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Is Heuristic Sampling Necessary in Training
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Abstract— To train accurate deep object detectors under the
extreme foreground-background imbalance, heuristic sampling
methods are always necessary, which either re-sample a subset
of all training samples (hard sampling methods, e.g. biased
sampling, OHEM), or use all training samples but re-weight
them discriminatively (soft sampling methods, e.g. Focal Loss,
GHM). In this paper, we challenge the necessity of such hard/soft
sampling methods for training accurate deep object detectors.
While previous studies have shown that training detectors without
heuristic sampling methods would significantly degrade accuracy,
we reveal that this degradation comes from an unreasonable
classification gradient magnitude caused by the imbalance, rather
than a lack of re-sampling/re-weighting. Motivated by our discov-
ery, we propose a simple yet effective Sampling-Free mechanism
to achieve a reasonable classification gradient magnitude by
initialization and loss scaling. Unlike heuristic sampling methods
with multiple hyperparameters, our Sampling-Free mechanism
is fully data diagnostic, without laborious hyperparameters
searching. We verify the effectiveness of our method in train-
ing anchor-based and anchor-free object detectors, where our
method always achieves higher detection accuracy than heuristic
sampling methods on COCO and PASCAL VOC datasets. Our
Sampling-Free mechanism provides a new perspective to address
the foreground-background imbalance. Our code is released at
https://github.com/ChenJoya/sampling-free.
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I. INTRODUCTION

W ITH the development of deep learning [1], [2],
recent years have witnessed remarkable advancement

in object detection [3]. Among them, representative suc-
cesses include two-stage R-CNN detectors [4]–[15]: their
first stage uses a region proposal network (RPN [4]) to
generate some candidates from dense, predefined bounding-
boxes (i.e. anchors), then the second stage uses a region-of-
interest subnetwork (RoI-subnet) for object classification and
localization. To pursue higher efficiency, one-stage approaches
[16]–[23] directly recognize objects from dense anchors rather
than generating candidate proposals. Both two-stage and one-
stage detectors adopt the anchoring scheme, where massive
anchors (∼105) are uniformly sampled over an image.

Nevertheless, when training these anchor-based detectors,
only a few anchors (∼102) that highly overlap with objects
will be assigned to foreground samples, which always results
in an extreme imbalance between foreground and background
(i.e. fg-bg imbalance) within the anchors. In previous stud-
ies [17], [24], such imbalance may impede the training from
convergence, as well as limit the detection accuracy. More
recently, anchor-free object detectors [11], [14], [25]–[33] have
gained much attention due to the replacement of anchors by
points (e.g. corner/center points), but they still suffer from the
similar imbalance within the points.

To address the fg-bg imbalance, several heuristic methods
have been proposed to train deep object detectors in recent
years. These methods can be divided into two categories.
The first category re-samples a subset of training samples,
e.g. biased sampling [4], online hard example mining [34]
(OHEM), IoU-balanced sampling [12]. The second category
re-weights training samples discriminatively, i.e. assigns differ-
ent weights to different training samples, like Focal Loss [17],
gradient harmonizing mechanism [24] (GHM), prime sample
attention mechanism [35] (PISA). According to [36], these
two categories can be named “hard sampling methods” and
“soft sampling methods,” respectively. We also use the term
“heuristic sampling methods” to refer to them in the following.

Although deep object detectors are always equipped with
heuristic sampling methods, it is still very difficult to design a
suitable hard/soft sampling strategy. Each heuristic sampling
methods have a different re-sampling/re-weighting method —
as it is unknown which sample and what weighting value is
better. For example, in GHM [24], the authors hold the opinion
that the optimal distribution of gradient is hard to define
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Fig. 1. This figure illustrates the differences between heuristic sampling methods and the Sampling-Free mechanism in the treatment of training samples.
Here we use the bounding-boxes to denote training samples (e.g. anchors) in object detection. (a) Hard sampling (e.g. biased sampling [4], OHEM [34],
IoU-balanced sampling [12]) re-samples a subset of training samples; (b) Soft sampling (e.g. Focal Loss [17], GHM [24], PISA [35]) uses all training samples
but focuses on some of them by re-weighting. For instance, thicker boxes in (b) denote training samples with higher weights. (c) Sampling-Free equally uses
all training samples.

and requires further research. Moreover, heuristic sampling
methods always introduce multiple hyperparameters, which
requires laborious searching.

Can we discard heuristic sampling methods when train-
ing deep object detectors? In the past, it was demonstrated
[17], [24] that the detector without heuristic sampling methods
will suffer from the extreme fg-bg imbalance, which would
trail the detector with heuristic sampling methods about 20%
detection accuracy. Some methods [23], [33], [37]–[40] adap-
tively define foreground/background labels to anchors/points,
but they still rely on heuristic sampling methods to address the
fg-bg imbalance. Other ranking-based methods [41]–[43] try
to avoid the fg-bg imbalance by transforming the classification
task into the ranking task, but they select pairs of N samples to
train, thus have much greater computational cost than heuristic
sampling methods (O(N2) vs. O(N)). It seems impossible to
make a cost-free replacement of heuristic sampling methods
when training a deep object detector.

In this paper, we discover that a reasonable classifica-
tion gradient magnitude is the key to address the fg-bg
imbalance, rather than hard/soft sampling. Motivated by this,
we propose a simple yet effective Sampling-Free mechanism
that adaptively controls the classification gradient magnitude
by initialization and loss scaling techniques, which enables
discarding heuristic sampling methods but achieves better
accuracy. Specifically, at the start of the training, the optimal
bias initialization is used to reduce the excessive classification
gradient magnitude caused by fg-bg imbalance. During the
training process, we leverage the bounding-box regression
loss to adjust the classification loss, to achieve an adaptive
adjustment for the classification gradient magnitude. As shown

in Fig. 1, unlike heuristic sampling methods, our method treats
all training samples equally, without any hyperparameters
introduced.

Experimental results on COCO [44] and PASCAL
VOC [45] datasets have demonstrated that our method is
effective for both anchor-based and anchor-free object detec-
tors, which always achieves higher detection accuracy than
heuristic sampling methods. By replacing Focal Loss [17] with
Sampling-Free in the adaptive label assignment strategy [39],
we obtain a state-of-the-art 49.6 AP on COCO test-dev,
without bells and whistles. Sampling-Free is also generalized
for the instance segmentation task, which helps Mask R-CNN
to obtain better segmentation accuracy. Moreover, no hyper-
parameter is introduced in our method. Our Sampling-Free
mechanism provides a new perspective to address the fg-bg
imbalance.

Our main contributions are as follows:
• For the first time, we discover what prevents detectors

without heuristic sampling methods from achieving good
accuracy — the unreasonable classification gradient mag-
nitude under the fg-bg imbalance, rather than the lack of
re-sampling/re-weighting on training samples.

• We propose a novel Sampling-Free mechanism that
enables training deep object detectors without heuristic sam-
pling methods. It adaptively controls the classification gradient
magnitude by initialization and loss scaling, which is easy to
implement and introduces no hyperparameters.

• Collaborating with Sampling-Free mechanism, it is fea-
sible to train deep object detectors without any hard/soft
sampling methods and achieve better results on COCO and
PASCAL VOC benchmarks.
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II. RELATED WORK

Classical object detectors [46], [47] usually rely on hand-
crafted feature extractor, which is hard to design. With the
development of deep learning [1], [2], deep object detectors
quickly come to dominate object detection. In this section,
we introduce the development of deep object detectors, then
introduce the concept, cause, and solution of the fg-bg imbal-
ance. Finally, we discuss the relations and differences between
our work and previous works.

A. Deep Object Detection

Among deep object detectors, the anchor-based approach
is the most popular approach, which tiles massive default
bounding-boxes (i.e. anchors) on an image to cover objects.
There are mainly two types of anchor-based approaches:

1) Two-Stage Anchor-Based: It is popularized by Faster
R-CNN [4], which firstly generates some candidates from
massive anchors by region proposal network (RPN [4]), then
determines the accurate location and object category by a
subnetwork (RoI-subnet [48], [49]). A large number of Faster
R-CNN variants [5]–[15] appear over the years, yielding a
large improvement in detection accuracy.

2) One-Stage Anchor-Based: It is popularized by SSD [50],
which performs much faster than two-stage detectors due
to the elimination of the RPN, but usually achieves lower
accuracy than two-stage detectors. A series of advances
[16]–[23], [40] in recent years promote one-stage anchor-based
detector to be more accurate.

In recent years, a large number of anchor-free approaches
are proposed, which detect objects by points or regions rather
than anchors. Most anchor-free object detectors follow the
one-stage detection pipeline but eliminate the usage and hyper-
parameters of “anchor boxes”, which shows better simplicity.
Although the differences among anchor-free detectors are
much smaller than the differences between one-stage and two-
stage anchor-based detectors, there are some subtle differences
in the definition of training samples among different anchor-
free detectors. Specifically, some of the anchor-free approaches
detect objects by generating bounding-boxes according to pre-
defined or self-learned keypoints. The early attempt of pre-
defined points is CornerNet [25], which uses the top-left
corner and bottom-right corner to represent objects. After
that, researchers use various pre-defined points to represent
objects, such as extreme points [26], grid points [11], center
points [27], [28], and self-learned points [29], [30]. Oth-
ers [14], [31]–[33] try to learn the position of the object center,
and then regress the distances from the center to the four sides
of the object bounding-box for detection. The most popular
center-based anchor-free detector is FCOS [31], which regards
all the locations around the center of objects as foreground
examples. GA-RPN [14] successfully designs an anchor-free
RPN in the two-stage pipeline.

B. Foreground-Background Imbalance Problem

Training a deep object detector involves two tasks: classifi-
cation and localization. For classification, the number of back-
ground examples is much larger than foreground examples,

which is known as the fg-bg imbalance [17]. We introduce it
in the different label assignment strategy:

1) fg-bg Imbalance in Fixed Label Assignment: In the fixed
label assignment [4], [25], [31], [50], there is a pre-defined
rule to assign a training sample to a fg/bg example. For
instance, the anchor-based approach usually considers anchors
that have large intersection-over-union (IoU) with ground-
truths as foreground examples (e.g. IoU>0.5). The anchor-free
approach usually regards points around the center as fore-
ground examples. However, the total number of anchors/points
is always huge, which may be 103∼104 times more than
foreground anchors/points. Therefore, during training, the
fg-bg imbalance inevitably occurs in the classification task.

2) fg-bg Imbalance in Adaptive Label Assignment:
Recently, several adaptive label assignment methods [23], [33],
[37]–[40] are proposed to overcome the limitations of fixed
label assignment. However, they still suffer from extreme fg-bg
imbalance. For example, FreeAnchor [23] claims that it faces
an even more serious sample imbalance than RetinaNet [17].
These methods still rely on Focal Loss [17] to address the
fg-bg imbalance in the classification task.

C. Solutions for Foreground-Background Imbalance

As we can see, the fg-bg imbalance always exists in training
deep object detectors, which impedes deep object detectors
from achieving higher accuracy as reported in [17], [24].
In previous works, there are three solutions:

1) Sampling Methods: It is the most common solution for
fg-bg imbalance, which has two groups [36] — hard sampling
and soft sampling. The hard sampling method re-samples
a set of training samples by some strategies. For example,
biased sampling [4] randomly samples 256 examples with
1:1 fg-to-bg ratio during training RPN. OHEM [34] and
IoU-balanced sampling [12] selects training samples according
to loss and IoU values, respectively. The objectness [16],
[19], [20] modules, generative methods [51], [52] can also be
regarded as hard sampling methods. Soft sampling re-weights
training samples discriminatively by some strategies. Focal
Loss [17] dynamically assigns higher weight to the hard
training samples (i.e. with high loss value). Similar to Focal
Loss, GHM [24] suppresses gradients originating from easy
and very hard training samples (i.e. with low loss value).
PISA [35] re-weights training samples according to the IoU
between training samples and ground-truths.

2) Classification to Ranking: As the fg-bg imbalance
always exists in classification task in deep object detectors,
AP Loss [41] and DR Loss [42] propose to convert the
classification task into ranking task. These methods train a
pair of samples rather than independent sample. Specifically,
the predicted score of one training sample is transformed into
the difference between the predicted scores of two training
samples. These methods are also quite in line with the detec-
tion evaluation metric (average precision, AP).

To date, almost all deep object detectors are equipped with
sampling methods during training. The ranking task, however,
trains pairs of N examples thus has O(N2) computational cost,
which is much higher than O(N) cost of the classification
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TABLE I

COMPARISON OF DIFFERENT CLASSIFICATION LOSS FUNCTIONS IN
OBJECT DETECTION. THIS TABLE COMES FROM “GRADIENT

HARMONIZED SINGLE-STAGE DETECTOR” [24]

task. Although sampling methods are popular, the re-sampling/
re-weighting strategy is hard to design, and both sampling
methods and ranking-based methods require laborious hyper-
parameter tuning. Our work overcomes these shortcomings,
which discards sampling methods in the classification task
without any hyperparameters introduced.

III. INVESTIGATION

As shown in Table I, it was believed [17], [24] that under
the fg-bg imbalance, training a deep object detector without
heuristic sampling methods will lead to a nearly 20% decrease
in the detection accuracy. In this section, we will investigate
why this is the case. It will be revealed that the decrease should
be attributed to the unreasonable gradient magnitude, rather
than the lack of re-sampling/re-weighting on training samples.

In the following, we first mathematically introduce fg-bg
imbalance and sampling methods, then theoretically analyze
their impact on the training process. Finally, we experimentally
demonstrate that the gradient magnitude is the key factor
affecting the detector accuracy.

A. Concepts

1) Foreground-Background Imbalance: In general, deep
object detectors tend to generate numerous samples to cover
as many objects as possible. Although there are various label
assignment strategies [4], [17], [23], [38], [39] to define
foreground and background samples, the imbalance between
foreground and background samples will be inevitably caused
due to the rarity of objects and the majority of samples,
namely foreground-background (fg-bg) imbalance. In other
words, the number of foreground samples N f is much smaller
than that of background samples Nb (i.e. N f � Nb). Unlike
the common class imbalance caused by the biased dataset,
the fg-bg imbalance is more likely to be introduced by the
“numerous” sample generation strategy. Thus, for a deep
object detector, the fg-bg imbalance is similarly distributed
during training and inference, as the detector always shares
the same sample generation strategy in those two phases.

2) Heuristic Sampling Methods: Whether hard or soft sam-
pling, the essence is to re-sample or re-weight training samples
in the loss computation. If we regard hard sampling as soft
sampling with weights 0 or 1, both of them be summarized as

L = s
N∑

i

wi li , (1)

where L denotes the overall training loss for a batch, and s
is a scaling term. wi and li are the weight and the loss of

i -th sample in a batch, respectively. In general, deep object
detectors uses cross-entropy (CE) loss as li in the classification
task, i.e.

L = −s
N∑

i

wi [yi log(pi ) + (1 − yi ) log(1 − pi )], (2)

where yi is the ground-truth label for i -th sample: yi = 1 if
it is foreground, otherwise yi = 0. pi is the confidence score,
ranging from 0 to 1. Since the weights for foreground and
background samples usually have different forms, Equation 2
can be further rewritten as

L = −s
N∑

i

yiw
f

i log(pi) + (1 − yi )w
b
i log(1 − pi), (3)

where the notations f and b denote foreground and back-
ground, respectively. Equation 3 can also describe the train-
ing loss without sampling methods. In that case, we have

w
f

i = wb
i = 1 for all training samples.

B. Analysis

As most deep object detectors are trained with mini-batch
stochastic gradient descent (mini-batch SGD), we discuss here
the effect of the fg-bg imbalance and heuristic sampling
methods on mini-batch SGD training. For each iteration,
the learnable parameters � of the detector will be updated
in the direction of the gradient, i.e.

�t+1 = �t − η
∂L

∂�t
, (4)

where �t denotes the parameters in t-th step, and η is the
learning rate. According to Equation 3, the gradient can be
further expressed as

∂L

∂�t
= −s

N∑

i

yi
∂ [w f

i log(pi)]
∂�t

+(1 − yi )
∂ [wb

i log(1 − pi )]
∂�t

. (5)

As the exact form of the parameters �t is unknown,
a quantitative analysis for mini-batch SGD training seems
impossible, especially after multiple training iterations. There-
fore, in the following, we turn to analyze the case at the start
of the training. We denote the learning parameters at the start
of the training as �s . At this point, �s cannot distinguish
foreground samples from background samples. In other words,
the detector outputs similar confidence scores pi ≈ p for all
samples. Then, we have

∂L

∂�s
≈ −s

N∑

i

yi
∂ [w f

i log(p)]
∂�s

+(1 − yi )
∂ [wb

i log(1 − p)]
∂�s

≈ −s
N∑

i

yi [∂w
f

i

∂�s
log(p) + w

f
i

p

∂p

∂�s
]

+(1 − yi )[∂wb
i

∂�s
log(1 − p) − wb

i

1 − p

∂p

∂�s
]. (6)
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If the weights w
f

i and wb
i are constants, Equation 6 would

be simple as
∂w

f
i

∂�s = ∂wb
i

∂�s = 0. However, in most soft sampling
methods [17], [24], [35], the weight of a training sample is
usually dynamic that may depend on confidence scores, IoU
scores, and training iterations. Therefore, we would like to
discuss the training cases of constant weights and dynamic
weights, respectively.

1) Constant Weights: In this case, we have w
f

i = w f ,

wb
i = wb for any i , where w f and wb are constants. Thus,

we also have
∂w

f
i

∂�s = ∂wb
i

∂�s = 0, and Equation 6 can be derived
as

∂L

∂�s
≈ −s

N∑

i

yi
w f

p

∂p

∂�s
− (1 − yi )

wb

1 − p

∂p

∂�s

= −s(N f w f

p
− Nb wb

1 − p
)

∂p

∂�s
, (7)

where N f and Nb are the number of foreground and back-
ground training samples in a training iteration, respectively.
Following [53], we use || · || to denote the L2-norm of a gra-
dient vector, which represent its magnitude. From Equation 7,
the gradient magnitude is

|| ∂L

∂�s
|| ≈ s|N f w f

p
− Nb wb

1 − p
| · || ∂p

∂�s
||. (8)

If �s is not biased, the initial estimate for both foreground
and background samples are p = 0.5, then we have

|| ∂L

∂�s
(p = 0.5)|| ≈ 2s|N f w f − Nbwb| · || ∂p

∂�s
||. (9)

When heuristic sampling methods are not used,
i.e. w

f
i = wb

i = 1, the gradient magnitude of the fg-bg
imbalance case (N f � Nb) will be much larger than that of
the balanced case (N f ≈ Nb). Thus, if we train a detector
without heuristic sampling methods, the fg-bg imbalance will
result in a much larger gradient magnitude at the start of the
training. If the scaling term s is not set properly, it may lead
to training divergence. Compared with the gradient magnitude
with heuristic sampling methods, the weighting terms w f

and wb can alleviate the imbalance between N f and Nb , thus
leading to better stability at the start of the training.

2) Dynamic Weights: In this case, we take the well-known
Focal Loss [17] as an example, which proposes a unified
representation of the weighting term as αt (1− pt)

γ . When we
apply it separately for foreground and background samples,
we have w

f
i = α(1 − pi )

γ and wb
i = (1 − α)pγ

i . Here α
and γ are the hyperparameters in Focal Loss for adaptively
re-weighting training samples. As pi ≈ p at the start of the

training, we have w
f

i ≈ α(1− p)γ and wb
i ≈ (1−α)pγ . Then,

Equation 6 can be derived as

∂ F L

∂�s
≈ −s

N∑

i

yi
∂p

∂�s
[∂w

f
i

∂p
log(p) + w

f
i

p
]

+ (1 − yi)
∂p

∂�s
[∂wb

i

∂p
log(1 − p) − wb

i

1 − p
]

≈ −s
∂p

∂�s

N∑

i

yiα(1 − p)γ−1[−γ log(p) + 1 − p

p
]

+(1 − yi )(1 − α)pγ−1[γ log(1 − p) − p

1 − p
]

≈ −s
∂p

∂�s
{N f α(1 − p)γ−1[−γ log(p) + 1 − p

p
]

+Nb(1 − α)pγ−1[γ log(1 − p) − p

1 − p
]}, (10)

where F L denotes Focal Loss. As reported in [17], the best
setting of Focal Loss is α = 0.25, γ = 2 on COCO
dataset [44], and Focal Loss uses a biased initialization to
ensure p ≈ 0.01. With these values, the gradient magnitude
can be computed as

||∂ F L

∂�s
|| ≈ 2s|10N f − 10−4 Nb | · || ∂p

∂�s
||. (11)

As we can see, the RHS (right hand side) of Equation 11
is equal to the RHS of Equation 9 by setting w f = 10,
wb = 10−4. Coincidentally, for COCO [44] dataset, a training
anchor will learn 80 binary classifies for 80 object classes.
In our observation, the fg-to-bg ratio of training anchor is
1 : 103, thus Nb

N f ≈ 8 × 104, which is close to w f

wb = 105.
As we can see, Focal Loss also tries to alleviate the imbal-
ance between N f and Nb , to obtain a reasonable gradient
magnitude.

However, this does not mean that it is impossible to train the
detector without heuristic sampling methods. In fact, we can
reduce s to lower the excessive gradient magnitude. But this
in turn creates the dilemma of too small gradient magnitude.
Specifically, when we set a small sm as the scaling factor
to train a detector without heuristic sampling methods, as
N f � Nb , p will rapidly approach p ≈ N f

N f +Nb to achieve a

minimal loss value, and the gradient magnitude

|| ∂L

∂�s
(w f = wb = 1, s = sm)||

≈ sm | N f

p
− Nb

1 − p
| · || ∂p

∂�s
|| (12)

will be greatly decreased. At this point, sm becomes unrea-
sonable and we should set a large scaling factor. It is not
surprising why most effective heuristic sampling methods are
dynamic, like Focal Loss [17] and GHM [24].

To sum up, it is essential to control the gradient mag-
nitude in the classification task when training a detec-
tor without heuristic sampling methods. As illustrated in
[43], [54], the gradient magnitude will have a significant
impact on the performance of multi-task learning. Object
detection usually involves two or more tasks, the unreasonable
gradient magnitude on the classification task affects not only
itself but also other tasks. But in fact, we have various ways
to control the gradient magnitude, and the heuristic sampling
method is not the only choice.

Furthermore, the fg-bg imbalance, as we illustrated in
Sec. III-A, also has the similar distribution in training and
inference. If we use heuristic sampling methods during train-
ing, then it is equivalent to breaking the consistency of this
distribution. In other words, �e is obtained from the weighted
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imbalance distribution, which may not perform well in the
vanilla imbalance distribution. Next, we will experimentally
explore how to train deep object detectors without heuristic
sampling methods.

C. Experimental Verification

To investigate the accuracy gap between the detector with
and without sampling methods, we experimentally investigate
the difference between well-known Focal Loss [17] and CE
loss. Focal Loss is widely used to address the fg-bg imbal-
ance in the one-stage anchor-based and anchor-free object
detectors [14], [17], [22], [23], [25]–[33], [40]. In previous
studies [17], [24], Focal Loss helps RetinaNet [17] to yield
4∼7 higher AP on COCO [44] than CE loss. For simplicity,
we denote the RetinaNet with Focal Loss and CE loss as
RetinaNet-FL and RetinaNet-CE, respectively.

Two differences exist between RetinaNet-FL and RetinaNet-
CE, one of which is the classification loss. Specifically,
RetinaNet-FL and RetinaNet-CE use Focal Loss (L F L) and CE
loss (LC E ) in the classification task, respectively. Following
the notations in Sec. III-A and Sec. III-B, we have

L F L = 1

N f

N∑

i=1

wi li , LC E = 1

N f

N∑

i=1

li , (13)

where wi is the weighting term, and wi = α(1 − pi )
γ if

i -th training sample is foreground, otherwise wi = (1−α)pγ
i .

Another difference between RetinaNet-FL and
RetinaNet-CE is the initialization. Focal Loss uses a
biased initialization that initializes the final classification
convolutional layer with the bias b = − log 1−π

π . Then, at the
start of the training, pi = π is tenable for every training
anchor as pi is computed by sigmoid activation. A heuristic
value π = 10−2 is used in Focal Loss to avoid network
diverging. Unfortunately, this will result in network diverging
during training RetinaNet-CE. We will also explore how to
adjust π in the following.

1) Classification Loss: Our first discovery is that
RetinaNet-CE has poor stability on the classification
loss, which reflects the unreasonable classification gradient
magnitude. This phenomenon corresponds to our discovery
in Sec. III-B. Training RetinaNet-CE with default π = 10−2

causes a large classification loss, with the network diverging
in a few iterations. See Fig. 2, we observe that RetinaNet-FL
can be stably trained, but training RetinaNet-CE needs to
carefully tune π and s to avoid the large classification loss.
Only with specific settings, we can obtain several converged
models, as shown in Fig. 2.

2) Detection Accuracy: Our second discovery is that the
classification loss scale will greatly influence the accuracy of
the RetinaNet-CE. As shown in Table IIa, if a model can be
stably trained, then its accuracy will be similar when s is
fixed, but tuning s leads to great changes in AP. Table IIb
shows that RetinaNet-CE with π = 10−5, s = 10−1 has
already achieved the comparable accuracy of RetinaNet-FL
(36.3 AP vs. 36.4 AP). This is an inspiring result, as previous
works [17], [24] reported there is a 4∼7 AP gap between CE
loss and Focal Loss. Our investigation successfully narrows

TABLE II

DETECTION ACCURACY OF CE LOSS ON COCO minival, WITH
DIFFERENT s AND π . “N/A” REFERS TO

THE NETWORK DIVERGING

this gap. However, it is still unknown why adjusting π and
s can help to train RetinaNet-CE. Next, we will perform an
analysis of this.

3) Analysis: At the start of the training, the bias initializa-
tion ensures pi ≈ π for each training sample. According to
Eq. 2 and Eq. 13, we can estimate L F L as

L F L ≈−α(1 − π)s log(π)−(1−α)π s Nb

N f
log(1 − π), (14)

and estimate LC E as

sLC E ≈ −s log(π) − s
Nb

N f
log(1 − π). (15)

For COCO [44] dataset, a training anchor will learn
80 binary classifies for 80 object classes. In our observa-
tion, the fg-to-bg ratio of training anchor is 1 : 103, thus
Nb

N f ≈ 103 × 80. With α = 0.25, s = 2, π = 10−2 in
training RetinaNet-FL, and s = 10−1, π = 10−5 in training
RetinaNet-CE, we can estimate L F L and LC E quantitatively as

L F L ≈ 1.19, and LC E ≈ 1.23, (16)

where the two values are very close. Since the loss scale can
reflect the gradient magnitude, we believe that the similar
gradient magnitude is the reason for RetinaNet-CE with
s = 10−1, π = 10−5 achieves AP comparable to that of
RetinaNet-FL. Moreover, this setting also facilitates multi-task
learning. See Fig. 3a, RetinaNet-FL achieves a quite good
balance between the localization loss L L OC and L F L , whereas
Fig. 3b shows that only RetinaNet-CE with π = 10−5,
w = 10−1 can obtain this balance. Other settings, however,
will lead the training to be dominated by the localization
task, which is harmful to training an accurate object detector.
In conclusion, our investigation reveals that the classification
gradient magnitude is the central cause of the accuracy gap,
and we can adjust it by initialization and loss scaling.

IV. METHOD

Our investigation reveals that by tuning s and π , the detector
without heuristic sampling methods can achieve a similar
detection accuracy to that with heuristic sampling meth-
ods. However, tuning them is always laborious. In this
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Fig. 2. Loss curves of Focal Loss L F L and cross-entropy loss LC E . “✗” means the network diverging. The detector is RetinaNet with ResNet-50-FPN
[6], [55] backbone, trained on COCO train2017 [44] with 1× learning schedule [56] (12 epochs), implemented on maskrcnn-benchmark [57]. We only
show the first 1k iterations for better visualization.

section, we propose a novel Sampling-Free mechanism,
which addresses the fg-bg imbalance by adaptively setting s
and π , thus adaptively controlling the classification gradient
magnitude.

4) Discarding Heuristic Sampling Methods: As sampling
methods are always a default part in training deep object
detectors, the first step of our Sampling-Free mechanism
is discarding heuristic sampling methods during training.
For one-stage anchor-based object detectors [16]–[23], [40],
soft sampling methods (e.g. Focal Loss [17], GHM [24],
PISA [35]) is widely used for re-weighting training samples
in the classification task. In our method, we use the standard
CE loss to train the classification task, which treats all training
samples equally.

For two-stage anchor-based approaches [4]–[15], hard sam-
pling methods (e.g. biased sampling [4], OHEM [34]) are
widely used for re-sampling training samples. In our method,
we train all training samples in RPN and RoI-subnet. For
example, a common implementation of biased sampling [4]

in training Faster R-CNN is: (1) RPN randomly selects
256 anchors with a biased 1:1 fg-to-bg ratio, (2) RoI-
subnet randomly selects 512 proposals with a biased 1:3
fg-to-bg ratio. In our method, we train all examples in
both RPN and RoI-subnet. That is to say, we train RPN
with all foreground/background anchors (∼105 per-image) and
train RoI-subnet with all foreground/background proposals
(∼103 per-image). We use CE loss as the classification loss
both in RPN and RoI-subnet.

For anchor-free object detectors [11], [14], [25]–[33], they
regard “points” as the training samples rather than “anchors”
in anchor-based object detectors, and most of them use soft
sampling methods to address the fg-bg imbalance. We fol-
low the principle of Sampling-Free in anchor-based object
detectors that equally use all training samples during training,
i.e. we use the standard CE loss in the classification task.

5) Optimal Bias Initialization: Sec. III-C has shown that
adjusting π can help to avoid network diverging. However, it is
difficult to determine π . We propose optimal bias initialization
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Fig. 3. Loss curves of localization (L L OC ) and classification (L F L or LC E ), which are from the same models in Fig. 2. Note that the curves of L L OC

with different s in (b) are very similar, thus we only show the curve of L L OC with s = 10−1 in (b).

to compute π from data statistics rather than tuning it. Our
idea is to initialize the bias of the last convolutional layer
to obtain a minimal classification loss value. The derivative
of LC E is

∂LC E

∂π
= − 1

π
+ (

N

N f
− 1)

1

1 − π
. (17)

When π = N f

N , ∂LCE

∂π = 0, and LC E will attain the minimal
value. As the predicted score is predicted with the sigmoid
activation, we can obtain the optimal initial bias as

b = − log
1 − π

π
= − log(

N

N f
− 1). (18)

Here N
N f can be computed by pre-defined anchors, thus

the computation is efficient as it does not require network
forwarding. In our observation, N

N f ≈ 105, which corresponds
to π = 10−5 that performs best in our experiments. It is
worth noting that the accuracy of the model is robust to
our initialization strategy, as the model can “utilize” the
imbalanced distribution to obtain a lower loss. We initialize
the model to ensure the stability of the classification loss.

6) Guided Loss Scaling: Usually, the overall loss function
to train a deep object detector is composed of a localization
loss term L L OC and a classification loss term LC L S . Let Lt

denote the overall loss in the t-th training step. When we use
CE loss as the classification loss, we have

Lt = (L L OC )t + (LC L S)t = (L L OC )t + st (LC E )t , (19)

where st is used to scale the (LC E )t as the CE loss scale
is unreasonable under the fg-bg imbalance. As mentioned
in III-C, it is essential to control the classification loss scale to
be close to the localization loss scale. A straightforward way
is to adjust st . However, it results in a new hyperparameter.
Our key idea is to adjust st dynamically during training. That
says, instead of using a constant st , we define a guided term

gt = (L L OC )t

(LC E )t
, (20)

and let st = gt , which suggests using the localization loss
scale of the current mini-batch as the target of the rescaled
CE loss scale. Thus, this technique is termed “guided loss
scaling”. It is worth noting that gt is only used for scaling the
classification loss, i.e. its gradient is ignored in the backprop-
agation. Therefore, the overall gradient is

∂Lt

∂�t
= ∂(L L OC)t

∂�t
+ gt ∂(LC E )t

∂�t
, (21)

which ignores the gradient calculation of st .
Our guided loss scaling can be interpreted threefold. First,

according to Sec. III-C (especially Fig. 3), it appears a good
choice to let the localization loss scale and the classification
loss scale be similar, where the classification loss is either
Focal Loss or CE loss. Second, it is convenient to use the
localization loss as guidance, because the localization loss is
already there for object detection. Third, the classification loss
without sampling methods (i.e. CE loss) is greatly influenced
by the fg-bg imbalance, but localization loss is little influ-
enced as it is computed merely for foreground anchors. Thus,
the localization loss is helpful to control the unreasonable
classification loss due to the fg-bg imbalance.

However, in our experiments, we find that the detector may
not achieve the best detection accuracy when the classification
loss is simply equal to the localization loss. Fortunately,
the well-known uncertainty weighting [58] proposes a simple
method to weigh two losses from the perspective of Bayesian
uncertainty. When we apply the method to our case, the overall
loss would be

Lt = 1

(σ t
1)

2 (L L OC )t + 1

(σ t
2)

2 (LC E )t + 2 log(σ t
1σ t

2), (22)

where σ t
1 and σ t

2 are learnable parameters, and they are
initialized as σ 0

1 = σ 0
2 = 1. 2 log(σ t

1σ t
2) is the normalization

term to avoid the degradation of 1
(σ t

1)2 → 0 and 1
(σ t

2)2 → 0.
But if we train the detector in this way, the training would be
quickly failed, as the classification loss would be much larger
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TABLE III

ABLATION STUDIES OF OUR SAMPLING-FREE MECHANISM ON COCO minival. “FL → CE” DENOTES “FOCAL LOSS → CE LOSS”, AND “INIT”
DENOTES “INITIALIZATION”. FROM THE FOLLOWING THREE SUBTABLES, BETTER AP CAN BE ACHIEVED WITH SAMPLING-FREE, BUT THE

HYBRID OF THE GUIDED LOSS SCALING AND HEURISTIC SAMPLING METHODS CANNOT IMPROVE THE DETECTION ACCURACY

(∼10×) than the localization loss at the start of the training
(see Figure 3). Hence, the guided term gt is necessary, and
the overall loss should be

Lt = 1

(σ t
1)2 (L L OC)t + gt

(σ t
2)2 (LC E )t + 2 log(σ t

1σ
t
2). (23)

To keep the consistency with the original training loss,
we can identify that the localization loss does not require
weighting (σ t

1 = 1). We can also use δt to denote 1
(σ t

2)2 , then
the overall loss would be very simple, i.e.

Lt = (L L OC)t + gtδt (LC E )t − log δt . (24)

We notice that there have been several works [54], [58], [59]
for adaptive multi-task loss scaling. Our guided loss scaling
is different from them in three points: 1) it is aimed at
controlling the classification loss under the fg-bg imbalance,
which belongs to the single-task loss weighting rather than the
multi-task loss weighting; 2) it is specifically designed for deep
object detectors as it requires the localization loss to guide the
classification loss; 3) it converts the class imbalance problem
to the loss scaling problem, which seems not reported before
in the literature, to our best knowledge.

V. EXPERIMENTS

In this section, we will perform extensive experiments to
validate our Sampling-Free mechanism. Before that, we first
describe the experimental details about datasets and base-
lines. Then, we perform ablation studies on anchor-based
and anchor-free object detectors. Finally, we compare our
method with existing heuristic sampling methods, and present
experimental results on public datasets.

A. Implementation Details

1) Datasets: We use the well-known COCO [44] and
PASCAL VOC [45] datasets to validate our method. For

COCO dataset, following common practices [4], [17], we train
models on the train2017 split and perform ablation stud-
ies on minival split, and report detection accuracy on
test-dev split, where COCO-style average precision (AP)
is used as the evaluation metrics. For PASCAL VOC dataset,
we also follow common practices [4], [20] that training models
on a union set of PASCAL VOC 2007 and 2012 set (07+12
split), and evaluated on PASCAL VOC 2007 test set (07test
split), where VOC-style mean average precision (mAP) is used
as the evaluation metrics.

2) Baselines: We use three object detectors —
RetinaNet [17] (one-stage anchor-based), Faster R-CNN [4]
(two-stage anchor-based), FCOS [31] (anchor-free) that
implemented on maskrcnn-benchmark [57] to perform
experiments, where we follow the public standard training
configurations to implement them, which means that we
have not made any changes for the hyperparameters of
them. Besides, we also use Mask R-CNN [7] to validate
Sampling-Free in the instance segmentation task.

B. Ablation Studies

1) Detection Accuracy: As shown in Table III, we per-
form experiments of Sampling-Free on RetinaNet, FCOS, and
Faster R-CNN, respectively. See Table IIIa and Table IIIb,
the experimental phenomena of Sampling-Free on RetinaNet
and FCOS are similar. Only when we discard heuristic sam-
pling methods (Focal Loss → CE Loss) and use optimal
bias initialization with guided loss scaling at the same time,
we can obtain meaningful detection accuracy improvements.
Specifically, Sampling-Free achieves 0.6 AP and 0.5 AP higher
than Focal Loss in RetinaNet and FCOS, respectively. This is
an impressive improvement as the well-know GHM-C [24]
only outperforms Focal Loss 0.2 AP. More importantly, this
is the first time that CE Loss has achieved better performance
than the soft sampling method in object detection.
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Fig. 4. Mask R-CNN [7] (37.8 box AP, 34.2 mask AP on COCO minival) vs. Mask R-CNN with Sampling-Free (39.0 box AP, 34.9 mask AP on COCO
minival) in ResNet-50-FPN backbone. The latter exhibits better detection and segmentation results.

TABLE IV

TRAINING SPEED AND MEMORY COST OF SAMPLING-FREE ON

FASTER R-CNN, WHICH IS EVALUATED ON A SINGLE

Nvidia-Titan-Xp GPU WITH BATCH SIZE 1

For Faster R-CNN (See Table IIIc), when we discard
heuristic sampling methods without optimal bias initialization
and guided loss scaling, the training of the detector will
be failed. When we only use the optimal bias initialization
and guided loss scaling without discarding heuristic sampling
methods, the detector also cannot obtain improvement on
detection accuracy. Only when we discard heuristic sampling
methods, and use optimal bias initialization with guided loss
scaling at the same time, we will observe obvious gains in
AP. Sampling-Free improves 0.7 AP and 1.3 AP in RPN and
RoI-subnet, respectively. When we use Sampling-Free in both
RPN and RoI-subnet, an impressive 1.6 AP improvement can
be obtained, with the gains from all AP metrics.

We notice that Sampling-Free exhibits more improvements
to Faster R-CNN than RetinaNet and FCOS, which may be
due to biased sampling wasting most background examples,
but Sampling-Free allows all foreground and background
examples to be trained synchronously.

2) Training Speed and Memory Cost: As both Focal Loss
and Sampling-Free use all samples to train, the training speed
and the memory cost of RetinaNet-FL and RetinaNet-CE
are very similar. However, in Faster R-CNN, Sampling-Free
allows more background samples to be trained. As shown
in Table IV, we measure the performance of Faster R-CNN
with Sampling-Free on a single Nvidia-Titan-Xp GPU
with batch size 1. Interestingly, although the training speed
becomes slower for Faster R-CNN with Sampling-Free

TABLE V

RESULTS OF SAMPLING-FREE ON COCO test-dev

TABLE VI

RESULTS OF SAMPLING-FREE ON PASCAL VOC 07test SPLIT

(as more background proposals are trained in RoI-subnet), its
memory cost is reduced, which is owing to the operation of
biased sampling also requires considerable memory costs.

C. Experimental Results

1) Results on COCO and PASCAL VOC: For COCO
dataset, we have demonstrated that the effectiveness of
Sampling-Free on ResNet-50-FPN backbone and 1× learn-
ing schedule. We further verify our methods on the larger
backbone and the longer learning schedule. As shown
in Table V, for ResNet-101-FPN backbone, Sampling-Free still
shows impressive detection accuracy improvements, which
can improve Faster R-CNN and RetinaNet about 1.5 AP and
0.5 AP, respectively. Even with the 2× learning schedule,
we observe a steady increase in AP as well.
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TABLE VII

THIS TABLE ILLUSTRATES THE COMPARISON BETWEEN HEURISTIC SAMPLING METHODS AND OUR SAMPLING-FREE MECHANISM.

AP AND 
HYPERPARAMETERS DENOTE THE CHANGE IN DETECTION ACCURACY AND HYPERPARAMETERS RELATIVE

TO THE BASELINE METHOD (FOCAL LOSS IN RETINANET, BIASED SAMPLING IN FASTER R-CNN). SAMPLING-FREE

ACHIEVES THE BEST 
AP WITHOUT ANY HYPERPARAMETER INTRODUCED

Fig. 5. Visualized detection results of different object detectors with and without our Sampling-Free mechanism, which show that the detector with
Sampling-Free mechanism performs better. The backbone of these detectors is ResNet-50-FPN [6], [55].

For PASCAL VOC dataset, as shown in Table VI, Sampling-
Free improves 0.8 mAP and 0.6 mAP for RetinaNet and Faster
R-CNN, respectively. These results illustrate the robustness of
our Sampling-Free mechanism.

2) Comparison: We compare Sampling-Free with exist-
ing heuristic sampling methods to illustrate our advantages.
As the implementations of Sampling-Free and other methods
may be on different platforms (e.g. maskrcnn-benchmark
vs. mmdetection), we mainly compare their changes in
performance relative to the baseline method (Focal Loss in

RetinaNet, Biased Sampling in Faster R-CNN). As presented
in Table VII, compared with heuristic sampling methods,
Sampling-Free has the following three advantages:

• Sampling-Free achieves the best relative detection accu-
racy improvement, where 0.6 AP and 1.6 AP improvement are
obtained in RetinaNet and Faster R-CNN, respectively.

• Sampling-Free has no hyperparameters to search — In
contrast, other heuristic sampling methods have at least one
hyperparameter. The ISR [35], which is closest to us in
detection accuracy, introduces 4 hyperparameters.
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TABLE VIII

RESULTS OF ADAPTIVE LABEL ASSIGNMENT STRATEGIES WITH
OUR SAMPLING-FREE MECHANISM

TABLE IX

RESULTS OF SAMPLING-FREE IN THE INSTANCE SEGMENTATION TASK

• Sampling-Free has better versatility — it is applicable to
both one-stage and two-stage deep object detectors.

3) Results on Adaptive Label Assignment Strategies: To
date, the state-of-the-art detection accuracy is achieved by
adaptive label assignment methods [38], [39], where the
definition of foreground/background training sample is very
different from that in deep object detectors. To validate the
effectiveness of Sampling-Free in them, we replace Focal Loss
with Sampling-Free in ATSS [38] and PAA [39]. As presented
in Table VIII, we successfully verify that the state-of-the-
art models of ATSS and PAA can be further improved with
Sampling-Free.

4) Instance Segmentation: Although Sampling-Free can
help detectors achieve better detection accuracy, it is unknown
whether detection results produced with Sampling-Free mech-
anism can facilitate other tasks in practice. Therefore, we intro-
duce Sampling-Free into Mask R-CNN to observe whether
it can achieve higher accuracy in instance segmentation.
Note that in Mask R-CNN, the heuristic sampling method
is not used in its segmentation branch, thus we only
apply our Sampling-Free mechanism on the classification
branch. As shown in Table IX, Mask R-CNN with Sampling-
Free achieves 1.2 box AP and 0.7 mask AP gains. We visualize
the detection and segmentation results in Fig. 5, which sug-
gests that the detection results produced with Sampling-Free
can also improve the instance segmentation task.

5) Visualization: More visualization results are in Fig. 5.

VI. CONCLUSION

In this paper, we explored whether heuristic sampling meth-
ods are necessary for training accurate deep object detectors

under the fg-bg imbalance. Our investigation revealed that the
key to training without heuristic sampling methods under the
fg-bg imbalance is to control the classification gradient mag-
nitude. Inspired by this, we proposed a novel Sampling-Free
mechanism to control the classification gradient magnitude
from initialization and loss scaling, without new hyperpara-
meters introduced. Extensive experiments demonstrated the
effectiveness of Sampling-Free in various object detectors,
which also yields considerable gains in the instance segmen-
tation task and the state-of-the-art label assignment strategies.
Our Sampling-Free mechanism provides a new perspective to
address the fg-bg imbalance.

Although Sampling-Free can support training with cross-
entropy loss, it is not designed for the detection metrics,
which may limit further performance increases. Specifically,
the average precision metric expects samples to have an
IoU-related confidence score. There has been some work on
this [60], [61], but they still use a variant of Focal Loss to
train the classification task. Thus, a future study direction is
to use only cross-entropy loss to model this unified confidence
score. On a larger scale, one can try to use cross-entropy loss
with metric-specific design to achieve better performance.
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