
ing, which also faces great challenges.

However, traditional text modeling methods often ignore
the participation of human cognitive behavior and associa-
tion in the process of text comprehension, just stick to the
analysis of the literal space in isolation to deal with the lin-
guistic symbols (Montague 1974). This perspective is very
limited now, especially for short texts whose literal features
are very sparse. Therefore, introducing some external infor-
mation reasonably to enrich text representation is more in
line with human cognition. Fortunately, as a treasure-house
of human knowledge, language dictionaries (e.g., Xinhua
Dictionary and Oxford English Dictionary) are very efficient
for inferring basic information of radicals (roots), character-
s, words and common concepts to help understand texts in
our daily life (Nielsen 2008). But little attention has been
paid to the importance and utilization of language dictionar-
ies in Chinese NLP tasks, which leaves plenty of space for
further improving text representation and classification.

In response to the problems and limitations mentioned
above, we propose a novel Radical-guided Associative
Model (RAM) for Chinese text classification, which can
take both literal features and human prior concepts into con-
sideration with the help of language dictionaries. Specifical-
ly, 1) we first introduce a Literal Space and devise a seri-
alized structure to model the sequential information of Chi-
nese text; 2) Then, we propose an association module and a
strategy of using radicals as the medium for Radical-Word
Association, so as to model associative contents in Associa-
tive Space; 3) After that, we design an attention module by
imitating the cognitive process in people’s mind to model
the matching and decision between Literal Space and Asso-
ciative Space; 4) Finally, we conduct extensive experiments,
where the experimental results not only demonstrate the ef-
fectiveness and rationality of RAM, but also provide good
cognitive insights for future language modeling.

Related Work
Text Classification & Deep Learning
Text classification is a fundamental natural language pro-
cessing (NLP) task, which plays an indispensable role in
various scenarios, such as document retrieval, news filter-
ing, public opinion analysis (Hotho et al. 2005; D’Andrea et
al. 2019). Recent years have witnessed the success of deep
learning in this field, no matter in terms of the construc-
tion of deep classification model (Aggarwal et al. 2012; Kim
2014; Wang et al. 2018) or word embedding approaches in-
cluding CBOW, Skipgram, GloVe and so on (Mikolov et al.
2013; Pennington et al. 2014; Li et al. 2019a). Given the
sequential property of human language, Recurrent Neural

Network (RNN) (Elman 1990), its improved version Long
Short-Term Memory (LSTM) (Hochreiter et al. 1997) and
Bidirectional LSTM (BiLSTM) have been proposed for cap-
turing the long-range information of the context (Graves et
al. 2013), which has a profound effect on the subsequen-
t study of text modeling. Currently, there has been another
wave in the field of natural language processing, that is the
emerging model of pre-training (Peters et al. 2018). Among
them, the most successful model might be BERT (Devlin
et al. 2018), which combines Transformer’s powerful rep-
resentation ability with some language-related pre-training
goals to address many NLP tasks while exhibiting impres-
sive performance (Yu and Jiang 2019; Zhang et al. 2019c).

Human Cognitive Modeling
No matter in the early days or now, imitating human cogni-
tive principles has always been the original intention of deep
learning (Bezdek 1992; Sardi et al. 2020). Initially, the fully-
connected edges designed in artificial neural networks ide-
ally mimic the numerous dendrites of nerve cells. Then, to
improve the nonlinear expression ability of neural network-
s, the activation functions (e.g., sigmoid and ReLU) were
proposed by imitating the activation threshold of biofilm ac-
tion potential (Hodgkin et al. 1952; Krizhevsky et al. 2012).
More importantly, the attention mechanism (Vaswani et al.
2017; Fukui et al. 2019) was proposed to mimic the fact of
eye allocation when people are reading a text or observing an
image (Yang et al. 2016; Yin et al. 2018), which indeed ex-
hibits superior performance and psychological interpretabil-
ity at the same time (Zhang et al. 2019a,b).

Chinese-specific Methods
In recent years, the human brain investigations about the
differences between Chinese and phonetic languages have
prompted researchers to explore the uniqueness of Chinese
lansigns (Tan et al. 2000; Hung et al. 2014). Scholars have
found that the low-level features of Chinese characters such
as radical (Sun et al. 2014), pinyin (Wang et al. 2019),
stroke (Cao et al. 2018) and glyph (Wu et al. 2019) also have
certain semantics. By introducing them into word or sen-
tence representation learning, the performance can indeed be
improved. At the same time, for the study of Chinese down-
stream tasks, a proper text modeling method can highlight
the characteristics of Chinese, which is an important factor
to improve the performance (Zhou et al. 2016; Peng, Cam-
bria, and Zou 2017). Lately, Tao et al. (2019) have achieved
impressive results by directly introducing radicals to partic-
ipate in Chinese text representation and classification.

To seek common ground while reserving differences, our
work draws inspirations from cognitive principles between
ideographic radicals and associative behavior, and take ad-
vantages of deep learning to provide a novel insight into the
task of Chinese text modeling and classification.

Radical-guided Associative Model
In this section, we will elaborate on the technical details of
our Radical-guided Associative Model (RAM) for address-
ing the problem of Chinese text classification.
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Figure 2: The overall architecture of our Radical-guided As-
sociative Model (RAM).

Problem Definition
Given an arbitrary unlabeled text T = {x1, x2, ..., xm} and
a pre-defined label set S containing K different labels, the
goal of our task is to train and obtain a classification function
F with the ability to assign a proper label l ∈ S for T :

F(T )→ l, (1)

where xi ∈ T (0 ≤ i ≤ m) stands for the feature vector of
the i-th token in T after text preprocessing.

Overall Architecture of RAM
As shown in Figure 2, RAM mainly comprises two coupled
spaces (i.e., Literal Space and Associative Space), togeth-
er with one Feature Acquisition process and two modules,
namely association and attention. In addition, classification
is implemented in the Prediction component. The technical
details of each part will be elaborated as follows.

Feature Acquisition. In line with the cognitive behavior
of people observing a text and acquiring features shown in
Figure 1, we first propose the Feature Acquisition process to
extract the features required for our model, i.e., characters,
radicals and words. In fact, there are six kinds of Chinese
characters according to “six writings”1, but only the radical-
s of Phono-semantic Compound Characters contain infor-
mative semantics (Tung 2012). Therefore, in this paper, we
mainly pay attention to Phono-semantic Compound Char-
acters and their radicals. Then, we will use these radicals
to obtain corresponding associative words with the help of
three Chinese language dictionaries.
1) Character Type Masking. As intuitively depicted in Fig-
ure 3, given an input Chinese text T containing m char-
acters, we first segment it into a character sequence C =
{c1, c2, ..., cm} according to the string operation, where C
actually stands for the character-level feature of T . Then, by
referring to Chinese Character Type Dictionary (Liang et al.
2019), we are able to label each character with a type tag so
as to realize the Character Type Masking process:

Mask(ci) =

{
1 ci = Cp,

0 ci = Others,
(2)

1https://en.wikipedia.org/wiki/Chinese characters

whereCp represents Phono-semantic Compound Character-
s. Mask(·) denotes the masking function, and ci (0 ≤ i ≤
m) is the i-th character in C.
2) Radical Distilling. After getting the mask code of each
character, we could carry out the following Radical Distill-
ing process. That is to say, in order to extract the radicals that
have significant ideographic effects from text T (i.e., radical-
s of Phono-semantic Compound Characters) and thus help
to convey semantics, we need to remove other useless con-
tents. So, we multiply each character’s mask code with itself
to determine which characters could retain for querying rad-
icals from Chinese dictionary:

R = Radical Query(C �Mask(C)), (3)

where � is an element-wise product operation, and
Radical Query operation allows us to map each Chinese
character into a single radical with the help of Xinhua Dic-
tionary (Han 2009). Additionally, we filter out all the repeat-
ed radicals in R to avoid redundant processing. As a result,
R = {r1, r2, ..., rn} is the distilled radicals of character se-
quence C, where n ∈ [0,m].
3) Radical-Word Association. Instead of using radicals di-
rectly as an additional feature (Tao et al. 2019), we regard
the distilled radicals as the medium for associating highly
relevant associative words that indicate attributes and ex-
tensional meaning. Formally, we call this strategy Radical-
Word Association, which corresponds to the association
module in Figure 2. As a result, associative words con-
nected with Phono-semantic Compound Characters are de-
noted as Words-p (red). By referring to Radical Concept
Dictionary (Hong and Huang 2012), each distilled radical
ri ∈ R = {r1, r2, ..., rn} will correspond to a list of asso-
ciative words:

W r
i = Concept Query(ri) = {wr1, wr2, ..., wrρi}. (4)

Here, ρi ≥ 1 denotes the number of associative words for
ri, which will vary from radical to radical. Therefore, all the
radicals R extracted from text T could form a set of associa-
tive words U = {w1, w2, ..., wλ}:

U =
n
∪
i=1

W r
i , (5)

whereU actually stands for the imported external word-level
feature for T and λ =

∑n
i=1 ρi denotes the total word-

s number of U . Since different radicals may correspond to
the same associative words, the set operation here allows re-
peated associative words to be merged into one.

Literal Space Modeling. Given an input Chinese text T
containing m characters, RAM will literally project it into
a character sequence C = {c1, c2, ..., cm} for subsequen-
t processing (each punctuation will also be regarded as a
character). Then, we devise a deep modeling structure by
harnessing the power of pre-trained BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al.
2018), which has embraced abundant “accumulated experi-
ence” (statistical language information) based on very large
training materials (Dickinson 2012), to obtain the sentence
representation tCLS ∈ R1×D and character representation
TC = {t1, t2, ..., tm} of T as follows:

tCLS , T
C = BERT ([CLS], C), (6)
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Figure 3: An intuitive illustration of the Feature Acquisition
process for Chinese text.

where the first token [CLS] added in front of every sequence
C is always a special classification token, and the final hid-
den state tCLS corresponding to this token is used as the ag-
gregate sequence representation for classification tasks. Be-
cause tCLS acts as the output of BERT for later classifica-
tion, we also use yco to denote it for convenience. Meanwhile,
TC represents the hidden vectors of corresponding m char-
acters contained in text T . Then, we treat the hidden states
of BERT output as the initialization vectors and then send
them together as a sequence into BiLSTM to further learn
the context dependencies, which is depicted in Figure 4.

Formally, we take the rest output of BERT, i.e., TC =
{t1, t2, ..., tm}, as the sophisticated representations for each
character ci (1 ≤ i ≤ m) in C. Afterwards, we apply BiL-
STM to further imitate the conceptual change (Council et al.
2000) under the specific context of TC , which is consisten-
t with the process of people adjusting to a new text based
on their accumulated experience. Thus, given the vector em-
bedding sequence of BERT output TC , the hidden vectors
of BiLSTM are calculated by receiving TC as input:

−→
hi = LSTM(

−→
h i−1, si),

←−
hi = LSTM(

←−
h i+1, si),

yi = concatenate(
−→
hi ,
←−
hi),

(7)

where
−→
hi and

←−
hi denote the forward hidden vector and

backward hidden vector respectively at the i-th time step si
(1 ≤ i ≤ m) in the BiLSTM unit. While yi is the concate-
nation of

−→
hi and

←−
hi . As a result, the final output of BiLSTM

(i.e., ym) will integrate the forward and backward contextu-
al information. For convenience, we also use yc

′

o to denote it
for subsequent calculation.

Figure 4: Diagrammatic sketch of Literal Space modeling.

Associative Space Modeling. As mentioned above, the
ideographic characteristics of Chinese characters are deeply
rooted and ubiquitous (Tan et al. 2000), which is a crucial
factor for readers to associate relevant concepts with radical-
s. Now that we have obtained associative words through the
association module described in Feature Acquisition pro-
cess, we should further represent those words and highlight
the information that we need.
1) Associative Word Embedding. In order to represent the
associative words in concept set U = {w1, w2, ..., wλ} for
subsequent calculation, we need to map each word into a
low-dimension real-value vector. Here, we apply an external
well pre-trained embedding model based on distributional
assumption (Mikolov et al. 2013; Le and Mikolov 2014) and
an Embedding Layer to get the embedding vectors for words
obtained by Radical-word Association:

ERW = Embedding(U) = {erw1 , erw2 , ..., erwλ }, (8)

where λ denotes the total associative words number of U .
2) Attention Mechanism. The attention mechanism in deep
learning is essentially similar to the selective visual attention
mechanism of human beings. In fact, as for reading compre-
hension, people usually tend to first read through the sen-
tence to form a preliminary cognition in their minds, and
then back to select and match the proper concepts based on
the overall context of the sentence (Taatgen et al. 2007). In-
spired by this cognitive process, we design an attention mod-
ule which can focus our model on relatively important asso-
ciative words in U back with the consideration of learned
contextual representation explained before, i.e., yco and yc

′

o .
Formally, we regard yco and yc

′

o as querys,ERW as key and
value at the same time to implement attention mechanism.
That is, given the associative word representations obtained
in Associative Space, i.e., ERW = {erw1 , erw2 , ..., erwλ }, we
use the contextual representations obtained in Literal Space,
i.e., yco and yc

′

o , to attend to each associative word wi ∈ U
and get the attention weight for each erwε ∈ ERW and erwθ ∈
ERW (1 ≤ ε ≤ λ, 1 ≤ θ ≤ λ):

α
′

= [α
′
1, ..., α

′
ε, ..., α

′
λ], α

′
ε = f(yco, e

rw
ε ),

β
′

= [β
′
1, ..., β

′
θ, ..., β

′
λ], β

′
θ = f(yc

′
o , e

rw
θ ),

(9)

where α
′ ∈ R1×λ and β

′ ∈ R1×λ are two vectors forERW
respectively, representing the attention weight from two con-
textual aspects of yco and yc

′

o . Besides, α
′

ε and β
′

θ denote the
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ε-th or the θ-th weight of an associative word respectively,
and f(·, ·) denotes the distance function which is stated as an
element-wise dot product operation in this paper. Then, we
need to normalize α

′
and β

′
with the softmax function:

αi =
exp (α

′
i)∑λ

ε=1 exp (α′
ε)
, where

λ∑
i=1

αi = 1,

βj =
exp (β

′
j)∑λ

θ=1 exp (β
′
θ)
, where

λ∑
j=1

βj = 1.

(10)

Afterwards, the two-aspect attentive representations yrwo and
yrw

′

o for associative words could be obtained through atten-
tive weighted sum as:

yrwo =

λ∑
ε=1

αεe
rw
ε , yrw

′
o =

λ∑
θ=1

βθe
rw
θ , (11)

where αε is the ε-th dimensional value of α ∈ R1×λ, and
βθ is the θ-th dimensional value of β ∈ R1×λ (1 ≤ ε ≤
λ, 1 ≤ θ ≤ λ). Consequently, the attentive representations
yrwo and yrw

′

o have precisely fused the information of Literal
Space and Associative Space together. Like the information
processing in human brain, the attention mechanism herein
is actually a bridge between literal and associative spaces.

Prediction
In order to systematically integrate and fully learn the infor-
mation of the obtained four different representations for Chi-
nese text T : two-aspect contextual representations learned
through literal features, i.e., yco and yc

′

o ; attentive represen-
tations derived from jointly modeling of literal features and
associative words, i.e., yrwo and yrw

′

o , we first conduct a con-
catenation operation:

H = [yco; y
c′
o ; yrwo ; yrw

′
o ], (12)

where H ∈ R1×4D is the vector concatenated through di-
mension with an advantage of retaining all the informa-
tion (Zhang et al. 2019a). Afterwards, we leverage the fully
connected neural network to learn the hidden interactions
and enhancements among these four representations:

O = σ(W (l) ×H + b(l)), σ(x) =
1

1 + e−x
, (13)

where W (l) and b(l) respectively denotes the weight matrix
and bias vector fitted by the fully-connected linear neural
network, and O ∈ R1×K is its output. Note that K repre-
sents the size of label set S which has been stated in Problem
Definition. Finally, the predicted label l could be classified
through the softmax function and argmax operation:

l = argmax(softmax(O)). (14)

Training Strategy
Loss Function. As the multi-class classification task ex-
hibits an output of distribution with different probabilities
on various classes, we need to judge the most significan-
t class and distinguish it from others. According to Zhou et
al. (2016) and Tao et al. (2019), cross-entropy is a good way

to effectively scale the significance of probability distribu-
tion. So, we apply it as our loss function for training RAM:

L = −
∑
T∈D

K∑
i=1

pi(T ) log pi(T ), (15)

where pi(T ) denotes the calculated probability of assigning
label li ∈ S (1 ≤ i ≤ K) for text T , and D is the dataset
which T belongs to.

Model Initialization. Before training, a proper initializa-
tion is beneficial for optimizing our model. The specific set-
ting for hyperparameters are illustrated as follows.

In conjunction with the architecture of RAM, we apply
the pre-trained Chinese BERT model with 24-layer, 1024-
hidden, 16-heads and 330M parameters2. In addition, we ob-
tained a well pre-trained Chinese word embedding model3
with a dimension of 256 for representing associative words
in U . The embedding dimension D is also set as 256, while
the hidden size of BiLSTM is set as 1,024. To prevent our
model from overfitting, we add dropout mechanism in fron-
t of the embedding layer and fully-connected layer with a
drop rate of 0.5. As for the scale size λ of concept set U ,
it is a variable which will be adapted to Radical Concept
Dictionary dynamically. Besides, we randomly initialize the
parameters of BiLSTM and the fully connected neural net-
work. Finally, we apply Adagrad optimizer with a learning
rate of 0.01. During implementation, we use MXNet to build
our model and train it with two 2.30GHz Intel(R) Xeon(R)
Gold 5218 CPUs and a Tesla V100-SXM2-32GB GPU.

Experiments
Dataset Description
To fit the problems studied in this paper, we selected two
real-world datasets to evaluate our model: the Chinese News
Title Dataset (CNT) and Fudan Chinese Text Dataset (FC-
T). To ensure reproducibility, the segmentation ratio of the
training set and testing set of these two datasets are consis-
tent with the public ones.
• CNT (Zhou et al. 2016) is a public dataset which covers a wide

range of 32 different categories of Chinese news. After prepro-
cessing and filtering the useless text whose length is lower than
2, it contains 47,693 texts for taining and 15,901 for testing,
which is a quite ideal choice for validating the robustness of
different methods.

• FCT4 is an official dataset provided by Fudan University with 20
categories covering abundant academic texts for validation. To
guarantee the quality of implementation, we carefully prepro-
cessed this dataset by correcting and removing unreadable sam-
ples. As a result, it contains 8,220 texts for training and 8,115
for testing.

Dictionary Preparation
In order to guarantee the reliability of our model, we apply
three formal Chinese Dictionary datasets to support the pro-
cess of Character Type Masking, Radical Mapping and Con-
ceptual Mapping process. Accordingly, Chinese Character

2https://github.com/ymcui/Chinese-BERT-wwm
3https://spaces.ac.cn/archives/4304
4https://www.kesci.com/home/dataset/5d3a9c86cf76a600360edd04
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Methods CNT FCT
Accuracy Recall F1-score ∆F1 (%) Accuracy Recall F1-score ∆F1 (%)

(1) TextCNN (char) 0.6123 0.6127 0.6059 -39.71 0.7481 0.4041 0.4095 -104.73
(2) TextCNN (word) 0.7706 0.7707 0.7695 -10.00 0.9012 0.6270 0.6643 -26.20
(3) TextRNN (char) 0.6992 0.6993 0.6995 -21.01 0.8361 0.4925 0.5174 -62.04
(4) TextRNN (word) 0.8023 0.8025 0.8025 -5.47 0.8704 0.5149 0.5372 -56.05
(5) BERT (char, fine-tuned) 0.8124 0.8120 0.8117 -4.29 0.9096 0.7635 0.7910 -5.98
(6) C-LSTM (char+word) 0.8186 0.8187 0.8183 -3.45 0.9204 0.6856 0.7218 -16.15
(7) C-BLSTM (char+word) 0.8230 0.8231 0.8225 -2.91 0.9204 0.6847 0.7216 -16.18
(8) RAFG (char+word+radical) 0.8324 0.8325 0.8325 -1.68 0.9241 0.7140 0.7408 -13.17
(9) RAM (char+word+radical) 0.8464 0.8461 0.8465 - 0.9423 0.8058 0.8383 -

Table 1: Experimental results of comparison methods on CNT dataset and FCT dataset.

Type Dictionary5 contains all the information about Phono-
semantic Compound Characters; Xinhua Dictionary6 con-
tains the necessary radical information for mapping each
character to a radical; Radical Concepts Dictionary7 in-
cludes detailed conceptual information for all Chinese rad-
icals, with over 1,000 concept words in total and 6 concept
words for each radical on average.

Comparison Methods
• TextRNN (char/word) (Mikolov et al. 2011) refers to the plain

recurrent neural network which processes tokens sequentially.
To compare the functionality of Chinese feature granularity in
different scenarios, we set character-level and word-level feature
as the input respectively.

• TextCNN (char/word) (Kim 2014) is a convolutional neural
network-based model for text classification. With the same aim
of comparision like TextRNN, the input is also set as two kinds,
i.e., character-level and word-level. We apply jieba8 as the seg-
mentation tool to obtain the word-level feature.

• C-LSTMs / C-BLSTMs (Zhou et al. 2016) are two Chinese-
specific text classification models applying two independent L-
STMs to concatenate word and character features together. Since
both characters and words are important features for Chinese
text, they make up for the disadvantages of using one kind of
feature unilaterally. And C-BLSTMs is the bidirectional version
of C-LSTMs.

• BERT (Devlin et al. 2018) stands for the current state-of-the-
art pre-training model for natural language processing, which is
usually applied in English materials and performs well. We here
take it as an important baseline and fine-tune it to validate the
rationality and effectiveness of the design of our RAM model.

• RAFG (Tao et al. 2019) is another Chinese-specific text classifi-
cation method. This SOTA baseline is a four-granularity model,
which proposes two extra kinds of radicals (character-level and
word-level radicals) together with corresponding Chinese char-
acters and words to help Chinese text classification. In fact, we
might know that radical is a special low-level feature which does
not possess the property of “context”, so the way of RAFG di-
rectly integrating radicals with Chinese characters and words is
somewhat imperfect and taking every radical into consideration
is a little irrational. To utilize radicals more properly and avoid
the hidden adverse effects of wrong Chinese word segmentation

5http://zidian.kxue.com/
6http://zidian.aies.cn/
7http://xh.5156edu.com/page/z2443m7618j19616.html
8https://github.com/fxsjy/jieba

(CWS), we systematically design the Radical-Word Association
strategy to regard radicals as a kind of medium for associating
prior concept words, which could filter out uninformative radi-
cals through Radical Distilling process and provide a more ra-
tional way for utilizing radicals.

Experimental Results
The comparison results on two datasets are shown in Ta-
ble 1. The results are quite revealing in several ways, from
which we can see that our RAM model is able to substan-
tially achieve the best results on both datasets, no matter
in terms of Accuracy, Recall or F1-score. This proves that
RAM has gained a better comprehension of Chinese texts,
hence the performance is boosted. However, there are still
some thought-provoking findings in this table.

Firstly, by comparing Chinese-specific methods (6-9)
with those non-Chinese-specific ones (1-5), we could no-
tice that the feature granularity of Chinese text is a crucial
factor for classification performance: utilizing character or
word feature unilaterally is worse than combing them to-
gether, which proves that they can make up for each other
and meanwhile Chinese word segmentation may cause loss
of information unavoidably. But secondly, we could infer
from Table 1 that although BERT (5) only takes Chinese
characters as input, it can maintain a stable performance on
both datasets (more stable ∆F1), which confirms that after
large-scale corpus pre-training, character-level features can
also obtain better robustness when faced with different cor-
pora. These findings are quite consistent with the study in (Li
et al. 2019b). Thirdly, looking back on our modeling of the
three features in Chinese (character, radical and word), we
can find that we only use the character features of Chinese
text literally, and meanwhile the word features are associated
via the medium of radical. This process perfectly avoids the
adverse effects of Chinese word segmentation errors, which
plays a non-negligible role in promoting the performance of
RAM. Fourthly, the results are clear that RAM has a com-
prehensive improvement in performance compared with the
most advanced BERT, which shows that our modeling strat-
egy based on cognitive principles can better grasp the pur-
port of Chinese text. Last but not least, through the compar-
ison between RAFG and RAM, we could learn that a more
rational method of utilizing radicals is beneficial for better
understanding hence harnessing the messages conveyed by
radicals, especially in terms of cognitive modeling.

13903



Methods CNT FCT
Accuracy Recall F1-score ∆F1 (%) Accuracy Recall F1-score ∆F1 (%)

(1) RAM-association 0.8433 0.8436 0.8426 -0.46 0.9420 0.7953 0.8334 -0.59
(2) RAM-attention 0.8445 0.8450 0.8442 -0.27 0.9405 0.7937 0.8350 -0.40
(3) RAM 0.8464 0.8461 0.8465 - 0.9423 0.8058 0.8383 -

Table 2: Ablation results of RAM: (1) RAM without the association module (whole associative space modeling); (2) RAM
without the attention module (attention mechanism for sorting associative words in the light of given context).

Figure 5: A case study for some Chinese source texts, where the Phono-semantic Compound Characters are all painted in red.

Ablation Study & Case Study
As mentioned earlier, RAM is solidly based on the cogni-
tive principles between ideography and human associative
behavior (Ellis 2019). To validate the design of RAM and
determine how each module affects the final results, we con-
duct an ablation study by removing each module respective-
ly, which is summarized in Table 2. According to the results,
we observe an obvious decline in the performance of RAM
on both datasets no matter the attention module or the asso-
ciative module is removed, which indeed verifies the neces-
sity of each module. Meanwhile, we can see that removing
the association module leads to more performance degrada-
tion, which further validates the importance of accumulated
experience and highlights the essential role of association
mechanism in language comprehension.

To provide some intuitionistic examples for explaining
why our model gains a better performance than any other
baseline methods, we conduct a case study similar with (Qin
et al. 2018, 2020) to see what is happening in the working
flow of RAM, where the specific cases could be found in
Figure 5. Taking the first example to say, we notice that as-
sociative words and literal features can enhance each oth-
er, i.e., associative words “plant” and “agriculture” asso-
ciated by RAM are important clues for inferring the con-
cept of “Eggplant”, while other associative words (e.g., “ac-
tion” suggests the attribute of “salvation”, and “liquid” indi-
cates the property of “sauce”) could be regarded as comple-
mentary contents for source text thus helping us grasp less
prominent but global semantics. Then, for the second exam-
ple, associative words “vegetation”, “material” and “hair”
globally reflect the trait of “fur”, while “condition”, “prop-
erty” and “time” together help us recognize the semantics of
“fashion” hence lead us to the idea of “Dress”. Moreover, as
for the remaining two examples, we could also know that the
abstract concepts provided by associative words are most-
ly informative indicators for determining the ground truths.

Although there might be some associative words which are
not directly related to the semantics of ground truths (e.g.,
“liquid” for “Dress” and “weave” for “Sports”), those words
actually reflect the original meaning of corresponding radi-
cals, which will be balanced under the attention module and
maybe helpful in another context. In fact, when we human-
s are associating related concepts to help text comprehen-
sion in our minds, we tend to think of all possible mean-
ings. This is similar to the unconscious iceberg effect (Freud
2005; Rogers 2014), i.e., although some associative contents
seem to be irrelevant to the classification ground truth of cur-
rent text, the sufficient associative information is actually a
key hidden factor to grasp original meanings of character-
s and ensure the understanding robustness. In summary, all
the above findings could finally enable us to confirm the ra-
tionality and effectiveness of our model.

Conclusion
In this paper, we conducted an explorative but focused s-
tudy on Chinese text classification from a cognitive view-
point of human beings, and proposed a novel Radical-guided
Associative Model (RAM) for this task. RAM comprises t-
wo coupled spaces called Literal Space and Associative S-
pace, which ideally imitates the real process in people’s
mind when understanding a Chinese text. Through extensive
experiments, our study has gone some way towards enhanc-
ing our understanding of Chinese and human cognition.
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