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Abstract—Aspect-level sentiment analysis is a granular emotional classification task that refers to identifying sentiment polarities
towards aspects in a sentence. Although previous research has reached a great achievement, this task remains very challenging. First,
previous approaches only focus on one specific domain, which lacks the capability of transferring to other domains. Moreover, the
majority of prior studies ignore the direct relationship between aspects and the corresponding sentiment words. To this end, in this
paper, we propose a novel model named Efficient Adaptive Transfer Network (EATN) for aspect-level sentiment analysis which
emphasizes the need to incorporate the correlation among multiple domains. The proposed EATN provides a Domain Adaptation
Module (DAM) to learn common features from the sufficiently labelled source domain and guide the target domain’s classification
performance. Specifically, DAM comprises two special tasks, with one sentiment classification task aiming to learn sentiment
knowledge and the other domain classification task focusing on learning domain-invariant features. Here, we adopt a multiple-kernel
selection method to further reduce the feature discrepancy among domains. Besides that, EATN contains a novel aspect-oriented
multi-head attention to capture the direct associations between the aspects and the contextual sentiment words, which is beneficial to
learn the aspect-aware semantic knowledge. Extensive experiments on six public datasets with two granularities, compared with
current state-of-the-art methods, demonstrate the effectiveness and universality of our method.

Index Terms—Aspect-level Sentiment Analysis, Domain Adaptation, Transfer Learning, Multi-head Attention Mechanism

1 INTRODUCTION

A SPECT-level sentiment analysis is a branch of the sen-
timent classification, which aims to identify the sen-
timent polarity (i.e., positive, negative or neutral) of one
specific aspect in a sentence. It is worth noting that an
aspect represents a specific entity occurs in the sentence,
which describes a finer granularity category of the sentence.
For example, as shown in Fig. [I(a), the user expresses
negatively and positively towards two aspects “customer
service” and “food”, respectively. As this task is crucial in
many real-life applications, such as dialogue system [1], [2],
question-answering [3] and online commerce [4], a great
amount of research attention has been attracted from both
the academia and the industry.

In the literature, there are numerous efforts for this chal-
lenging problem, especially for sentiment relation mining
between the aspect (e.g., customer service) and its context
sentence (e.g.,“The $, as a matter of fact, is not as good as I
think, but I still like their food”). The conventional way is
to build an aspect-level sentiment classifier by supervised
training. A fruitful stream of previous works [5], [6], [7] have
designed several models to improve the performance for
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Fig. 1: When transferring information from the source do-
main to the target domain directly, most existing approaches
will suffer the domain discrepancy problem (e.g., different
aspects), which will cause the performance drop.

aspect-level sentiment analysis, typically by creating several
features based on the intrinsic grammar structures of the
sentences. These studies mainly focus on manual feature
selection, which cannot extract deep implicit features well.
Recently, some deep neural network (DNN) models [8], [9],
[10] are proposed to automatically learn high-dimensional
semantic relationship representations for the aspects and
their contextual words. Besides, to model the sequential fea-
ture of aspect-level sentiment, researchers have also devised
some Recurrent Neural Networks (RNNSs) [11], [12], [13],
[14]. After that, RNN-based methods, equipped with atten-
tion mechanism and memory module, aims to pay more
attention to the important words in the contextual sentence.
Those methods greatly improved classification accuracy and
became a mainstream approach.
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Fig. 2: Comparison of the calculation process between RNN-
based methods and Attention-based methods. Since (a) is
calculated step by step, which may cause some information
noise. In contrast, (b) directly calculates the relations between
every two words through attention score o and can solve the
problems above perfectly.

Although significant improvement is brought by previ-
ous research, there still remain several challenges in most
practical applications because of the following reasons. First,
there is a huge amount of unlabelled data in some new do-
mains (i.e., target domain), which are substantially different
from the source domain. However, most existing methods
focus on label-rich data and perform well on just one special
domain. They usually lack universality and transferability
when applying to a new domain. Thus, how to find an
appropriate method to effectively aggregate both domains
for comprehensive representation and make the model gain
transferability is a nontrivial problem in the aspect-level sen-
timent analysis; Second, most deep neural networks learn
features from domain-invariant to domain-specific, as the
network becomes deeper, the feature transferability drops
significantly. For example, DNN may learn the outline of
an image in a shallow layer while learning more specific
features in the deep layer. Hence, how to reduce feature
bias in the deep layers is a significant problem for enhancing
the transferability among domains. Third, different aspects
of the sentence are associated with different contexts in
the aspect-level sentiment analysis task. For instance, as
shown in Fig. 2} the sentiment polarity of the aspect “cus-
tomer service” should be determined by its corresponding
aspect-aware sentiment words, i.e., “not, good”. However,
sequential methods produce the representation of each word
based on the previous one, which may introduce extra
noise from unrelated words, e.g., “the, matter, of, fact”. Thus,
it’s a challenging problem to capture direct associations
between aspects and aspect-aware sentiment words when
understanding sentiment polarity of the aspects.

To cope with the aforementioned challenges, we propose
a novel method named Efficient Adaptive Transfer Network
(EATN), incorporating with multiple modules to solve the
problems mentioned above in aspect-level sentiment analy-
sis task. First, to integrate the two kinds of data sources and
construct an adaptive method, we design a Domain Adapta-
tion Module (DAM) to mine unlabelled data from the target
domain. The key advantage of this module is that it contains
two classification tasks, one of them referred as the domain
task mainly for domain-invariant feature learning and the
other one referred as sentiment task mainly for aspect-aware
sentiment knowledge learning. Second, we design a novel
Multiple-Kernel Maximum Mean Discrepancy (MK-MMD)
based Multi-Layer Perceptron (MLP) for reducing feature

2

discrepancy between different domains, which can simul-
taneously optimize the domain invariance and enhance
the transferability of the features in the deep layer. Third,
we design a novel Aspect-oriented Multi-head Attention
mechanism to better extract the direct semantic relations
among aspects and the aspect-aware sentiment words, i.e.,
as shown in Fig. 2{b). Finally, to evaluate our approach, we
conduct extensive experiments on six real-world datasets
with two granularities. The results demonstrate that our
proposed approach significantly outperforms the state-of-
the-art models in terms of classification performance and
adaptation efficiency.

2 RELATED WORK

In this section, we will introduce some research topics which
are highly relevant to our work, i.e., aspect-level sentiment
analysis, domain adaptation, and the multi-head attention.

Aspect-level Sentiment Analysis. Aspect-level sentiment
analysis is a fine-grained sentiment classification task, which
identifies the sentiment polarity of one specific aspect in
the sentence. Some traditional approaches [6]], [15] designed
many rules-based models for aspect-level sentiment analy-
sis. Nasukawa, et al. [5] first performed dependency parsing
on the sentences, along with pre-defined rules to determine
sentiment polarity about the aspects. Then, Jiang, et al. [7]
improved the accuracy of sentiment classification by creat-
ing several target-dependent features based on the gram-
mar structures of the sentences. In recent years, multiple
Recurrent Neural Network based methods [10], [11f], [12],
[16] have been utilized for aspect-level sentiment classifica-
tion problem and have shown its effectiveness in sequence
modeling. Among them, Tang, et al. [17] approached this
problem by developing a two-direction target-dependent
LSTM (TD-LSTM) to model the left and right contexts of
aspects. The last hidden states of these two LSTMs were
concatenated to predict the sentiment label.

More recently, attention-based methods [18], [19] have
been widely studied to enhance the influence of the aspects
on the final representation for classification. Ma, et al. [12]
developed an interactive attention network (IAN) to model
the aspects and the sentence interactively. Fan, et al. [13] pro-
posed a multi-grained attention network (MGAN), which
is responsible for linking and fusing the words from the
aspects and the contextual sentences. Li, et al. [14] designed
a target-specific network (TNet) to better integrate the aspect
information into the sentence representation. Xu, et al. [20]
adopted bidirectional encoder representations from Trans-
formers (BERT [21]) as a base model and proposed a joint
post-training approach (BERT-PT) to enhancing both the do-
main and task knowledge. However, all of these supervised
methods perform well in just one particular domain and
lack generality ability, which makes it difficult to achieve
the same performance in new unlabelled domains [22].

Domain Adaptation in NLP. In order to mitigate the ap-
plicability bottleneck from the domain shift, many domain
adaptation methods have been proposed in the last decade.
It can be simply treated as a standard semi-supervised
problem in which the key idea is to transfer the common
knowledge from the source domain to the target domain.
In previous studies, Blitzer, et al. [23]] designed a method,

1041-4347 (c) 2021 IEEE. Personal use isgermitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg;publicationsﬁstandards/ ublications/rights/index.html for more information.
to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:39:01 UTC from IEE

Xplore. Restrictions apply.



Authorized licensed use limite

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3075238, IEEE

Transactions on Knowledge and Data Engineering

JOURNAL OF IATEX CLASS FILES

which mainly utilized multiple shared features among do-
mains to predict the final task. Pan, et al. [24] proposed a
Spectral Feature Alignment (SFA) algorithm to solve the fea-
ture mismatch problem by aligning domain-specific words
with the help of domain-independent words. Glorot, et
al. [25] proposed a marginal stacking denoising autoencoder
to improve the scalability and extract the domain-shared
features from different domains. However, all the shallow
methods mentioned above need to manually select some
information such as shared or unshared features between
the source domain and the target domain, which may bring
huge labor expense.

Later, numerous researchers studied the neural network-
based domain adaptation solutions [26], [27], [28]. For ex-
ample, Yu, et al. [29] proposed two auxiliary tasks to learn
sentence embedding based on convolutional neural network
for cross-domain sentiment classification. Ganin, et al. [30]
added adversarial mechanism into the training stage of
deep neural networks, which is called domain-adversarial
neural network (DANN). Along this line, Li, et al. [31] pro-
posed an adversarial memory network that automatically
identified common features. Li, et al. [32] also proposed
a hierarchical attention transfer network (HATN) which
paid different attention to the word-level and sentence-level
sentiment to strengthen the final representation. Yang, et
al. [33] devised an integrated approach which leverages
the benefit of supervised deep neural networks as well as
probabilistic generative models at the same time. Zhang, et
al. [34] utilized the significant associations of the aspects in
the sentence and proposed an interactive attention transfer
network (IATN) for cross-domain sentiment classification.
These researches realized the importance of domain adapta-
tion, which has been extensively studied in other areas, e.g.,
image recognition and sentiment analysis. Unfortunately,
most of the above domain adaptation researches focus on
sentence-level instead of aspect-level sentiment analysis and
they did not pay equal research attention to aspect-level
sentiment analysis in domain adaptation scenario.

Multi-head Attention. Attention mechanism [10], [11] has
become one of the most breakthrough technologies in re-
cent years. However, the contextual vector obtained from
traditional single attention mechanism usually focuses on
one specific semantic subspace of the input sequence. Such
a representation method can only reflect one semantic sub-
space of the input. However, most sentences, especially for
long sentences, usually involve multiple semantic spaces.
In order to solve this problem, the multi-head attention
mechanism was designed and gained great success in many
natural language processing (NLP) tasks, such as machine
translation [35]], [36], semantic role labelling [37], [38] and
question answering [39]], [40], [41]. The strength of multi-
head attention lies in the rich expressiveness by using multi-
ple attention functions in different representation subspaces.
Besides, multi-head attention mechanism has been proved
to be better than the traditional sequence model because of
its effectiveness in extracting direct features between every
two words [42]]. Despite all the advantages, to the best of our
knowledge, there is no prior work concentrate on mining
the associations between the aspects and the aspect-aware
sentiment words with a multi-head attention mechanism.

3 EFFICIENT ADAPTIVE TRANSFER NETWORK

In this section, we first give the problem statement, followed
by an overview of the framework. Then we explain three
key components of EATN in detail, which are: 1) Embedding
Module; 2) Aspect-oriented Multi-head Attention Module
and 3) Domain Adaptation Module. Finally, we introduce
the training strategy of the method.

3.1 Problem Statement

In this paper, we focus on the problem of unsupervised
aspect-level sentiment analysis task in the domain adapta-
tion scenario. Formally, we assume that there are two do-
mains, one is source domain D* = {z7, af, y7 };*; which has
massive labelled data, where x} is an item (e.g., review) and
y; is the associated sentiment label of its aspect a;. Note that
each aspect may contain several words. ns represents the
number of source domain data. The other is unlabelled tar-
get domain which is similarly defined as D' = {z!,a’}7",,
except the sentiment label is missing. We further assume
that each item (i.e., z] or acz-) at both domains consists of
n context words denoted as ¢ = {w§, ws,...,ws} and the
aspect contains m words denoted as a = {w{, w3, ..., w% }.
Note that one aspect may contain several words, such as
“batter life” in the laptop domain. The goal is to train a
robust model based on both labelled data in P* and unla-
belled data in D" jointly, and adapt it to predict sentiment

label of the aspects in the unlabelled target domain.

3.2 Overall Architecture of EATN

Since previous research either ignore the transferability be-
tween domains (e.g., aspect-level sentiment analysis meth-
ods) or ignore the impact of the aspect information (e.g.,
cross-domain sentiment classification methods). The goal
of our model is to design a better cross-domain aspect-
level sentiment classifier based on the domain adaptation
technique. The overall model architecture is described in
Fig. |3} EATN mainly contains three components: 1) Embed-
ding Module: mapping each word into a low-dimensional
real-value vector, and encoding sentence semantic in a more
effective method, i.e.,, BERT; 2) Aspect-oriented Multi-head
Attention Module: focusing on fully exploiting the informa-
tion of the aspects as well as learning the deep semantic
relationship between the aspects and contextual words ef-
fectively; 3) Domain Adaptation Module (DAM): utilizing the
data of both domains to train a model with two tasks and
an auxiliary loss jointly, which makes the model transferable
and sentiment aware at aspect-level. In what follows, we
introduce how to achieve these components in detail.

3.3 Embedding Module

In this component, we introduce the details about the em-
bedding process, which mainly consists of two parts: input
preprocessing and word embedding.

1) Input Preprocessing: As we know, for each review,
overall sentiment polarity is influenced by various aspects,
which means that we have to face the situation where an
item may include multiple aspects. However, our goal is to
mine the specific aspect sentiment and all of the data needs
to be processed in pairs (i.e., the aspect and the context
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Fig. 3: The overview of the proposed EATN model.

correspond one-to-one, which are pre-given in the datasets).
Thus, we split the sentence into multiple ones which each
consist of just one aspect. For example, in the item “The
customer service, as a matter of fact, is not as good as I think, but
I still like their food”, we split it into two data items, which
one is for aspect “customer service”-"“The $, as a matter of fact,
is not as good as I think, but I still like their food” and the
other for aspect “food”-"“The customer service, as a matter of
fact, is not as good as I think, but I still like their $”. Note that
the aspect words are replaced by the signal $ in the context
part. Moreover, we also adopt “padding” operation to keep
the input dimension consistent between domains.

2) Word Embedding: To represent semantic information
of aspects and the context words better, we need to map
each word into a low-dimensional real-value vector. Specifi-
cally, the inputs of our model are contextual word sequence
¢ = {wf,ws,...,wt} and corresponding aspect word se-
quence a = {w{,ws,...,ws}. There are several methods
which can encode the original words into low-dimensional
semantic embeddings. In this paper, we apply a popular
pre-trained embedding method for word representation, i.e.,
Bidirectional Encoder Representations from Transformers
(BER. BERT is a language model developed by Google
for pre-training language representations, it contains two
training methods: pre-training and fine-tuning. Pre-trained
BERT models often show quite good performance on many
tasks, e.g., sentiment analysis, machine translation. Here we
adopt the large-scaled BERT model as the upstream feature
extractor to learn the word’s semantic embedding and froze
most of its parameters to make the model more efficient.

To be specific, we take each word as input to get the
contextual words embedding vectors e, = {e§, €5, ..., €S }=
BERT({wf§, ws, ..., wS}) and the aspect word embedding
vectors {ef,e5,...,e%} = BERT({w{, w},..., wﬁl})ﬂ Note
that, if the aspect is a single word like “food”, the aspect

1. The detailed official introduction of BERT model can be found in following
link: https:/ / github.com/google-research /bert.

2. The detail of implementation can be found in following link: https://bert-
as-service.readthedocs.io/en/latest/index.html

] ) é)ermitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg]
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representation is the embedding of the word. While for
the case where the aspect contains multiple words such as
“customer service”, the aspect representation is the average
of each word embedding [43]. We can denote the aspect
embedding process as:

6(117 Zf m=1,
€aq = m ] (1)
(Cief)/m, if m>1,

where m is the number of the aspect words, ef is the
embedding of word £ in the aspect.

3.4 Aspect-oriented Multi-head Attention

Since it is beneficial to consider the impact between aspects
and each contextual word, which can provide more informa-
tion for aspect-level semantic understanding. In this subsec-
tion, we introduce how to model semantic relations between
aspects and the contextual words more comprehensively.
As Fig. 3| shows, this component consists of two parts, i.e.,
matching operation and aspect-aware self-attention.

1) Matching: To model the semantic relation between the
aspects and it’s context better, we leverage heuristic match-
ing [44] between the aspect representations (i.e., e,) and
the contextual word representations (i.e., €f,¢€5,...,¢ef). In
matching operation, we utilize three different calculations:
concatenation, element-wise product and their difference.
Concatenation is a simple and effective method to combine
the two feature representations as well as retain all the in-
formation. The element-wise product is a certain measure of
“similarity” of two words [45]] and the difference can capture
the degree of distributional inclusion in each dimension [46].
To be specific, we concatenate the aspects vector e,, element-
wise product vector and their difference vector with each
contextual word vector €5, ¢+ € (1, n) to retain the whole
semantic information of the sentence. Also, to maintain the
same latitude, we stack the aspect vector together as h,.
Then, we denote the output result, i.e.,, I, as the input of
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the aspect-aware self-attention. The process of the matching
operation can be represented as follows:

h; = (ef, €a, eZG © €q, ez? - ea) ) (2
ha = (eaaeaveaaea) 5 (3)
H = [hi ko, .. b, b @)

2) Aspect-aware self-attention: After getting the com-
bined representations, i.e., H, of contextual words and the
corresponding aspects, we need to extract the deep semantic
relationships between them. As we mentioned before, the
traditional sequence model may cause additional noise and
lead to information loss. In order to model the relationship
between aspects and contextual words more accurately, we
employ the attention mechanism, which allows the model to
attend aspect-aware information. Besides that, as shown in
Fig. [b), compared with traditional sequence models (e.g.,
LSTM, RNN and GRU), attention mechanism aims at mod-
eling the relevance between each representation pairs, thus
the aspects are allowed to build direct relationships with
other aspect-aware sentiment words. Specially, the attention
mechanism computes a query Q, key K, and value V of
dimension dg, dg, d,,, which are linear projected by the input
embedding representation (i.e., H):

Q K, V=HW®? HWX HWV, (5)

where H is the output vector of the embedding module.
WEQ, WK, WYV represent parameter matrices. Therefore,
we can get the attention output representation vector Z
which is calculated as follows:

Z = Attention(Q, K, V)

= softmazx (%) V. (©)

Self-attention is an attention mechanism relating to
different positions of the input sequence. Based on self-
attention mechanism, multi-head attention can further
jointly attend information from different representation sub-
spaces to enhance the model’s representation ability and im-
prove the modeling performance. For example, in a sentence
“The customer service, as a matter of fact, is not as good as I
think, but 1 still like their food”, the user expresses negatively
towards the aspect “customer service” at one subspace and
positively towards the aspect “food” at another subspace. By
applying multi-head attention in EATN, the network can
model the different semantic dependencies between differ-
ent aspects at different subspaces, thus selectively focusing
on the aspect-oriented information in the feature learning
process. Formally, multi-head attention mechanism consists
of multiple heads that each head computes a unique scaled-
dot product attention distribution. Furthermore, the multi-
head attention mechanism has been proved with effective-
ness in producing deep semantic representation in machine
translation task [36]]. To be specific, it performs multiple self-
attention function ¢ times to generate queries, keys, values
matrices Q;, K;, V; from i = 1,2,...,t. For each of the
attention head, Q, K, and V are uniquely projected before
the attention being computed by:

Qi K;,Vi= QWS KWEX vwY, @)

( l
0 (O — =3O =30 R}
e ST
Source T = At RN
O >Or O,
A Iy A
[wwn) (o)
v v v
f |
o 30---——-=>0 Rt
R A P
[C}" ________ — >O == OJ
hidden layer hidden layer hidden layer
MLP Layer

Fig. 4: Inter-structure of MK-MMD based MLP for eliminat-
ing feature discrepancy and learning transferable features.

Z; = Attention(Q;, K;,V;) , (8)

where Q;, K;, V; are the query, key, and value representa-
tions of the i-th head, which are projected by matrices VV? ,
WX and W), respectively. Z; is the output of the single
attention head-i. Then, we concatenate the output states
of attention head Z; (i = 1,2,...,¢) to produce the final

output state O:

O:[Z15Z27"'7Zt}' (9)

where O represents the concatenation of vectors.

3.5 Domain Adaptation Module (DAM)

In this section, we introduce how EATN obtains transferabil-
ity progressively through the DAM which mainly includes
three components, i.e., the MLP layer with MK-MMD [47],
sentiment classification, and domain classification.

1) MK-MMD based MLP Layer: As we demonstrated
above, many DNN models [8], [9], [10] are proposed to
automatically learn high-dimensional representations for
aspects and their contexts [12]. Similarly, in order to build
up deeper feature representations, the output state (i.e., O)
of the previous layer is the input to MLP to extract the deep
semantic relationships between the aspects and contextual
words. There are h hidden layers in the MLP and each
layer employ with a Rectified Linear Unit (ReLu) activation
function. The process is calculated by:

Rl = Relu(WlO + bl) 5

Rg = Relu(WgRl + bg) s (10)

R}, = Relu(WyRy,_1 + by) ,

where Wi, Wy, ..., W), are trainable parameter matrices,
by, by, ..., by are hidden unit biases and Ry is the ¢-th layer
output representation of MLP, ¢ € (1, h).

As mentioned above, our data are from two domains,
in which one is labelled source domain and the other is
the unlabelled target domain. Given a source domain item
(z%,a®) € D® and a target domain item (zf,a) € D",
through the above operations, we get the source item
representation R and the target item representation R}.
Until now, we get the representation of both domains by
interacting the aspects with their contextual words in a more
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efficient way. Then we take them into the following module
to learn transferable knowledge and general features.

In standard neural networks, deep features eventually
convert from the general to specific as the network becomes
deeper. Thus, the transferability gap grows with the domain
discrepancy and becomes particularly large [47], [48], [49].
In other words, the deep layers are tailored to their original
domain at the expense of degraded performance on target
domain, hence they cannot be directly transferred to the tar-
get domain with limited target supervision. In this paper, we
are committed to making the feature distribution between
the source domain and the target domain similarly under
each hidden layer representations of the MLP, which can
be learned by adding an MK-MMD adaptation regularizer
across domains.

As shown in Fig. |4} for each hidden layer, we assume
that the MK-MMD is defined as Reproducing Kernel Hilbert
Space (RKHS) distance between the mean feature embed-
dings of p and ¢. Note that, the most important property is
that p = ¢ if d2 (p,q) = 0 [50]. The distance between them
which can be calculated by:

s 2

di (p,q) = HEp (¢ (x*)] — Eq [¢ (Xt)] H?—Lk J
where ¢ (+) is the nonlinear feature mapping that induces
Hp. By using the kernel trick k (x*,x") = (¢ (x%), ¢ (x')),
we can compute d3 (p, q) through the expectation of kernel
functions instead of mapping function ¢ (). The equation
can be formulated as:

dz (9, q) = Exexrak (x°, %) + By k (x,x)

— 2Btk (x°,%")

(11)

(12)

iid iid
where x*,x'¢ ~ p; x!,x't < ¢q. x* represent samples from

different domain distributions. However, this computation
incurs a high complexity (i.e., O (n?)). Therefore, we follow
the unbiased estimate of MK-MMD which can be simply
computed with linear complexity (i.e., O (n)) [47], [50]. The
main calculate process is as follows:

ns/2

2
di(p,q) = - > gk (zi) - (13)
S i=1

A t ¢
Here, we denote z; £ (x3;_;,x3;,x5,_;,x5;), and we
evaluate kernel function % on each quad-tuple z; through:

A t t
gk (2i) 2k (x3;_1,%5;) + k(x5 _1,%x3;)
. ¢ s ot
—k (XSifl’X2i> —k (st‘axzz;l) )
where k is the kernel function which denotes as Gaussian
kernel in our paper. Finally, our purpose is to minimize the

distance between the source and target domain, which can
be represented as:

(14)

Ly =) _d} (D}, Dj),
{=1

h

(15)
where D} = {Rj } is the (-th layer hidden representation
for the source and target items, and d? (D}, D}) is the value
of MK-MMD which is evaluated on the ¢-th hidden layer
representation of the MLP.

2) Sentiment Classification: The sentiment classifiers
focus on mining aspect-aware semantic information in the

6

contextual sentences. At the same time, it is also used to
learn domain-shared features that contribute to aspect-level
sentiment classification. As illustrated in the top part of pre-
diction module, we treat the output (i.e., Rj) in the last layer
of the MLP as the source data representation and feed it
to the softmax layer for aspect-level sentiment classification.
The probability of labelling aspect with sentiment polarity
is computed by:

p; = softmax(W?°R; + b%) . (16)
where i € [1,C], C is the number of sentiment categories.
p§ is the estimated probability for each class.

The goal of the sentiment classification is to minimize
the cross-entropy loss for all the labelled data in the source
domain. The loss function will train the network parameters
to mine aspect-aware semantic features. The equation can be
formulated as follows:

c

1 &
o= 33 wit})

S j=11i=1

17)

where y; denotes the groundtruth and n, denotes the num-
ber of source domain data.

3) Domain Classification: This task simultaneously op-
timizes the domain invariance to learn domain-shared fea-
tures and to facilitate knowledge transfer across domains,
which makes our model become more universal and trans-
ferable. To be specific, we feed all feature representation R,
(i.e., R and R}) into the softmaz layer for domain clas-
sification, which the goal is to identify whether a training
example originates from the source or target domain. The
formulation can be defined as follows:

74 = softmaxz(W9eR;, + b?). (18)

The traditional training method is to minimize the clas-
sification error of the domain classifier so that the classifier
can learn domain-specific features and better distinguish the
difference between two domains. In this way, the classifier
can learn domain-specific features. However, it is contrary to
our purpose which the goal is to make the domain classifier
learning domain-shared features and cannot discriminate
between domains. Thus, we need to maximize the loss func-
tion of domain classifier, so that the discrepancy between the
source domain and target domain can be minimized. How-
ever, this poses one problem to train the whole model: how
to train two classifiers jointly when the training purpose
contains both maximum (i.e., domain loss) and minimum
(i.e., sentiment loss)? To eliminate this problem, we added
a gradient reversal operation (i.e., GRL) [30], [32] to reverse
the gradient direction in the back propagation of the domain
classifier. Through the GRL operation, the EATN can learn
domain-shared features by minimizing the loss function of
the domain classifier instead of maximizing the loss function
of it. The equation can be formulated as follows:

G(z) ==, (“)(;;:r) =\,
where A is a hyperparameter. Through the above operation,
the domain classifier can be trained by minimizing the cross-

(19)
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TABLE 1: Statistics of SemEval.2014 and twitter datasets.

Training Set Percentage (80%)

Domains ‘

| #Pos. | #Neg. | #Neu. | #Asp-T
Restaurant \ 2,800 \ 1,000 \ 800 \ 1,310
Laptop \ 1,300 \ 970 \ 600 \ 920
Twitter | 1,800 | 1,800 | 3,000 | 170

TABLE 2: Statistics of YelpAspect datasets.

Training Set Percentage (80%)

Domains |

| #DPos. | #Neg. | #Neu | #Asp-C.
BeautySpa | 30000 | 15000 | 30,000 | 38
Hotel | 30000 | 15000 | 30000 | 36
Restuarant-1 | 30000 | 15000 | 30,000 | 52

entropy loss for all data from the source domain and the
target domain, the domain loss function is defined as:

1 & . -
Lo=— 3 (vitngd + (1= yin(1 = 3)) - @0)
=1

where N is the sum of ns and n;. yg, Q;i denote the ground-
truth and the prediction domain label for the i-th sample,
respectively.

3.6 Training Strategy

Different from the traditional methods, our training process
comprises three different parts. Based on the individual
learning process defined above (i.e., MK-MMD based MLP,
sentiment classification and domain classification), we con-
duct joint learning for them to optimize the parameters of
both tasks and one auxiliary module. In order to avoid over-
fitting, we add a squared regularization and combine them
into an entire objective function:

L = ES + ﬁd +5£m+p£reg7 (21)

where L, is [ regularization function which aims to add
the sum of the squares of the parameters (i.e., parameters in
sentiment classifier and parameters in domain classifier) to
the loss function to make the model smoother and get better
generalization ability. 8 and p are parameters to balance the
loss terms. The regularization function is formulated as:

5112 2
Lreg = W25+ 10715 + WS + 6913 . 2)

The training goal of the joint learning is to minimize the
loss function £ with respect to the model parameters. Ad-
ditionally, all the parameters are optimized by the standard
back-propagation algorithm [51].

4 EXPERIMENTS
4.1

For reliability and authority of the experimental results, we
conduct experiments on six real-world datasets with two
granularities. The fine-grained datasets are for aspect-term
sentiment polarity detection which gathers from SemEval

Dataset Preparation
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2014 Task 4 Subtask 2 and Twitter.com. And other coarse-
grained datasets, i.e., the YelpAspect dataset from [52], are
used for aspect-category sentiment polarity detection. The
basic statistics are shown in Table[I]and Table[2l

4.1.1 Aspect-term

In this dataset, we aim to determine whether the polarity of
aspect-term is positive, negative or neutral. It contain three
subset, the first two are reviews from Restaurants (R) and
Laptop (L) and the third one is Twitter (T) dataset, which is
gathered by previous work [53]. Among them, each aspect
with the contextual sentence is labelled by three sentiment
polarities, namely positive, negative and neutral. Then, we
conduct the cross-domain experiments between every two
subsets in the aspect-term dataset, which means that we
have six domain adaptation tasks in aspect-term dataset:
R—L, R—T, L=R, LT, TR, T—L. For example, the no-
tation “R—L” represents the task which transfers from the
source domain “Restaurant” to the target domain “Laptop”.

4.1.2 Aspect-category

The dataset is gathered from [52] and provide a predefined
set of aspect-categories (e.g., price, food). The goal is to
determine the polarity (positive, negative or neutral) of each
aspect Categor Note that, the aspect-categories are typi-
cally coarser than the aspect terms, and they do not neces-
sarily occur as terms in the given sentence. Specifically, Yelp-
Aspect contains three domains: Restaurant (R1), Beautyspa
(B), and Hotel (H). The statistics of the YelpAspect dataset
are summarized in Table With the same method, we
can construct six domain adaptation task in aspect-category
dataset: B—H, B—R1, H—+B, H—R1, R1—B, R1—H. In the
end, we adopt Classification Accuracy as the main metric
to evaluate the performances of the classifiers which are
widely used in previous works [10], [14].

4.2 Hyperparameters Setups

In the experiments, we randomly split each dataset into
training (80%), validation (10%), and test (10%) sets. The
parameters for all benchmark methods are initialized as in
the corresponding papers, and are carefully tuned to achieve
optimal performances. The learning rate for all models is
tuned amongst [2e-5, 5e-5 and 1e-3] and the batch size is
tested in [16, 32, 64]. All words of sentence and aspect are
embedded in 300-dimension vectors. For our EATN model
El the batch size, head number of multi-head attention, max-
sequence length and the embedding size are set to 32, 12,
100 and 1024 respectively. The hidden unit sizes in 3-layer
MLP are [128, 32, 8]. The parameter A, 3 and p have been
carefully adjusted, and final values are set to 1, 0.8 and 0.002
respectively. All weight matrices are randomly initialized by
a uniform distribution ¢/(—0.01, 0.01), and all bias matrices
are initialized to zeros. Besides, we set the coefficient of
I3 normalization, the learning rate and the dropout rate as
10~%, 10~* and 0.1. We follow the standard procedures of

3. The detailed task and dataset introduction can be found in the following
public link: |http:/ /alt.qcri.org/semeval2014/task4/|

4. More dataset description of the aspect-category can be find in the following
link: https://alt.qcri.org/semeval2014/task4/index.php.

5. Our code is available via https:/ /github.com/1146976048qq/EATN,

1041-4347 (c) 2021 IEEE. Personal use isgermitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg;publicationsﬁstandards/ ublications/rights/index.html for more information.
to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:39:01 UTC from IEE

Xplore. Restrictions apply.


http://alt.qcri.org/semeval2014/task4/
https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
https://github.com/1146976048qq/EATN

JOURNAL OF IATEX CLASS FILES

TABLE 3: Experimental performance (accuracy) about Sem.2014 and Twitter datasets.

Transactions on Knowledge and Data Engineering

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3075238, IEEE

Authorized licensed use limite

| Res. — Lap. — Twitter. —
Benchmarks

| R—L R—T L—R L—T T—R T—L
LSTM | 0.6227(-13.2%)  0.5659(-18.9%) 0.5626(-11.6%) 0.5236(-15.5%) 0.5588(-11.8%) 0.5068(-17.0%)
TD-LSTM | 0.6301(-12.9%)  0.5687(-19.0%) 0.5769(-10.4%) 0.5285(-15.4%) 0.5669(-10.6%) 0.5190(-15.4%)
ATAE | 0.6023(-15.3%)  0.5839(-17.1%) 0.5652(-12.2%) 0.5326(-16.1%) 0.5727(-9.8%) 0.5243(-14.8%)
TAN ‘ 0.6280(-14.1%) 0.5814(-18.7%) 0.6371(-8.0%) 0.5664(-15.0%) 0.6031(-8.1%) 0.5444(-15.9%)
MemNet ‘ 0.6361(-14.5%) 0.5829(-19.8%) 0.6217(-9.6%) 0.6033(-11.4%) 0.6166(-9.3%) 0.5512(-16.8%)
AOA |  0.6529(-10.7%)  0.5642(-19.5%) 0.6508(-8.7%) 0.6143(-12.3%) 0.6233(-6.3%) 0.5437(-14.3%)
MGNet |  0.6541(-11.1%)  0.5920(-17.3%) 0.6631(-8.3%) 0.6210(-12.5%) 0.6267(-7.1%) 0.5489(-15.0%)
TNet | 0.6642(-12.0%)  0.6099(-17.4%) 0.6711(-8.3%) 0.6364(-11.7%) 0.6360(-7.5%) 0.5880(-13.8%)
BERT-PT |  0.6791(-12.3%)  0.6183(-18.3%) 0.6820(-9.7%) 0.6434(-13.6%) 0.6679(-7.3%) 0.6001(-14.2%)
SFA ‘ 0.6547 0.5924 0.6693 0.6101 0.6312 0.5832
HATN ‘ 0.6762 0.6121 0.6887 0.6383 0.6638 0.6044
TATN | 0.6833 0.6169 0.6953 0.6490 0.6706 0.6101
EATN ‘ 0.7087 0.6323 0.7162 0.6572 0.6822 0.6197

MMD-based method [47], [50] and use Gaussian kernels as
the kernel function. Finally, we optimize all the models with
Adam optimizer [54].

4.3 Benchmark Methods

In order to comprehensively evaluate the performance of
our model, we borrow several non-transfer approaches from
aspect-level sentiment classification as well as some trans-
fer methods from cross-domain sentiment classification for
comparison. The methods are listed below.

e LSTM [16] utilizes neural network to learn the hid-
den states and obtain the averaged vector through
mean pooling to predict the sentiment polarity.

e TD-LSTM [17] employs two LSTMs to model the
left and right contexts of the target separately, then
performs predictions based on concatenated context.

o ATAE-LSTM [10] is a simple LSTM model which
learns attention embeddings and combines them
with the hidden states to predict the polarity.

o IAN [12] interactively learns the coarse-grained at-
tention between the aspects and sentences, then con-
catenate vectors for the final sentiment prediction.

e MemNet [9] adopts multi-hop attention on the word
embeddings, learns the attention weights on context
word vectors with respect to averaged query vector.

e AOA [19] models aspects and sentences in a joint
way and explicitly captures the interaction between
aspects and context sentences.

e MGNet [13] proposes a novel fine-grained attention
method, which can capture the word-level interac-
tion between the aspects and the contexts.

o TNet[14] employs a CNN layer to extract salient fea-
tures and propose a component to generate specific
representations of words in the sentence.

o BERT-PT [20] is a language model with a joint post-
training approach which has been specially designed
for aspect-level sentiment analysis task.

As mentioned in related work, there are some domain
adaptation strategies in other relative tasks, such as cross-

domain sentiment analysis. Thus, we choose some repre-
sentative methods, which shows significant improvement
in recent years, as benchmarks to further verify the ability
of aspect-aware knowledge representation of EATN.

e SFA [24] interactively learns the coarse-grained at-
tention between aspects and the contexts, then con-
catenate them to predict the final result.

o HATN [32] models the aspects and the sentences in
a joint way and explicitly captures the interaction
between them in both word and sentence level.

o IATN [34] proposes a novel fine-grained interactive
attention method, which can capture the word-level
feature interaction between the aspects and the con-
textual sentiment words.

Our benchmarks have a comprehensive coverage of the
related models. In the experiments, all the benchmark meth-
ods are implemented by python (Pytorch) and are trained on
a Linux server with two 2.20 GHz Intel Xeon E5-2650 CPUs
and four Tesla K80 GPUs.

4.4 Results and Analysis

Considering the transferability and universality of aspect-
level sentiment classifier is a relatively novel task. In order to
better demonstrate the comprehensive performance of our
proposed method, in this section, we cover multiple experi-
mental results and the detailed description is as follows.

1) Overall performance. Table [3| and Table [ show the
main performance, i.e., classification accuracy, on each of
the twelve tasks on different datasets. Table [l shows some
overall effects of other metrics of those methods.

For aspect-term performance shown in Table 3} BERT-PT
has the best performance over all the non-transfer methods,
i.e., aspect-level sentiment classifiers. This is consistent with
previous work [20], [21], which indicates that the pre-trained
model is more powerful in feature extraction and semantic
representation. From the results, we observe that some
specially designed attention-methods (e.g., TNet, MGNet,
AOA) outperform memory-based methods (e.g., MemNet)
and RNN-based methods (e.g., LSTM, ATAE). However,
it’s also impressive to observe that the performances of all
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TABLE 4: Experimental performance (accuracy) about YelpAspect datasets.

| Bea. — Hotel. — Resl. —
Benchmarks
‘ B—H B—R1 H—B H—R1 R1—B R1—-H
LSTM ‘ 0.6695(-5.65%)  0.6753(-5.07%) 0.6992(-3.20%) 0.7057(-2.55%) 0.6983(-2.12%) 0.6765(-4.29%)
TD-LSTM ‘ 0.6766(-4.73%)  0.6709(-5.30%) 0.6984(-3.71%) 0.7095(-2.59%) 0.7078(-1.46%) 0.6792(-4.32%)
ATAE ‘ 0.6795(-5.37%)  0.6776(-5.56%) 0.7039(-4.19%) 0.7105(-3.52%) 0.7083(-2.26%) 0.6870(-4.38%)
IAN ‘ 0.6805(-2.07%) 0.6626(-3.84%) 0.6963(-4.06%) 0.6933(-4.36%) 0.7112(-2.14%) 0.6828(-4.96%)
MemNet ‘ 0.6923(-4.03%)  0.6790(-5.35%) 0.6907(-5.11%) 0.7095(-3.23%) 0.7208(-1.38%) 0.6874(-4.71%)
AOA ‘ 0.6829(-4.07%)  0.6642(-3.25%) 0.6850(-3.70%) 0.7092(-2.63%) 0.7136(-1.63%) 0.6837(-4.30%)
MGNet ‘ 0.6907(-3.59%)  0.6903(-3.62%) 0.6986(-4.63%) 0.7192(-2.58%) 0.7216(-0.41%) 0.6916(-3.39%)
TNet ‘ 0.7007(-4.06%)  0.7110(-3.02%) 0.7211(-3.66%) 0.7251(-3.27%) 0.7291(-1.73%) 0.6985(-4.78%)
BERT-PT ‘ 0.7172(-3.85%) 0.7194(-3.61%) 0.7275(-3.12%) 0.7312(-2.77%) 0.7411(-1.03%) 0.7034(-4.77%)
SFA ‘ 0.6860 0.6722 0.6817 0.7015 0.7046 0.6824
HATN ‘ 0.6911 0.7138 0.7174 0.7208 0.7331 0.7088
IATN ‘ 0.7074 0.7209 0.7227 0.7264 0.7425 0.7101
EATN ‘ 0.7218 0.7346 0.7410 0.7488 0.7526 0.7155
TABLE 5: Multiple results (i.e., average of all tasks) of different datasets.
Benchmark methods.

Evaluation

| LSTM | td-LSTM | ATAE | IAN | MNet | AOA | mgNet| TNet | BERT-PT || SFA | HATN| IATN | EATN

SemEval.2014 and Twitter.
Accuracy | 0.5567 | 05650 | 0.5635 | 0.5934 | 0.6019 | 0.6082 | 0.6176 | 0.6343 | 0.6484 || 0.6234 | 0.6472 | 0.6542 | 0.6692
Fl-Value | 04680 | 04778 | 04766 | 0.4913 | 0.4962 | 0.4974 | 05011 | 05079 | 05208 || 0.5004 | 05313 | 0.5379 | 0.5416
YelpAspect.

Accuracy | 0.6874 | 0.6904 | 0.6945 | 0.6879 | 0.6866 | 0.6897 | 0.7020 | 0.7142 | 07233 || 0.6881 | 0.7140 | 0.7217 | 0.7356
Fl-Value | 0.6076 | 0.6083 | 0.6112| 05980 | 0.5922 | 0.6012 | 0.6167 | 0.6234 | 0.6424 || 0.6035 | 0.6259 | 0.6334 | 0.6497

nine non-transfer benchmark methods have a certain degree
decline when performing it in new domains. For example,
in Table[}|R—L task, LSTM method has achieved the perfor-
mance of 75.57% in predicting the sentiment polarity in the
restaurant domain (i.e., train and test in the same domain),
while it reduces to 62.27% when adapting to the laptop
domain (i.e., train in the restaurant domain and test in the
laptop domain) for aspect-level sentiment classification. The
content in parentheses (i.e., 13.2%) indicates the percentage
of decline which caused by the domain discrepancy as as-
sumed in Fig. |1} The phenomenons above can be explained
as that these classifiers mainly concentrate on mining the
aspect-level semantic information in a single domain instead
of constituting more generic features that can be more easily
adapted to new domains.

For the fairness of the experiments, we also adopt some
domain adaption methods to verify the effectiveness of our
proposed model. Among these benchmark methods, the
rule-based method, i.e., SFA, performs worst since it adopts
a simple distance function for fitting training samples. In
contrast, HATN and IATN utilize the deep neural network
for modeling the semantics of text, thus give better re-
sults than SFA. However, IATN performs worse than some
aspect-level sentiment classifiers on several tasks such as
R—T, B—H and H—B. A possible reason is that those
domain adaptation methods usually focus on sentence-level
sentiment analyzing, which is hard to extract aspect-aware
semantics. Finally, we compare EATN with all benchmark
methods. As shown in Table 3} it is clear to see that EATN is

1041-4347 (c) 2021 IEEE. Personal use isgermitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or;
Authorized licensed use limite

consistently better than all the benchmarks by a large mar-
gin at each task. Specifically, compared to the best aspect-
level sentiment classifier (i.e., BERT-PT), the accuracy im-
provement of EATN on different tasks is between 1.5% and
3.5%. In addition, compared with the best adaptive model
(IATN), EATN has also achieved a maximum improvement
of 2.54% on R—L tasks. This suggests that EATN not only
perform better in domain adaptation scenario but also gain
powerful ability in aspect-aware semantic representation.
For the aspect-category performance shown in Table [4
we can observe the same trend of performance as the aspect-
term tasks. To be specific, we can get several observations:
1) All the non-transfer methods from aspect-level sentiment
classification have a certain decline, and the BERT-PT gains
the best performance among them because of its powerful
representation ability. 2) Most models with transfer capabil-
ities are not as good as BERT-PT, the possible reason is that
they cannot model aspect information. 3) The results also
show that the proposed EATN model performs better than
the benchmark methods in six subtasks when transferring
from a source domain to a target domain. Note that, the
aspect-category dataset is more generic than the aspect-
term dataset because it is more coarse as we described in
section[#.1.2] Thus, all the benchmark methods have a higher
classification accuracy and the declined percent is a little
lower than the performances in aspect-term tasks.
Moreover, from the average results in Table[5| we can get
further observation that our proposed EATN performs bet-
ter than other methods, i.e., aspect-level sentiment classifiers
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TABLE 6: Ablation performance (accuracy) of the EATN.

Tasks | Restaurant. Laptop. Twitter.
m |  R-oL R—T | L-R LT | T-R T-L
(1) EATN | 0.7087 0.6323 | 0.7162 0.6572 | 0.6822 0.6197
(2) w/ Istm | 0.6960(-1.27%)  0.6210(-1.13%) | 0.7024(-1.38%)  0.6514(-0.58%) | 0.6799(-0.23%)  0.6162(-0.35%)

(3) w/0 domain
(4) w/0 mk-mmd

| 0.6817(-2.70%)
| 0.6875(-2.12%)

0.6194(-1.29%) | 0.6866(-2.96%)
0.6223(-1.01%) | 0.6915(-2.47%)

0.6481(-0.91%) | 0.6717(-1.05%)
0.6497(-0.75%) | 0.6710(-1.12%)

0.6113(-0.85%)
0.6092(-1.04%)

and domain adaptation methods, on average classification
accuracy, reaching to 66.92% and 73.56% in SemEval.2014
dataset and YelpAspect dataset respectively. To be specific,
the average accuracy of EATN is 1.50% higher than the best
benchmark 65.42% (i.e., IATN) in aspect-term dataset and
1.33% higher than the best benchmark (i.e., BERT-PT) in
aspect-category dataset. For other metrics, i.e., F1-value, the
observations are similar. EATN consistently outperforms the
state-of-the-art benchmark method by 2.22% in the aspect-
term dataset and 3.33% in the aspect-category dataset. In
conclusion, the results in Table[3} Table[d]and Table[5indicate
that our proposed method outperforms benchmark methods
on diverse transfer tasks. And EATN is more effective and
accurate for aspect-level sentiment analysis, more generic
and transferable in domain adaptation scenario.

2) Ablation Study. In order to investigate the relevance
of each component, we present multiple ablation studies of
our EATN model on the more popular benchmark datasets,
i.e., SemEval.2014 and Twitter. In what follows, we describe
the variants of EATN approach and examine how each of
them affects the final prediction performance:

o EATN ./ istm: the variant utilizes LSTM instead of
the aspect-oriented multi-head attention mechanism
to learn the hidden representation.

o EATN 4/ domain' is a variant method of the EATN
which removes the domain classifier (i.e., without
using the domain classification task).

o EATN /6 mk—mma: the variant removes the MK-
MMD and directly binds the output of MLP with the
prediction tasks.

The results are shown in Table @ Generally, all three
factors contribute a certain degree of the improvement to
EATN. Specifically, the performance of EATN significantly
decreases when replacing the aspect-oriented multi-head
attention with LSTM as shown in Table [f] (2). It verifies
that the aspect-oriented multi-head attention has a stronger
ability to learn the relationships between the aspects and its
contextual sentiment words than RNN-based methods (e.g.,
LSTM), which is consistent with our previous assumption
in Fig. 2} Besides, we wonder whether the domain classifica-
tion task or the MK-MMD module is enough for improving
the final performance. Thus, we remove them separately to
verify it. The results in Table E] (3)-(4) show that there is a
significant drop in the performance of EATN /5 domain and
EATN .,/ mk—mmd- Further, the results also suggest that
both parts are extremely significant for the final classifica-
tion, which means that domain classifier can learn domain-

TABLE 7: Runtime of BERT-PT, IATN and EATN. Specifi-
cally, “S” represents the training time (seconds) for a sin-
gle epoch, “E” denotes the number of epochs to converge,
and “T” is the total training time (minutes).

| R—L task. B—H task.
Methods

'S E T | S E T
(1) BERT-PT ‘ 86s 28 2428s ‘ 2Ilm 23 568m
(3) IATN ‘ 15s 30 464s ‘ 6m 28 176m
(4) EATN ‘ 14s 24 359s ‘ 5m 25 147m

invariant featuresﬂ between domains comprehensively and
MK-MMD can align features across domains. Overall, both
of them are indispensable for EATN to achieve excellent per-
formance in cross-domain aspect-level sentiment analysis.

4.5 Efficient Analysis

To show the EATN is efficient not only in learning transfer-
able knowledge but also in operating efficiency, we further
investigated the training process of best benchmark models
BERT-PT, IATN as well as our EATN model.

1) Loss Convergence. We investigated the training pro-
cess of the neural models BERT-PT, IATN and EATN model.
The losses of best benchmarks on the training set throughout
the training process on two tasks are shown in Fig. |5 To be
specific, the left part shows the training loss of the “R—L”
task and the right part shows the loss of “B—H" task.
The result in Fig. 5| shows similar observations as before,
which demonstrates the effectiveness of the proposed EATN
framework again. Clearly, from the results, the EATN model
converges faster than the other two models, and also achieve
a lower loss on both tasks. Thus, we can get the conclusion
that the EATN model has superior ability and efficiency to
extract domain-shared features across domains.

2) Runtime Comparison. We also compared overall run-
time of three methods. From results that shown in Table
we can first observe that the training time of a single epoch
in the EATN model perform better than the others. Second,
compare with other models, the total training time of the
EATN model is less. In particular, in aspect-category dataset,
the EATN only needs 147 minutes to achieve the optimal
performance, while IATN and BERT-PT need about 176 and

6. The domain adversarial loss L4 (i.e., equation can enforce EATN to learn
domain-shared features which the domain classifier cannot discriminate across
domains.
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TABLE 8: Example study of three items from laptop and restaurant.

Cases are shown as below

Models and Prediction

Example One. | BERT-PT | IATN | EAIN
Aspects: | “the cord” ( Ground-truth: Neutral ) | Pos. | Pos. | Neu
Sentence: ‘ I charge it at night and skip taking “$” with me because of the good battery life. ‘ (%) ‘ (x) ‘ (v)

Example Two.

Aspects: | “patches” ( Ground-truth: Negtive ) | Neg. | Pos. | Neg.
. 2nd Best computer in the world only one way this computer might become the best is

Sentence: ‘ that it needs to upgrade “$” to make less easier for people to hack into. ) ) ()

Example Three.

Aspects: | “meal” ( Ground-truth: Postive ) | Neg. | Pos. | Pos.

Sentence: ‘ I just wonder how you can have such a delicious “$” for such little money. ‘ (x) ‘ ( v ) ‘ ( v )

-%- BERT-PT -%- BERT-PT
-%- IATN -%- IATN
-%- EATN -%- EATN
.,
Tkl Teeel
B S At o Sl
e o
05 A S
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Epochs Epochs

Fig. 5: The loss curves of BERT-PT, IATN best benchmarks
and our EATN on the asepct-term dataset (i.e., R—L task
shown in the left) and the aspect-category dataset (i.e., B—H
task shown in the right).

568 minutes, respectively. The possible reason is that the
IATN (LSTM-based) can not be paralleled during training
process, and the BERT-PT is a little difficult to fine-turn, rela-
tively. In summary, the observations above show significant
advantages of our EATN model in training efficiency.

4.6 Case Study

Table [§| displays three examples and the auxiliary informa-
tion provided by BERT-PT, IATN and EATN model. Recall
that the EATN model can encode the aspect-aware semantic
information to gain a more efficient aspect-level sentiment
classifier as well as gain remarkable transferability among
domains. To better demonstrate this viewpoint, we ran-
domly sample three aspect-sentence pairs (examples) from
two datasets (i.e., Laptop and Restaurant). Among them, the
first example is a review from the laptop domain. We can
observe that the aspect (i.e., the cord) has no associated sen-
timent word and the sentiment polarity should be neutral.
However, in models BERT-PT and IATN, it was misclassified
as positive because of the unrelated sentiment word “good”,
which indicates that IATN concentrates more on the whole
sentences’ sentiment polarity instead of aspects’ sentiment
polarity. Example two which the whole sentiment polarity
is positive can also demonstrate this viewpoint. Moreover,
through Example One and Example Three, we find that the
performance of BERT-PT is not very well when there are
multiple sentiment words in one sentence, which indicate
that BERT-PT has insufficient ability to extract aspects-aware
information. Overall, the results demonstrate that the EATN

9
8
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5
4
3
2
1

e S S - )

O 1 2 3 4 5 6 7 8 9 10 O 1 2 3 4 5 6 7 8 9 10

Fig. 6: Feature distribution visualization of three domains,
i.e., Laptop, Restaurant, and Twitter. The images on the left
is data distribution randomly sampled after the original data
embedding, while the right image is feature distribution (i.e.,
output of MLP) sampled after domain adaptation network. In
each group (e.g., every two colors), the original and domain-
adapted distribution images are shown from left to right, and
their feature distributions become more similar.

facilitates the performance through multiple modules and is
superior in aspect-level sentiment prediction.

4.7 Visualization of Distribution

From the above experiments, it is apparent that the EATN
model can effectively gain outstanding performance than
the compared methods. To intuitively show the transferabil-
ity of the proposed method, in this subsection, we visualize
the feature distributions of the bottleneck layer from three
datasets (i.e., Laptop, Restaurant and Twitter) learned by the
original embedding and our transfer network respectively
in Fig. [f} From the original word representation (i.e., the
left subfigure) to final feature representation (i.e., the right
subfigure), the feature distributions between the source
domain and target domains become more indistinguishable
through Domain Adaptation Module. Moreover, the feature
distributions between Laptop domain (i.e., blue color) and
Restaurant domain (i.e., red color) is more similar than Lap-
top domain and Twitter domain (i.e., green color) since they
come from the same general domain, i.e., Amazon.com, and
focus on the reviews toward products. We also believe this is
the reason why the transfer task L—R performs better than
the transfer task L—T. In summary, the visualization result
indicates that EATN is able to match the complex structures
of the source and the target data distributions, thus learning
more transferable features for domain adaptation.

1041-4347 (c) 2021 IEEE. Personal use isgermitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/publicationsﬁstandards/ ublications/rights/index.html for more information.
to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:39:01 UTC from IEE

Xplore. Restrictions apply.



Authorized licensed use limite

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3075238, IEEE

Transactions on Knowledge and Data Engineering

JOURNAL OF IATEX CLASS FILES

5 CONCLUSIONS

In this paper, we presented an Efficient Adaptive Transfer
Network (EATN), a novel domain adaptation approach for
aspect-level sentiment analysis. Unlike previous methods
that only match the feature extracted from the source la-
beled domain, the proposed approach further exploits the
inherent semantic relationship across domains by consider-
ing the transferable knowledge. Specifically, we designed a
Domain Adaptation Module to ensure that EATN can learn
domain-invariant and semantic features. Then, we devised a
novel MLP module to further enhance the transferability of
features in the deep neural networks. Finally, we designed
an aspect-oriented multi-head attention to extracting the
direct semantic relationships between the aspects and the
contextual words. Extensive experiments on six real-world
datasets demonstrated the effectiveness of our model. We
hope this work can help boost more researches for aspect-
level sentiment analysis in the domain adaptation scenario.
In the future, we will try to integrate into more domains for
semantic domain adaptation.
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