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ABSTRACT
Job mobility prediction is an emerging research topic that can bene-

fit both organizations and talents in variousways, such as job recom-

mendation, talent recruitment, and career planning. Nevertheless,

most existing studies only focus on modeling the individual-level

career trajectories of talents, while the impact of macro-level job

transition relationships (e.g., talent flow among companies and job

positions) has been largely neglected. To this end, in this paper we

propose an enhanced approach to job mobility prediction based on

a heterogeneous company-position network constructed from the

massive career trajectory data. Specifically, we design an Attentive

heterogeneous graph embedding for sequential prediction (Ahead)

framework to predict the next career move of talents, which con-

tains two components, namely an attentive heterogeneous graph

embedding (AHGN) model and a Dual-GRU model for career path

mining. In particular, the AHGN model is used to learn the com-

prehensive representation for company and position on the hetero-

geneous network, in which two kinds of aggregators are employed

to aggregate the information from external and internal neigh-

bors for a node. Afterwards, a novel type-attention mechanism is

designed to automatically fuse the information of the two aggrega-

tors for updating node representations. Moreover, the Dual-GRU

model is devised to model the parallel sequences that appear in

pair, which can be used to capture the sequential interactive in-

formation between companies and positions. Finally, we conduct

extensive experiments on a real-world dataset for evaluating our

Ahead framework. The experimental results clearly validate the

effectiveness of our approach compared with the state-of-the-art

baselines in terms of job mobility prediction.
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Figure 1: An example of a member’s career trajectory.
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1 INTRODUCTION
The phenomenon of job hopping has become a new normal in

the talent-economy era. Therefore, the research on job mobility

prediction emerges as the times require, which can benefit both

organizations and talents in various ways, such as competitive anal-

ysis, job recommendation, talent recruitment, and career planning.

Traditional studies on job mobility prediction mainly focus on the

determining factors [31, 33] and assessment [13, 36] of job mobility,

based on social surveys or interviews. For example, Ng et al. [31]
explored some intrinsic and extrinsic factors of job mobility, such

as economic conditions, industry differences, personality traits, and

desirability of mobility. Shockley et al. [36] created and validated a

measure of subjective career success for individuals.

Recently, the rapid prevalence of online professional networks

(OPNs) has enabled the accumulation of massive digital resumes,

which opens an unparalleled opportunity for developing the data-

driven intelligent approach to job mobility prediction [22, 30, 41].

For example, Li et al. [22] proposed an encoder-decoder framework

to integrate the individual profiles to predict the next career move

of talents. Meng et al. [30] proposed a hierarchical neural network

to integrate three levels of individual information for job mobility

prediction. Nevertheless, most existing studies only focus on mod-

eling the individual-level career trajectories of talents, while the

impact of macro-level job transition relationships (e.g., talent flow

among companies and job positions) has been largely neglected.

Indeed, it is intuitive that the macro-level job transition information

may reflect the competitiveness and trend of talent market, which
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will consequently influence the job hopping decision of individuals.

Meanwhile, existing studies usually tend to represent the entities

(e.g., companies and positions) based on the predefined attributes,

which may suffer from the insufficient data and cannot model the

entities comprehensively.

Therefore, in this paper, we propose to study the problem of

job mobility prediction by exploring the impact of macro-level

job transition relationships. Specifically, we design an Attentive
heterogeneous graph embedding for sequential prediction (Ahead)

framework for enhancing job mobility prediction. In general, two

major challenges will be addressed in the framework. First, a com-

prehensive representation of company and position should be gen-

erated with the consideration of their global and multiple relation-

ships. Second, the mutual dependency between company and posi-

tion should be carefully integrated. To this end, we first construct a

heterogeneous company-position network by mining the massive

career trajectory data, where the nodes represent all companies

and job positions, the edges contain the different relationships of

nodes (i.e., the job transitions between two companies or positions,

and the belonging relationship of company and position). Then, we

construct the first component of Ahead, namely attentive heteroge-

neous graph embedding (AHGN) model, to represent companies

and positions comprehensively based on the graph neural network.

In particular, to distinguish the heterogeneity of nodes, two aggre-

gators are designed to integrate neighbor information. The external

aggregator is used to aggregate the information of neighbors with

different types according to the graph convolutional rule. The inter-

nal aggregator is employed to aggregate the information of neigh-

bors with same type, in which a transition-aware attention is used

to integrate the contextual features of nodes. Afterwards, a novel

type-attention mechanism is proposed to automatically learn the

importance of internal and external aggregators for updating nodes

representation. The other component of the Ahead framework is

career path mining, where we first describe the career trajectory as

two sequences of company and position, and then design a novel

Dual-GRU model to capture the sequential interactive information

between company and position by integrating the hidden states of

two sequences with an attention mechanism. Finally, the outputs

of the Dual-GRU model are used to predict job mobility by the

fully-connected layers. Specifically, the major contributions of this

paper can be summarized as follows:

• We propose to study the problem of job mobility prediction

by exploring the impact of macro-level job transition rela-

tionships, which fills the research void in previous studies

that only model the individual-level career trajectories.

• We design a novel attentive heterogeneous graph embedding

framework for enhancing job mobility prediction, where an

AHGN model is used to learn the comprehensively repre-

sentations of company and position, and a novel Dual-GRU

model is applied to model the career path with the considera-

tion of the mutual influence between company and position.

• We conduct extensive experiments on a real-world dataset

for evaluating our Ahead framework, and the experimental

results clearly validate the effectiveness of our approach

compared with the state-of-the-art baselines in terms of job

mobility prediction.

2 RELATEDWORK
The related work can be summarized into three main categories,

namely job mobility analysis, sequence forecasting and network rep-
resentation learning.

Job Mobility Analysis. Job mobility analysis is a hot topic in

human resource management. Traditional studies mainly focus on

the determining factors and assessment of job mobility. For ex-

ample, Pan et al. [33] analyzed how factors such as personality,

industry and education background impact career paths, Ng et

al. [31] introduced a multi-level theoretical framework to describe

how individual job mobility unfolds, and Shockley et al. [36] created
and validated an index of subjective career success for individu-

als. Recently, data mining techniques have been widely applied

to the job mobility analysis tasks, including individual turnover

prediction [21, 38], career trajectory modeling [42], job mobility

prediction [22, 30, 41], competitive analysis [44] and so on. In this

paper, we mainly focus on the issue of job mobility prediction, in

which the prediction targets include employers, positions, working

duration and so on. For instance, Li et al. [22] proposed a contextual

LSTM model to integrate the profile context and career path dy-

namics simultaneously for predicting the next company/position of

talents. Meng et al. [30] proposed a hierarchical career-path-aware

neural network to model the individual job mobility, which pre-

dicted the next employer and the corresponding working duration

for talents. In general, most existing studies focus on modeling

the individual-level career trajectories of talents. Differently, we

propose to study the problem of job mobility by exploring the

impact of macro-level job transition relationships in the view of

heterogeneous company-position network.

Sequence Forecasting. Regarding the sequence forecasting

problem, several modeling methods have been proposed. For in-

stance, the CTMC model [1] uses the stochastic probability to de-

scribe a series of events, in which the state space is discrete but has

continuous time. At the same time, the CRF model [19] allows long-

distance dependencies, and integrates rich features for sequence

forecasting. Correspondingly, we design our solution based on the

Recurrent Neural Networks (RNN) [16], which has achieved state-

of-art performance on sequential modeling tasks, including speech

recognition [9, 10], machine translation [6, 7] and recommenda-

tion [26, 28]. However, the RNN model suffers from the vanishing

gradient problems [14]. To address this issue, the variations of RNN,

such as LSTM [15] and GRU [6] are proposed by introducing several

gates in neural cells to gain better long-term memory efficiency.

Apart from that, the attention mechanism is further introduced

to improve the prediction performance of RNNs [2, 29]. Different

from the existing methods, in this paper, we propose a new RNN

structure, namely Dual-GRU, to model the parallel sequences of

company and position, and capture their mutual influence with

attention mechanism.

Network Representation Learning. Representation Learning

aims to automatically discover the representations needed for the

downstream applications, which is common in smart services [23,

25, 47]. As a branch, network representation learning is proposed

to embed node into a low dimensional space while preserving the

network structure and property. Large efforts have been made on

this issue, such as the matrix factorization based models [3, 32],
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Figure 2: The data distribution of different aspects.

and the random walk based models [11, 35]. Recently, the graph

neural networks (GNNs) are proposed to represent nodes by using

the rich neighborhood information. For example, GCN [18], Graph-

SAGE [12] and GAT [37] employ convolutional operator, LSTM

architecture, and self-attention mechanism to aggregate the fea-

ture information of neighboring nodes respectively. However, all

these algorithms are proposed for the homogeneous graph. As a

result, several network embedding solutions have been expanded to

heterogeneous graphs [5, 39]. For instance, the heterogeneous skip-

gram model based methods [8, 17] conduct the meta-path based

random walks to generate graph contexts. Beyond the random walk

based model, HAHE [46], HGAT [24] and HAN [40] apply differ-

ent attention architectures to integrate the different type features

of different neighborhoods. For example, HAHE [46] employs a

hierarchical attentive structure to capture the personalized pref-

erences on meta paths and path instances in each semantic space.

Different from these models mentioned above, in this paper, we

propose a new heterogeneous graph embedding structure which is

well-designed for the heterogeneous company-position graph.

3 PRELIMINARIES
In this section, we will first introduce the real-world dataset in our

paper. Then, several pre-studies on the dataset will be introduced.

At last, we formally define the problem of job mobility prediction.

3.1 Data Description
The data set were collected from one of the largest online pro-

fessional social platforms, i.e., Linkedin, where users can create

professional resumes to share their working and education experi-

ence. In detail, we extracted the individual profiles as well as the

working records from these resumes. Specifically, each profile con-

sists of a user name and self-description, and each working record is

composed of company name, job position and working duration. In

addition to the individual information, we also collected some static

features of the companies from Linkedin, including company type,

size, etc. We will introduce the processing details in section A.1 of

the Appendix. Through the data pre-processing, we can extract the

career trajectory of each talent, as shown in Figure 1. Furthermore,

we analyzed the distribution of career trajectory records from dif-

ferent aspects, as shown in Figure 2. Obviously, the distribution

of data is imbalanced, and we need to deal with the imbalanced

distribution for better predictions.

3.2 Data Exploration
Next, we conduct pre-studies to analyze several determining factors

that affect job mobility from the macro view.

Firstly, we will explore the relationship between company sim-

ilarity and job transition. For each company, we collected all po-

sitions that company contains. Afterwards, we used the labeled

dataset [27] to extract the function words from all positions, which

can describe the business function of companies. For example, for

the position “software engineer”, “software” is a function word,

which indicates the company is related to IT. Then, we constructed

a vector to represent each company, where the dimension was equal

to the size of function words, and each dimension denotes the nor-

malized frequency of word. The similarity between two companies

can be defined as the dot product of their vectors. Finally, we used

Pearson Correlation Coefficient (PCC) metric [34] to measure the

correlation between company similarity and job transition. The

PCC score is 0.6376 with P-value nearly 0, which indicates the

company similarity and job transition are strongly correlated.

Secondly, we discuss the relationships between position similar-

ity and job transition. As mentioned in [43], words of job positions

contain rich semantic information. Usually, if two positions have

more identical words, they could be more similar to each other.

For example, the position “software engineer” is more similar to

“software developer” than “account manager”. Thus, we split the job

titles by word and analyzed the number of changed words during

job transitions. The statistics results show that more than 60% of

the job transitions are generated between two job positions which

at least exists one identical word. Obviously, job transitions usually

occur more between two similar positions.

Thirdly, we analyze the relationships between companies and po-

sitions. We first extracted the correspondence between companies

and positions. For each position, we maintained a list of companies

that this position belongs to, and vice versa. According to these

two lists, we find that when a job transition occurs within the job

mobility trajectory records, the destination company is probably

within the list of current position, with the probability higher than

85%. Similarly, for the new position, it is also probably within the

list of current company, with a probability higher than 85%. This

situation indicates that both current company and position could

benefit the prediction task of future mobility selection.

In summary, these pre-studies motivate us to construct a graph

structure to capture the global relationships among companies and

positions for better job mobility prediction.

3.3 Problem Formulation
Here we first define the personal career trajectory and the hetero-

geneous company-position network, and then formally formulate

the job mobility prediction problem.
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Definition 1 (Career Trajectory). The career trajectory of a
person 𝑢 is an ordered sequence of jobs, which can be summarized
as J (𝑢) = {J1,J2, ...,J𝐿 |𝑢}, where J𝑖 is the 𝑖-th job record of 𝑢,
denoted by a tuple, i.e., J𝑖 = (𝑐𝑖 , 𝑝𝑖 , 𝑑𝑖 ), indicating that user 𝑢 worked
at company 𝑐𝑖 with position 𝑝𝑖 and the stay time is 𝑑𝑖 .

It is noticed that the working duration in the last record, i.e., 𝑑𝐿 ,

is unknown, because we usually do not know how long the talents

will stay in current company until they move to the next company

and update their resume. According to the career trajectory, we

can extract two sequences for company and position respectively.

Specifically, the company sequence can be written as:

S𝑐 (𝑢) = {(𝑐1, 𝑐2, ..., 𝑐𝐿) |𝑢}, (1)

and the position sequence can be written as:

S𝑝 (𝑢) = {(𝑝1, 𝑝2, ..., 𝑝𝐿) |𝑢}. (2)

The two adjacent companies and positions in a sequence can con-

struct an edge, e.g., <𝑐𝑖 , 𝑐𝑖+1> and <𝑝𝑖 , 𝑝𝑖+1>, which represents the

connectivity between companies/positions. And the strength of

the connection is determined in a heuristic way by the frequency

of a pair in all trajectories. Moreover, in each step 𝑖 , we have a

company-position pair, e.g., <𝑐𝑖 , 𝑝𝑖>, which represents the own-

ership relationship between company and position. As a result,

by treating each company or position as a node and link them by

the corresponding relationships, we can construct a heterogeneous

company-position network, which is defined as follows:

Definition 2 (Company-Position Network). The company-
position network is defined as G = (V, E), where V = (V𝑐 ∪ V𝑝 )
is the set of nodes, E = (E𝑐𝑐 ∪ E𝑐𝑝 ∪ E𝑝𝑝 ) is the set of edges, V𝑐

presents the set of companies, andV𝑝 presents the set of job positions.
Specifically, each edge in E𝑐𝑐 indicates the job transitions between
two companies, each edge in E𝑝𝑝 indicates the job transitions between
two positions, and each edge in E𝑐𝑝 indicates whether the position
belongs to the company.

With the above definition, we formulate the job mobility predic-

tion problem as follows:

Definition 3 (Job Mobility Prediction Problem). Given a
dataset D consisting of career trajectories of talents from set 𝑈 , for
a query 𝑞 : {J (𝑢),Ω(𝑢)} from talent 𝑢 ∉ 𝑈 , where Ω(𝑢) denotes
the personal-specific features. Our target is to predict 𝑢’s next career
move, including company 𝑐𝐿+1, position 𝑝𝐿+1 and duration 𝑑𝐿 .

4 TECHNICAL DETAIL
In this section, we will introduce the technical details of our Ahead

framework. As shown in Figure 3, our framework mainly consists

of three components, namely Attentive Heterogeneous Graph Em-
bedding (AHGN) to learn the comprehensive representation for

company and position, the Career Path Mining to model the indi-

vidual sequential trajectory, and the Prediction Module to integrate

the individual sequential information to predict job mobility.

4.1 Attentive Heterogeneous Graph Embedding
As we all know, graph neural network (GNN) have been widely

studied in many scenarios and achieved major success on the gen-

eral graph learning problem. Among these achievements, the core

idea of message-passing neural networks (MPNNs) is to generate

node embedding vector by aggregating the features of node’s neigh-

borhoods. Inspired by this, we extend the graph neural network to

learn the heterogeneous graph embedding. We define the aggrega-

tion process for the different types of nodes as external aggregation,

and the same type as internal aggregation. Along this line, we first

use both external and internal aggregationmodules to aggregate dif-

ferent types of information, and then design a type-level attention

mechanism to fuse them for fully representing nodes.

4.1.1 External aggregation. The external aggregation is to ag-

gregate the information from neighbors with different types. For

example, in terms of a position, the external aggregation is used to

aggregate information from its neighbors of company type. There-

fore, in this part, wemainly focus on the sub-graphG𝑐𝑝 = {V, E𝑐𝑝 },
which only contains the company-to-position edges.

At first, it is obvious that different types of nodes have differ-

ent feature spaces. For example, the features of company include

size, location, etc, while the features of position include function,

responsibility, etc. Formally, let z𝑖 denote the feature embedding

of node 𝑖 . To make the aggregation process feasible, we design

the type-specific transformation matrix W𝜏 to project the features

of different types of nodes into the same feature space, and the

projected feature of node 𝑖 is defined as follows:

ẑ𝑖 = W𝜏 · z𝑖 . (3)

Indeed, the attributes of companies and positions are sparse,

integrating the information from heterogeneous neighbors can

alleviate this issue. Considering the belonging relationship between

company and position is unweighted and undirected, we adopt the

graph convolutional rule based on symmetric normalized Laplacian

to construct the external aggregator:

a(𝑙 )
𝑖

=
∑︁

𝑗∈N𝐸 (𝑖 )

1√︁
|N𝐸 (𝑖) | |N𝐸 ( 𝑗) |

W(𝑙 )
𝐸

H(𝑙 )
𝑗
, (4)

where N𝐸 (𝑖) is the set of neighbors for node 𝑖 with different types,

andH(𝑙)
𝑗

is the hidden representation of node 𝑗 in 𝑙-th layer. Initially,

H(0)
𝑖

= ẑ𝑖 . W
(𝑙)
𝐸

is a layer-specific trainable transformation matrix.

4.1.2 Internal aggregation. The internal aggregation is to ag-

gregate the information from nodes of the same type. Hence, we

focus on the sub-graphs G𝑐𝑐 and G𝑝𝑝 which represent the job tran-

sition network of company and position respectively. Job transition

relationship has several important attributes [43], i.e., the total

number and the average working duration. Intuitively, a node (i.e.,

company or position) has a larger impact on nodes with more job

transitions compared with nodes with fewer job transitions. Be-

sides, the shorter average duration of job transition between a pair

of nodes (i.e., company-to-company or position-to-position) usually

leads to more similar nodes.

However, the message-passing neural networks (MPNNs) cannot

take advantage of these job transition attributes, because the aggre-

gation of MPNNs treats all neighbors of node equally. To overcome

this problem, we propose a transition-aware attention mechanism

to aggregate node representation features:

b(𝑙 )
𝑖

=
∑︁

𝑗∈N𝐼 (𝑖 )
𝑎𝑡𝑡 (H(𝑙 )

𝑖
,H(𝑙 )

𝑗
, r𝑖 𝑗 )H(𝑙 )

𝑗
, (5)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2195



position

Aggr.

Proj.

𝒛𝒊 "𝒛𝒊

Feature Proj. Node Emb.

Proj.

ℱ𝒞

ℱ𝒞

Heterogeneous Graph Embedding Sequential Module

company

Input

Fusion

External

Internal

𝑡

𝑡

𝛽!"

𝛽#"

Figure 3: The diagrammatic sketch of the proposed Ahead framework on job mobility prediction.

where N𝐼 (𝑖) is the set of neighbors for node 𝑖 with same type.

𝑎𝑡𝑡 (H𝑖 ,H𝑗 , r𝑖 𝑗 ) is the transition-aware attentive weight of each

neighbor 𝑗 for 𝑖 with their corresponding job transition feature r𝑖 𝑗 .
Both the total number and the average duration of job transition

are real number. To embed the total number attribute, we first collect

all the values, then discretize them into consecutive value bins

evenly, where each bin can be regarded as a category. Afterwards,

we randomly initialize the embedding for each category. Finally,

the embedding would be jointly learned. Analogously, we conduct

a similar operation on the average duration attribute.

Formally, let n𝑖 𝑗 andm𝑖 𝑗 represent the embedding of the number

attribute and the duration attribute for the job transition from node

𝑖 to node 𝑗 . We concatenate the two embeddings and apply a dense

layer transformation to represent the job transition:

r𝑖 𝑗 = W𝑟 · (n𝑖 𝑗 ⊕ m𝑖 𝑗 ), (6)

where W𝑟 is transform matrix, ⊕ is concatenation operation.

Next, we implement the transition-aware attention mechanism

by considering the features of nodes as well as the job transition

features between nodes, which is formulated as follows:

𝑎𝑡𝑡 (H𝑖 ,H𝑗 , r𝑖 𝑗 ) =
exp(𝝁

1
· (W1H𝑖 +W2H𝑗 +W3r𝑖 𝑗 ))∑

𝑘∈N𝐼 (𝑖 ) exp(𝝁2
· (W1H𝑖 +W2H𝑘 +W3r𝑖𝑘 ))

, (7)

whereW∗ are transform matrices, and 𝝁∗ are the attention vectors.

By integrating the transition-aware attention, we can obtain the

internal aggregation b𝑖 for each node based on Equation 5.

4.1.3 Representation Fusion. After the external and internal

aggregation process, we turn to update the representation of each

node. Generally, in terms of a node, different types of neighboring

nodes may have different impacts on it. To distinguish the impacts,

we propose a novel type-level attentionmechanism to automatically

learn the importance of different neighboring types for each node,

i.e., internal and external. Formally, given a node 𝑖 , the correspond-

ing embedding of type 𝜏 is defined as the sum of the neighboring

node features of node 𝑖 with type 𝜏 :

e(𝑙 )
𝜏𝑖

=
∑︁

𝑗∈N𝜏 (𝑖 )
H(𝑙 )

𝑗
. (8)

To learn the importance of each type for node 𝑖 , we first concate-

nate the type embedding with the target node embedding. Then, we

measure the importance of the specific type 𝜏 as the similarity of

the concatenated embedding with a type-specific attention vector

𝜇𝜏 . The importance of type 𝜏 for node 𝑖 is calculated as follows:

𝛽
(𝑙 )
𝜏𝑖

= 𝜎 (𝝁𝜏 · [e(𝑙 )
𝜏𝑖

⊕ H(𝑙 )
𝑖

]) . (9)

By integrating the type-level attention, then the overall aggregation

among different types can be calculated as follows:

𝝎 (𝑙 )
𝑖

= 𝛽
(𝑙 )
𝑎𝑖

a(𝑙 )
𝑖

⊕ 𝛽
(𝑙 )
𝑏𝑖

b(𝑙 )
𝑖

, (10)

where 𝛽
(𝑙)
𝑎𝑖

and 𝛽
(𝑙)
𝑏𝑖

stand for the attention scores of external and

internal type for node 𝑖 respectively. a(𝑙)
𝑖

and b(𝑙)
𝑖

can be calculated

by Equation 4 and 5 respectively. Afterwards, the representation of

node 𝑖 can be updated as follows:

H(𝑙+1)
𝑖

= 𝜎 (W𝑎 · 𝝎 (𝑙 )
𝑖

), (11)

where W𝑎 is transform matrix, 𝜎 (·) is the activation function. The

representation of node 𝑖 in the last layer is treated as the final

representation, denoted by H∗
𝑖
.

4.2 Career Path Mining
After obtaining the representation of companies and positions, we

turn to model the individual career paths.

As mentioned before, the career trajectory of a talent 𝑢 can

be described by two sequences, i.e., S𝑐 (𝑢) = (𝑐1, 𝑐2, ..., 𝑐𝐿 |𝑢) and
S𝑝 (𝑢) = (𝑝1, 𝑝2, ..., 𝑝𝐿 |𝑢). To represent each company (or position)

in sequence, two factors should be considered. The first one is time,

obviously, the impact of a person’s stay in the company or posi-

tion for different periods of time is different. So we integrate the

duration information to address this issue. Since the duration in

the last record 𝑑𝐿 is unknown, we construct a duration sequence

(𝑑0, 𝑑1, ..., 𝑑𝐿−1) of length 𝐿 by adding 𝑑0 = 0. By this way, the dura-

tion sequence can be aligned with company (or position) sequence.

The second factor is personal information, as the same work expe-

rience may have different effects on different people. LetH∗
𝑡 denote

the embedding of the 𝑡-th entity from AHGN, E𝑢 represent the

static individual features andD𝑡 denote embedding of the 𝑡-th dura-

tion in the duration sequence. Then, the time-aware representation

of company and position in 𝑢’s trajectory can be defined as:

x𝑡 = W𝑢 · (H∗
𝑡 ⊕ D𝑡 ⊕ E𝑢 ), (12)
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where W𝑢 is transform matrix. We randomly initialize the em-

bedding for all duration values, then the duration embedding will

be updated during the training process. After that, the company

and position sequences can be represented by (x𝑐
1
, x𝑐

2
, ..., x𝑐

𝐿
|𝑢) and

(x𝑝
1
, x𝑝

2
, ..., x𝑝

𝐿
|𝑢).

In order to model the career sequential information, we take

advantage of GRU as the basic model because it can alleviate the

gradient vanishing problem in long-distance dependent sequential

problems, as well as its efficiency compared with LSTM. In terms of

GRU, the input is sequential vectors (x1, x2, ..., x𝐿). At each time 𝑡 ,

the input feature vector x𝑡 is fed to a hidden cell which is identical

for all time stamp, and the single cell is built as follows:

𝑟 = 𝜎 (W𝑥𝑟x𝑡 +Wℎ𝑟h𝑡−1 + b𝑟 ),
𝑧 = 𝜎 (W𝑥𝑧x𝑡 +Wℎ𝑧h𝑡−1 + b𝑧 ),

h̃𝑡 = 𝑡𝑎𝑛ℎ (W𝑥ℎx𝑡 +Wℎℎ (𝑟 ⊙ h𝑡−1) + bℎ),

h𝑡 = (1 − 𝑧) ⊙ h𝑡−1 + 𝑧 ⊙ h̃𝑡 .

(13)

In these equations, the parametersW∗ denotes the weight matrices,

b∗ denotes bias, symbol ⊙ denotes element-wise product operator,

and h𝑡 denotes the hidden state in time 𝑡 .

Intuitively, we could construct two GRU for the company and po-

sition sequence respectively. However, modeling the two sequences

separately may lose some important information since predictions

for company and position are highly related. On the one hand,

when predicting the next company, current position may limit the

company selection range as proven in pre-study. For example, a

software engineer of Google is more likely to choose an IT-related

company. On the other hand, the job-hopping process involves

job title benchmarking [43], which means the same job position

in different companies may reflect different expertise levels. Thus

current company is also a significant factor for position prediction.

To that end, we propose a Dual-GRU structure to model inter-

active information between companies and positions. It consists

of two GRU that interact with each other for modeling company

and position respectively. Taking the company sequence as an ex-

ample, the basic GRU cell takes x𝑐𝑡 and the predecessor hidden

state h𝑐𝑡−1 as inputs according to Equation 13. We enrich the inputs

with the predecessor position hidden state h𝑝
𝑡−1, so that both the

historical sequential information of company and position can be

used for making predictions. To further distinguish the influence

of two kinds of information, we apply the attention mechanism to

automatically align weights for each part as:

𝑦𝑐𝑡−1 = W(h𝑐𝑡−1 ⊕ x𝑐𝑡 ), 𝑦
𝑝

𝑡−1 = W(h𝑝
𝑡−1 ⊕ x𝑐𝑡 ),

𝛼𝑐 =
exp(𝑦𝑐

𝑡−1)
exp(𝑦𝑐

𝑡−1) + exp(𝑦𝑝
𝑡−1)

,

h𝑐∗𝑡−1 = 𝛼𝑐 ⊙ h𝑐𝑡−1 + (1 − 𝛼𝑐 ) ⊙ h𝑝
𝑡−1,

(14)

whereW denotes the transform matrix, and h𝑐∗𝑡−1 is the refined hid-
den state at 𝑡−1. Analogously, we can geth𝑝∗

𝑡−1. With the new hidden

state, the subsequent calculation is similar to the Equation 13.

4.3 The Prediction Module
Finally, we introduce the prediction module. Specifically, our career

path prediction problem contains three major targets: the next

company, the next position and the current working duration.

+

1-
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Figure 4: The diagrammatic sketch of Dual-GRU.

Intuitively, predicting the next company of talents can be formu-

lated as a classification problem. Given a talent 𝑢, we firstly feed

the current hidden state of company (h𝑐𝑡 ) from Dual-GRU into a

fully-connected layer, where the output dimension matches the

total company number. Afterwards, we apply a softmax activation

function to normalize the transition probability of each company,

namely ô𝑡 ∈ R |V𝑐 |
. Let o𝑡 ∈ R |V𝑐 |

denote the one-hot embedding

of the 𝑡-th company in 𝑢’s trajectory. Then, the loss function for

next company prediction of talent 𝑢 can be defined by the cross-

entropy form:

L𝑢
𝑐 = −

𝐿∑︁
𝑡=2

o𝑡 log(ô𝑡+1) . (15)

Analogously, the prediction process of next position is the same

as predicting next company. We can obtain the loss function L𝑢
𝑝

for next company prediction of talent 𝑢.

Meanwhile, predicting the working duration of the current job

can be formulated as a regression problem. Given a talent 𝑢, we

concatenate the current hidden states of company and position (h𝑐𝑡
and h𝑝𝑡 ) from Dual-GRU. Then, we feed it into a fully-connected

layer to transform it as the prediction
ˆ𝑑𝑡 , and the loss function for

working duration prediction is defined as follows:

L𝑢
𝑑
=

𝐿−1∑︁
𝑡=1

1

2

( ˆ𝑑𝑡 − 𝑑𝑡 )2 . (16)

Finally, the whole objective function is defined as follows:

L =
∑︁
𝑢

(L𝑢
𝑐 + 𝜆1L𝑢

𝑝 + 𝜆2L𝑢
𝑑
) + 𝜆3 | |Θ | |2

2
, (17)

where 𝜆1 and 𝜆2 are hyper-parameters for balancing the different

parts in the loss function. 𝜆3 is regularization parameter and | |Θ| |2
2

is the L2-norm over all parameters Θ.

5 EXPERIMENT
In this section, we will introduce the experimental details conducted

on the real-world dataset for validating the proposed model.

5.1 Experiment Setup
5.1.1 Dataset. Our dataset contains 459,309 career trajectories, we
constructed the heterogeneous company-position network from

these trajectories. There are 1,380 companies and 2,098 positions,

and the numbers of the three types of edges (i.e., E𝑐𝑐 , E𝑐𝑝 , E𝑝𝑝 ) are
90,000, 131,332, and 165,129 respectively.

5.1.2 Baselines. We compared Ahead with some state-of-art meth-

ods. Specifically, non-sequential models contain Logistic Regres-

sion (LR) and Random Forest (RF) [4]. Sequential models contain
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Table 1: The overall performance of next company prediction, next position prediction and current duration prediction.

Methods

Company Position Duration

ACC@1 ACC@15 ACC@30 MRR ACC@1 ACC@15 ACC@30 MRR RMSE MAE

LR 0.1316 0.4209 0.5136 0.1274 0.0702 0.2886 0.3837 0.0777 5.1272 4.3673

RF 0.2391 0.4428 0.5265 0.1641 0.1156 0.3759 0.4620 0.1143 4.9758 4.1707

LSTM 0.3636 0.6413 0.7081 0.4438 0.1685 0.5185 0.6191 0.2668 3.2390 2.4868

GRU 0.3868 0.6644 0.7288 0.4657 0.1775 0.5273 0.6270 0.2776 3.2984 2.5563

NEMO 0.4099 0.6863 0.7530 0.4888 0.2080 0.5829 0.6785 0.3151 3.1801 2.3949

HCPNN 0.4091 0.6691 0.7316 0.4839 0.2040 0.5848 0.6811 0.3120 3.2832 2.5387

HAN 0.4118 0.6608 0.7237 0.4835 0.1680 0.5191 0.6156 0.2671 3.1693 2.4114

HGAT 0.4127 0.6580 0.7216 0.4833 0.1722 0.5243 0.6200 0.2726 3.1684 2.4036

Ahead 0.4267 0.6968 0.7622 0.5039 0.2083 0.5874 0.6820 0.3171 2.9176 2.0178
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Figure 5: Ablation study on the job mobility prediction task.

LSTM [15], GRU [7], NEMO [22] and HCPNN [30]. NEMO and

HCPNN are the most advanced models which are relevant to job

mobility prediction. Finally, the heterogeneous graph embedding

based models contain HAN [40] and HGAT [24], and we modified

them to fit our problems. The detail of baselines will be introduced

in section A.3 of appendix.

5.1.3 EvaluationMetrics. WeusedAccuracy@k (𝐴𝑐𝑐@𝑘) andMean
Reciprocal Rank (𝑀𝑅𝑅) to evaluate the performance of next com-

pany and position prediction. And we selected Root Mean Square
Error (𝑅𝑀𝑆𝐸) andMean Absolute Error (𝑀𝐴𝐸) for current duration
prediction. The detail will be introduced in section A.2 of appendix.

5.2 Performance Evaluation
5.2.1 Overall Performance. The evaluation part includes prediction
tasks for next company, next position and current duration. We ran-

domly split all samples by (0.8/0.1/0.1) as the training/validation/test

dataset respectively. Each method was trained on the training data,

and the corresponding parameters were tuned on the validation

data. The final performance was evaluated on the test data.

The results are summarized in Table 1. Obviously, our Ahead

model achieves the best performance on all prediction tasks which

clearly demonstrates the effectiveness of our model. Moreover, we

have several observations. Firstly, the non-sequential models, i.e.,

LR and RF, always get the worst performance in all tasks, since they

fail to handle the sequential information. Secondly, in terms of vari-

ants of RNN model, GRU gets better performance than LSTM, since

our dataset is small and less frequent, which is more suitable for

GRU learning. As the state-of-art models on job mobility prediction

task, both NEMO and HCPNN have achieved competitive and stable

performance, which indicates that integrating the individual infor-

mation and designing effective strategies to model career path are

quite useful. Finally, the modified state-of-art heterogeneous graph

embedding methods, i.e., HGAT and HAN, can also get comparable

performance, especially on the next company prediction task and

working duration prediction task, which demonstrates that leverag-

ing the heterogeneous graph can indeed improve the job mobility

prediction performance. However, their performances drop a lot

on the next position prediction task, which further indicates the

robustness of the AHGN module of Ahead.

5.2.2 Ablation Study. To demonstrate the effectiveness of each

component of Ahead, we conducted experiments on variants:

• Ahead-D: It replaces the Dual-GRU module with two inde-

pendent GRU for company and position.

• Ahead-A: It drops the transition-aware attention mecha-

nism in internal aggregator of AHGN.

• Ahead-T: There is no type-level attention in AHGN.

As shown in Figure 5, the performance of Ahead-D is signifi-

cantly worse than other models, which indicates the effectiveness of

the Dual-GRUmodule. Therefore, modeling the interaction between

company and position can indeed improve prediction performance.

By comparing Ahead with Ahead-A, it demonstrates the effective-

ness of considering the job transition attributes between nodes.

Moreover, by comparing Ahead with Ahead-T, it indicates that dis-

tinguishing the influence of external and internal neighbors can

make better representation of nodes for better prediction.

5.2.3 Parameter Sensitivity. We also conducted two experiments to

study how the input dimension of Dual-GRU and the category size

of job transition features influence Ahead’s performance. Firstly,

we discuss the sensitivity of the input dimension of Dual-GRU,

which is summarized in Figure 6. In general, the performance is

improved with increasing dimension size, since more dimensions

may probably keep more useful information. Also, the performance

keeps relatively stable when the dimension size is greater than

128. Next, we turn to analyze the effect of the category size of job

transition features. As shown in Figure 7, the performance of Ahead

is stable on three prediction tasks. Indeed, more categories can

better distinguish features, while the embedding of each category

is jointly learned, which can also distinguish features automatically.

When the category size is greater than 5, Ahead is sufficient to

represent the job transition features and get stable performance.

5.2.4 Robustness Analysis. Afterwards, we turn to demonstrate the

robustness of Ahead. We explore how the performance of AHGN is
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Figure 6: Effect of different input dimension of Dual-GRU.
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Figure 7: Effect of category size of transition features.

Table 2: The performance on randomly split samples.

Proportion

Company Position Duration

ACC@1 MRR ACC@1 MRR MAE

10% 0.3186 0.3938 0.1564 0.2487 2.3194

30% 0.4155 0.4883 0.1947 0.2992 2.2433

50% 0.4224 0.4963 0.2003 0.3072 2.0381

70% 0.4256 0.5004 0.2032 0.3119 2.0354

90% 0.4267 0.5019 0.2073 0.3167 2.0261

Table 3: Top-5 companies and positions that give the highest
attention to previous companies and positions respectively.

Companies that pay most attention to former companies.
Ernstandyoung, Pricewaterhouse Coopers

Deloitte, IBM, Accenture

Positions that pay most attention to former positions.
Team Lead, Assistant Manager, Project Manager

Business Analyst, Account Manager

influenced by the different training ratios. As shown in Table 2, it is

obvious that with increasing training proportion, the performance

is improved as well. When the training ratios are greater than

0.3, the performance improves slowly. All results are stable, which

demonstrates the robustness of our model.

5.2.5 Case Study. With the attention mechanism, we conducted

several case studies on job mobility.

At first, we investigated the importance of former companies

and positions to the next job mobility based on Equation 14. Fig-

ure 8 shows the attention distribution among former companies

and positions. When predicting the next company, the previous

company would obtain more attention than the previous position.

While the situation is opposite when predicting the next position,

which may indicate that to join the dream company, employees

should choose a more suitable former company. However, to get a

dream job position, employees should work on related former posi-

tions. Moreover, Table 3 reports the top-5 companies and positions
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Figure 8: The attention distribution of former company and
position in job transition.

(a) Company Frequency (b) Attention Value

Figure 9: The distribution comparison of several companies.

that give the highest attention to the previous company and posi-

tions. This may indicate that accounting and consulting companies

attach great importance to the former company, and management

positions attach great importance to the former positions.

Finally, we analyzed the job transition on a specific job position,

i.e.,software engineer. We first selected all job transition records in

which the former job position is software engineer. Then we grouped
these records by the former company. Afterwards, we evaluated

the attention value for the former company in each record and

obtained the mean attention value of each company. Figure 9(a)

and Figure 9(b) show the companies that appear most frequently in

records and get the highest attention values respectively, where the

size of name is proportional to the value. Obviously, the two distri-

butions are quite different, the companies with high frequency may

not get high attention. The high-tech companies such as Facebook,

Google and Apple get the highest values, which may indicate they

are pretty competitive in the position of software engineer.

6 CONCLUSION
In this paper, we studied the problem of job mobility prediction

by exploring the impact of macro-level job transition relationships.

Specifically, we first constructed a heterogeneous company-position

network from the massive career trajectory data and then proposed

a prediction framework, namely Ahead, based on the attentive

heterogeneous graph embedding. In particular, an attentive hetero-

geneous graph embedding (AHGN) model in Ahead was designed

to learn the comprehensive representation of companies and po-

sitions. Moreover, the other module in Ahead, namely Dual-GRU

model, was applied for individual career path mining with the con-

sideration of the mutual influence between company and position.

Finally, extensive experiments conducted on a real-world dataset

clearly validated the effectiveness of the proposed framework.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2199



7 ACKNOWLEDGMENTS
This research was partially supported by grants from the National

Natural Science Foundation of China (Grant No.61836013, 91746301,

62072423) and the National Key Research and Development Pro-

gram of China (Grant No.2018YFB1402600).

REFERENCES
[1] William J Anderson. 2012. Continuous-time Markov chains: An applications-

oriented approach. Springer Science & Business Media.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral

techniques for embedding and clustering.. In Nips, Vol. 14. 585–591.
[4] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.

[5] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and

Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-

tectures. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 119–128.

[6] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv:1409.1259 (2014).
[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using RNN encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078 (2014).
[8] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 135–144.

[9] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. 2013. Hybrid speech

recognition with deep bidirectional LSTM. In 2013 IEEE workshop on automatic
speech recognition and understanding. IEEE, 273–278.

[10] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech

recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 6645–6649.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[13] Peter A Heslin. 2005. Conceptualizing and evaluating career success. Journal of
Organizational Behavior: The International Journal of Industrial, Occupational and
Organizational Psychology and Behavior 26, 2 (2005), 113–136.

[14] Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6, 02 (1998), 107–116.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] John J Hopfield. 1982. Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the national academy of sciences
79, 8 (1982), 2554–2558.

[17] Zhipeng Huang and Nikos Mamoulis. 2017. Heterogeneous information network

embedding for meta path based proximity. arXiv preprint arXiv:1701.05291 (2017).
[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data.

(2001).

[20] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and

documents. In International conference on machine learning. 1188–1196.
[21] Huayu Li, Yong Ge, Hengshu Zhu, Hui Xiong, and Hongke Zhao. 2017. Prospect-

ing the career development of talents: A survival analysis perspective. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. 917–925.

[22] Liangyue Li, How Jing, Hanghang Tong, Jaewon Yang, Qi He, and Bee-Chung

Chen. 2017. Nemo: Next career move prediction with contextual embedding. In

Proceedings of the 26th International Conference on World Wide Web Companion.
505–513.

[23] Hao Lin, Hengshu Zhu, Yuan Zuo, Chen Zhu, Junjie Wu, and Hui Xiong. 2017.

Collaborative company profiling: Insights from an employee’s perspective. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.
[24] Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. 2019. Heteroge-

neous graph attention networks for semi-supervised short text classification. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 4823–4832.

[25] Hao Liu, Yongxin Tong, Jindong Han, Panpan Zhang, Xinjiang Lu, and Hui Xiong.

2020. Incorporating Multi-Source Urban Data for Personalized and Context-

Aware Multi-Modal Transportation Recommendation. IEEE Transactions on
Knowledge and Data Engineering (2020).

[26] Hao Liu, Qiyu Wu, Fuzhen Zhuang, Xinjiang Lu, Dejing Dou, and Hui Xiong.

2021. Community-Aware Multi-Task Transportation Demand Prediction. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 320–327.
[27] Junhua Liu, Chu Guo, Yung Chuen Ng, Kristin L Wood, and Kwan Hui Lim. 2019.

IPOD: Corpus of 190,000 industrial occupations. arXiv preprint arXiv:1910.10495
(2019).

[28] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-

aware sequential recommendation. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 1053–1058.

[29] Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech

Zaremba. 2014. Addressing the rare word problem in neural machine translation.

arXiv preprint arXiv:1410.8206 (2014).
[30] Qingxin Meng, Hengshu Zhu, Keli Xiao, Le Zhang, and Hui Xiong. 2019. A

hierarchical career-path-aware neural network for job mobility prediction. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 14–24.

[31] Thomas WH Ng, Kelly L Sorensen, Lillian T Eby, and Daniel C Feldman. 2007.

Determinants of job mobility: A theoretical integration and extension. Journal of
Occupational and Organizational Psychology 80, 3 (2007), 363–386.

[32] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[33] Yiming Pan, Xuefeng Peng, Tianran Hu, and Jiebo Luo. 2017. Understanding

what affects career progression using Linkedin and Twitter data. In 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2047–2055.

[34] Karl Pearson. 1895. VII. Note on regression and inheritance in the case of two

parents. proceedings of the royal society of London 58, 347-352 (1895), 240–242.

[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[36] Kristen M Shockley, Heather Ureksoy, Ozgun Burcu Rodopman, Laura F Poteat,

and Timothy Ryan Dullaghan. 2016. Development of a new scale to measure

subjective career success: A mixed-methods study. Journal of Organizational
Behavior 37, 1 (2016), 128–153.

[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[38] Jian Wang, Yi Zhang, Christian Posse, and Anmol Bhasin. 2013. Is it time for a

career switch?. In Proceedings of the 22nd international conference on World Wide
Web. 1377–1388.

[39] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S Yu.

2020. A Survey on Heterogeneous Graph Embedding: Methods, Techniques,

Applications and Sources. arXiv preprint arXiv:2011.14867 (2020).

[40] XiaoWang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.

2019. Heterogeneous graph attention network. In TheWorldWideWeb Conference.
2022–2032.

[41] Huang Xu, Zhiwen Yu, Hui Xiong, Bin Guo, and Hengshu Zhu. 2015. Learning

career mobility and human activity patterns for job change analysis. In 2015 IEEE
International Conference on Data Mining. IEEE, 1057–1062.

[42] Ye Xu, Zang Li, Abhishek Gupta, Ahmet Bugdayci, and Anmol Bhasin. 2014.

Modeling professional similarity by mining professional career trajectories. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1945–1954.

[43] Denghui Zhang, Junming Liu, Hengshu Zhu, Yanchi Liu, Lichen Wang, Pengyang

Wang, and Hui Xiong. 2019. Job2Vec: Job title benchmarking with collective

multi-view representation learning. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. 2763–2771.

[44] Le Zhang, Tong Xu, Hengshu Zhu, Chuan Qin, Qingxin Meng, Hui Xiong, and En-

hong Chen. 2020. Large-Scale Talent Flow Embedding for Company Competitive

Analysis. In Proceedings of The Web Conference 2020. 2354–2364.
[45] Le Zhang, Hengshu Zhu, Tong Xu, Chen Zhu, Chuan Qin, Hui Xiong, and Enhong

Chen. 2019. Large-scale talent flow forecast with dynamic latent factor model. In

The World Wide Web Conference. 2312–2322.
[46] Sheng Zhou, Jiajun Bu, Xin Wang, Jiawei Chen, and Can Wang. 2019. HAHE:

Hierarchical attentive heterogeneous information network embedding. arXiv
preprint arXiv:1902.01475 (2019).

[47] Hengshu Zhu, Hui Xiong, Fangshuang Tang, Qi Liu, Yong Ge, Enhong Chen,

and Yanjie Fu. 2016. Days on market: Measuring liquidity in real estate markets.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 393–402.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2200



A APPENDIX
A.1 Data Pre-processing.
The original dataset contains more than 400 million professional

resumes, which is noisy and inefficient for model training. To fil-

ter this dataset, we firstly applied the method mentioned in [45]

to extract the career trajectory data. Specifically, if the absolute

difference between the end time of the previous job and the start

time of the next job is less than a predefined threshold, the job

transition is considered valid. Then we constructed a career tree

and chose the longest path as individual career trajectory. To unify

the messy job title, we firstly extracted the corresponding respon-
sibility and function words according to the manually annotated

IPOD dataset [27]. As a job title describes the responsibilities and

function of the job, two job titles can be regarded as the same if

they have the same responsibilities and function. Therefore we

can aggregate the job titles according to the selected key words.

Afterwards, we chose the most frequent companies from different

types, and kept the most frequent job titles of them. Finally, we

retained the career trajectories among the selected companies and

positions after January 2010. Totally, 459,309 career trajectories are

extracted, which consist of 1,380 companies and 2,098 job titles.

Further, we also collected the company-specific features, position-

specific features and person-specific features, as shown in Table 4.

We processed the data with the following methods. For the free text

features, such as the company description, we used the doc2vec [20]
model to transform the text to a fixed-length vector. For the cate-

gorical features, such as company type, we employed the one-hot

embedding method. For the duration features, we segmented them

by every half year, then the one-hot embedding method was applied.

A.2 Evaluation Metrics Description
For next company and position prediction tasks, we selected Ac-
curacy@k (𝐴𝑐𝑐@𝑘) and Mean Reciprocal Rank (𝑀𝑅𝑅) to evaluate

performance, which are defined as:

𝐴𝑐𝑐@𝑘 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼 (𝑟𝑎𝑛𝑘 (𝑖) ≤ 𝑘), 𝑀𝑅𝑅 =
1

𝑁

𝑁∑︁
𝑖=1

1

𝑟𝑎𝑛𝑘 (𝑖) , (18)

where 𝑁 is total number of samples, 𝑟𝑎𝑛𝑘 (𝑖) stands for the real

rank in the predicting ranking list. 𝐼 (·) is the indicator function
that equals to 1 if 𝑟𝑎𝑛𝑘 (𝑖) ≤ 𝑘 and equals to 0 otherwise. Here

we set 𝑘 = 1, 15, 30 respectively. The higher values of 𝐴𝑐𝑐@𝑘 and

𝑀𝑅𝑅 means better prediction results. For duration prediction, we

adopted Root Mean Square Error (𝑅𝑀𝑆𝐸) and Mean Absolute Error
(𝑀𝐴𝐸) as evaluation metrics, which are defined as:

𝑅𝑀𝑆𝐸 (𝑑, ˆ𝑑) =

√√
1

𝑛

𝑛∑︁
𝑡=1

(𝑑𝑖 − ˆ𝑑𝑖 )2, 𝑀𝐴𝐸 (𝑑, ˆ𝑑) = 1

𝑛

𝑛∑︁
𝑡=1

���𝑑𝑖 − ˆ𝑑𝑖

��� , (19)

where 𝑑𝑖 and ˆ𝑑𝑖 are the predicted duration and the real duration,

and the lower values means better performance.

A.3 Baseline Description
We compared our Ahead model with the following methods to

predict the job mobility.

• LR: It is a supervised model. It fits the samples in the multi-

dimensional space by using a linear combination of features.

Table 4: The description of features in our dataset.

Entity Category Feature

User

Categorical User ID

Text Self description

Company

Categorical

Company ID

Company age

Company type

Company location

Company size

Text Company description

Numerical Company duration

Position

Categorical Position ID

Numerical Position duration

• RF [4]: It is an ensemble learning method by constructing a

number of decision trees at training time and making pre-

diction according to the individual trees at test time.

• LSTM [15]: It is a variant of RNNs, which is proposed to

address the vanishing gradient problems by introducing sev-

eral gates in neural cells. Here we input the company and

position feature sequences together and trained three models

for three tasks respectively.

• GRU [7]: It is also a variant of RNNs for dealing with the

vanishing gradient problems. Here the experimental setting

was the same as LSTM.

• NEMO [22]: It is an encoder-decoder architecture. The en-

coder maps the multiple heterogeneous profile contexts into

a fixed-length vector and the decoder maps the context vec-

tor to a sequence of company and position. We modified it

by feeding the hidden state in each timestamp into a fully-

connected layer to predict the working duration.

• HCPNN [30]: It proposes a hierarchical career-path-aware

neural network to handle the dynamic nature of career paths

for employees. The basic model can only predict the next

company as well as the current working duration, we modi-

fied it by exchanging the hierarchy of company and position

to predict the next position.

• HAN [40]: It is a state-of-art heterogeneous graph neural

network, which employs node-level attention and semantic-

level attention. We modified it by adding the Dual-GRU mod-

ule, and the output of HAN was the input of Dual-GRU.

• HGAT [24]: It proposes a heterogeneous graph attention

embedding method for short text classification based on

a dual-level attention mechanism. Here the experimental

setting was the similar to HAN.

A.4 Parameter setting
In our experiments, the output dimension of external and internal

aggregators was set to 128. The dimension size of duration em-

bedding and individual feature embedding was set to 128. And the

input and hidden size of Dual-GRU were set to 128 and 256 respec-

tively. In the training phase, we randomly initialized parameters

and optimized the model with Adam. We set the mini-batch size to

1024, the hyper-parameters 𝜆1, 𝜆2 and 𝜆3 to 3, 1 and 1𝑒 − 6. And the

learning rate was set to 1𝑒 − 3 with decay as 0.375 every 5 epochs.
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