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Abstract Word embedding, which refers to low-dimensional dense vector representations of natural words, has demon-

strated its power in many natural language processing tasks. However, it may suffer from the inaccurate and incomplete

information contained in the free text corpus as training data. To tackle this challenge, there have been quite a few studies

that leverage knowledge graphs as an additional information source to improve the quality of word embedding. Although

these studies have achieved certain success, they have neglected some important facts about knowledge graphs: 1) many

relationships in knowledge graphs are many-to-one, one-to-many or even many-to-many, rather than simply one-to-one; 2)

most head entities and tail entities in knowledge graphs come from very different semantic spaces. To address these issues,

in this paper, we propose a new algorithm named ProjectNet. ProjectNet models the relationships between head and tail

entities after transforming them with different low-rank projection matrices. The low-rank projection can allow non one-

to-one relationships between entities, while different projection matrices for head and tail entities allow them to originate

in different semantic spaces. The experimental results demonstrate that ProjectNet yields more accurate word embedding

than previous studies, and thus leads to clear improvements in various natural language processing tasks.
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1 Introduction

In recent years, the research on word embedding (or

distributed word representations) has made promising

progress in many natural language processing tasks[1-6].

Different from traditional one-hot discrete representa-

tions of words, word embedding vectors are dense, con-

tinuous, and low-dimensional. They are usually trained

with neural networks on a large-scale free text corpus,

such as Wikipedia, news articles, and web pages, in an

unsupervised manner.

While word embedding has demonstrated its power

in many circumstances, it is gradually recognized that

conventional word embedding techniques may suffer

from the incomplete and inaccurate information con-

tained in the free text data. On one hand, due to the

restrictive topics and coverage of a text corpus, some

words might not have sufficient contexts and therefore

might not have reliable word embeddings. On the other

hand, even if a word has sufficient contextual data, the

free texts might be inaccurate and thus might not pro-

vide a semantically precise view of the word. As a re-

sult, the learned word embedding might be unable to

carry on the desirable semantic information. To tackle

this problem, recently some researchers have proposed

to leverage knowledge graphs, such as WordNet[7] and

Freebase[8], as additional data sources to improve word

embedding[9-11].

In summary, these studies believe that knowledge

graphs are helpful in generating better word embed-

ding vectors, given that knowledge graphs are usually

built and validated by human experts’ efforts and thus

have much better quality in reflecting the inherent rela-

tionships between words than free text corpus. In this

way, the noise and bias in free text corpus can be allevi-

ated by leveraging knowledge graphs. In addition, cur-
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rent knowledge graphs have very good coverage of daily

words/entities[12], leading to their significant overlaps

with large text corpus and furthermore a substantial

improvement over free text corpus alone.

A knowledge graph contains a set of nodes repre-

senting entities and a set of edges corresponding to the

relationships between entities. In other words, a know-

ledge graph can be regarded as a set of triples (h, r, t),

where head entity h and tail entity t share relation-

ship r. In [10-11], in addition to the original likeli-

hood loss on the free texts, an extra loss function is

imposed to capture the relationships in the knowledge

graph. Specifically, the additional loss takes the form

LK =
∑

(h,r,t) ||h+r−t||22, where h, t are the embedding

vectors of the words (entities) h and t respectively, and

r is the embedding vector of the relationship r. Then

the embeddings are learned by minimizing the overall

loss on both free text and knowledge graph.

While the above approaches have shown certain suc-

cess, we would like to point out their limitations.

First, the loss function LK in these studies cannot

capture complex relationships between entities. In par-

ticular, it will encounter problems when the relation-

ships are one-to-many, many-to-one, or many-to-many.

For example, r = “cause of death” is a many-to-one

relationship, since many different head entities hi (e.g.,

h1 = “Abraham Lincoln” and h2 = “John F Kennedy”)

correspond to the same tail entity (e.g., t = “assassina-

tion by firearm”). In the case, the minimization of LK

will enforce the embedding vectors of all head entities

(e.g., h1, h2) to approach each other, which is clearly

unreasonable.

Actually such kind of complex relationships are very

common in knowledge graphs. Take a widely used

benchmark dataset FB13 [13], which is a subset of Free-

base, as an instance. For every relationship in FB13,

we calculate the average number of head entities corre-

sponding to one tail entity and the average number of

tail entities corresponding to one head entity. Then we

obtain the means and standard deviations of such val-

ues under different relationships. The overall statistical

information is listed in Table 1, from which we can see

that relationships in FB13 are highly non one-to-one,

especially for the mapping from tail entity to head en-

tity, as shown by the large mean value of #Head per

Tail (the number of head entities per tail entity). In

addition, the standard deviation for #Head per Tail is

fairly large, indicating that the degrees of non one-to-

one mappings from tail entity to head entity vary dras-

tically across different relationships. This clearly shows

that the issue is very serious and we should tackle it in

order to learn a reasonable word embedding.

Table 1. Number of Head Entities per Tail Entity and

Number of Tail Entities per Head Entity in FB13

Mean Std. Deviation

#Head per Tail 2 614.17 9 229.75

#Tail per Head 2 611.26 9 220.23

Second, the loss function LK adopts simple arith-

metic operations on the embedding vectors of the head

and the tail entities, implying that both entities are

located in the same space. However, the fact is that

head entities are usually more concrete and tail entities

are more abstract, making it unreasonable to simply

regard them as in a homogeneous space. Still using the

above example, for relationship r = “cause of death”,

all the head entities are real human names whereas all

the tail entities are abstract reasons of death. What is

more, according to Table 1, head and tail entities are

not symmetric from the statistics perspective: the num-

ber of tail entities per head entity is much smaller than

that of head entities per tail entity, further indicating

the heterogeneity nature of head and tail entities and

suggesting that we should treat them separately in the

mathematical modeling.

In the literature, there are some research studies

that try to resolve one of the aforementioned issues.

However, as far as we know, none of the studies success-

fully addressed both issues. For example, in [14], it is

proposed to project the embedding vectors of both enti-

ties onto a relation-dependent hyperplane before com-

puting the loss function LK. However, the heteroge-

neity between head and tail entities is not considered.

Furthermore, the projection matrix used in [14] has a

fixed rank for all types of relationships, which could not

express various degrees of non one-to-one mappings. In

[15], different transformations are adopted to head and

tail entities respectively. However, no consideration is

taken to address the issue of non one-to-one mappings.

To address the limitations of existing studies, in

this paper, we propose a new algorithm called Project-

Net, which adopts different and carefully designed pro-

jections to the head and the tail entities respectively

when defining the loss function LK. First, we show

that the necessary condition to resolve the issue of non

one-to-one mapping is to ensure the projection matrix

to be low-rank. In such a way, we can guarantee the

translation distance between the entities to be small af-

ter projection without forcing their embedding vectors
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to be the same. Actually, it can be proven that the

TransH model[14] is our special case in the sense that

it also adopts a projection matrix of low (and fixed)

rank. Our model is more general since we can explic-

itly control the rank of the projection matrix to adapt

to knowledge graphs with different degrees of non one-

to-one mappings. Second, by using different projec-

tion matrices for head and tail entities respectively, we

can avoid the homogeneity assumption on the semantic

space and therefore build a more flexible and accurate

model. For example, for the knowledge graph FB13,

we should adopt a low-rank projection matrix for head

entities since the number of head entities is very large

for each tail entity; however, it is safe to use a rela-

tively full rank projection matrix for tail entities since

the number of tail entities is rather small for each head

entity.

We have tested the performance of our proposed al-

gorithm on several benchmark datasets, and the experi-

mental results show that our proposal can significantly

outperform the baseline methods. This indicates the

benefit of carefully modeling entities and relationships

when incorporating knowledge graphs into the learning

process of word embedding.

The rest of the paper is organized as following. In

Section 2, we summarize related work in leveraging

knowledge graph to help word embedding. Then in

Section 3, the detailed model is introduced and its dif-

ference with related methods is illustrated. After that,

the experimental settings and results are reported in

Section 4. The paper is finally concluded in Section 5.

2 Related Work

Word embeddings (a.k.a. distributed word repre-

sentations), are usually trained with neural networks

by maximizing the likelihood of a text corpus. Based

on several pioneering efforts[1-2,6], the research studies

in this field have grown rapidly in recent years[3-6,17-18].

Among them, word2vec[4-5] draws quite a lot of atten-

tion from the community due to its simplicity and ef-

fectiveness. An interesting result given by word2vec

is that the word embedding vectors it produces can

reflect human knowledge via some simple arithmetic

operations, e.g., v(Japan) − v(Tokyo) ≈ v(France) −

v(Pairs).

However, as aforementioned, word embedding mod-

els like word2vec usually suffer from the incomplete-

ness and inaccuracy of the free-text training corpus.

To address this challenge, there are some attempts that

leverage additional structured or unstructured human

knowledge to enhance word embeddings. Here are some

examples. In [19-20], the authors adopted morphologi-

cal knowledge to aid the learning of rare words and new

words. In [21], the authors used semantic relational

knowledge between words as a constraint in learning

word embedding vectors. In [11], the authors leve-

raged knowledge graphs, the most widely used struc-

tured knowledge, to help improve word representations.

In particular, the authors[11] did not only minimize the

loss on the text corpus, but also minimize the loss on

the knowledge graph by sharing embedding vectors be-

tween words and entities. In [10], the authors proposed

a very similar method to [11], but with a different objec-

tive of improving knowledge graph understanding with

the help of text corpus. Actually, both the models

in [11] and [10] are inspired by the TransE model[22],

which is the state-of-the-art work in the literature of

computing distributed representations for knowledge

graphs[13,15,23]. In TransE, the relational operation be-

tween entities h, t with relationship r is assumed to

be a simple linear translation, i.e., min ||h + r − t||22.

However, as pointed out in the introduction, such a

simple formulation cannot handle the non one-to-one

mappings between entities. To tackle the problem, in

[14], the authors proposed a simple projection method

named TransH. We will review the detailed mathemati-

cal forms of these models in Subsection 3.3 and discuss

their relationship with our proposal.

3 ProjectNet Algorithm

In this section, we introduce our proposed Project-

Net model in details. In general, following [10-11], given

a training text corpus D and a set K of triples in the

form (head entity, relation, tail entity) extracted from a

knowledge graph, our model jointly minimizes a linear

combination of the loss items on both text and knowl-

edge:

L = (1− α)LD + αLK, (1)

where α ∈ [0, 1] is used to trade off the two loss terms.

LD and LK share the same parameters, i.e., the embed-

ding vectors for words and their corresponding entities

are the same. In the following subsections, we will in-

troduce the text model to specify LD and the knowledge

model to specify LK.

3.1 Text Model

Similar to [10-11], we leverage the Skip-Gram

model[5] as the text model. In Skip-Gram, the proba-



Fei Tian et al.: Word Embedding by Asymmetric Low-Rank Projection of Knowledge Graph 627

bility of observing the target word wO given its context

word wI is modeled as P (wO|wI) =
exp(w′

O
·wI)∑

w∈V
exp(w′·wI)

,

where w ∈ R
d and w′ ∈ R

d denote the input and the

output embedding vectors for word w respectively, V is

the dictionary, and d is the dimension of the embedding.

Given the training corpus D consisting of |D| token

words {p1, · · · , pk, · · · , p|D|}, loss LD is specified by:

LD =

|D|∑

k=1

∑

j∈{−M,··· ,M},j 6=0

logP (pk|pk+j),

where 2M is the size of the sliding window. As it is

expensive to directly minimize LD due to the denomi-

nator of P (wO|wI), we adopt the negative sampling

strategy[5] to boost the computation efficiency.

3.2 Knowledge Model

The knowledge model in ProjectNet is based on an

asymmetric low-rank projection that projects the origi-

nal entity embedding vectors into a new semantic space.

The projection is designed to be asymmetric in order to

handle the heterogeneity between head and tail entities,

and is designed to be low-rank in order to deal with non

one-to-one relationships in the knowledge graphs.

3.2.1 Asymmetric Projection

As aforementioned, the head and tail entities in

knowledge graphs are usually very different, from both

semantic and statistical perspectives. Therefore, we ar-

gue that it is unreasonable to adopt the same projection

to these two kinds of entities (as TransH[14] does). In-

stead, it would be better to adopt different projection

matrices, denoted as Lr ∈ R
d×d and Rr ∈ R

d×d re-

spectively, to the head and tail entities. Hence, given a

triple (h, r, t), the original embedding vectors for h and

t will be transformed to h′ and t′ as follows,

h′ = Lrh, t′ = Rrt. (2)

Based on the transformed embeddings, we define a scor-

ing function fdist to reflect the confidence level that

triple (h, r, t) is true:

fdist(h, r, t) = ||h′+r− t′||22 = ||Lrh+r−Rrt||
2
2. (3)

Then we adopt a margin based ranking loss to distin-

guish the golden relationship triples from randomly cor-

rupted triples:

LK =
∑

(h,r,t)

∑

(h′,r′,t′)∈N(h,r,t)

[γ − fdist(h
′, r′, t′) + fdist(h, r, t)]+, (4)

where [x]+ = max(0, x), γ > 0 is the margin value,

N(h, r, t) is the set of all the corrupted triples built for

triple (h, r, t), and Lr and Rr will be specified in (5).

In our implementation, we used a trick that in (3)

and (4), the sigmoid function is used to constrain ev-

ery relationship vector r such that the scales of text

loss and knowledge loss are better balanced in (1).

To be more concrete, the sigmoid function σ(x) =

1/(1 + exp(−x)) is applied to r element-wisely before

calculating fdist(h, r, t) and in such a case, the gradi-

ent of fdist(h, r, t) with respect to r is: ∂fdist(h,r,t)
∂r

=

2(Lrh+r−Rrr)◦σ(r)σ(−r), where ◦ denotes element-

wise product.

3.2.2 Low-Rank Projection

As mentioned in the introduction, many relation-

ships in the knowledge graphs are non one-to-one. In

this case, in order to achieve reasonable results, during

the minimization of LK defined above, it is necessary

to constrain the projection matrices Lr and Rr to be

low-rank, which is described in the following proposi-

tion.

Proposition 1. Once linear projections are im-

posed to head and tail entities, the necessary condition

to overcome the non one-to-one mapping problem is

that the projection matrices Lr and Rr should not be

full-ranked.

Proof. Consider the following least-square problem

w.r.t. the optimization variable h:

min ||Lrh− c||22,

where Lrh = h′ and we regard c = t′−r as a constant

vector. It is easy to obtain that the optimal solution

h∗ satisfies the following linear system:

LT
r Lrh

∗ = LT
r c.

To avoid the non one-to-one mapping problem, the

above equation must have multiple solutions. Then it

is necessary that LT
r Lr is a low-rank matrix. In addi-

tion, as rank(LT
r Lr) = rank(Lr), the linear projection

matrix Lr must not be full-rank either. The same con-

clusion holds for the projection matrix Rr for the tail

entity. �

Given the above proposition, we use the following

tricks to ensure that Lr and Rr are low-rank matrices

(whose ranks aremL andmR respectively, with mL < d

and mR < d):

Lr =

mL∑

i=1

µ(i)
r p(i)

r q(i)
r

T
, Rr =

mR∑

i=1

ζ(i)r o(i)
r s(i)r

T
, (5)
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where µ
(i)
r , ζ

(i)
r are scalars, and p

(i)
r , q

(i)
r , o

(i)
r , s

(i)
r are

all d-dimensional real vectors, the outer products of

which constitute (mL +mR) rank 1 matrices p
(i)
r q

(i)
r

T

and o
(i)
r s

(i)
r

T
. For simplicity, we set the rank of all the

left matrices Lr to be the same (mL) and the rank of

all the right matrices Rr to be the same (mR). Please

note that we can also specify different ranks for diffe-

rent relationships r and we provide the corresponding

discussions to the experiments (i.e., Section 4).

3.3 Discussions

In this subsection, we discuss the connections of

our proposed ProjectNet algorithm with a few previous

studies and show that they are special cases of Project-

Net.

RNet. RNet refers to the knowledge models pro-

posed in [10] and [11]. In fact, both models in the

two studies try to minimize the same scoring function:

fdist(h, r, t) = ||h + r − t||22. Their only difference lies

in how fdist is minimized. In [11], a large margin rank-

ing loss is adopted for the minimization of fdist(h, r, t),

whereas in [10], an approximate softmax loss is used. It

is clear that such a scoring function fdist(h, r, t) cannot

handle either the non one-to-one relationships between

entities or the heterogeneity between head and tail en-

tities. To state it more formally, let us consider the re-

lationship triples (hi, r, t), i ∈ 1, · · · , N , where all head

entities hi have the same relationship r with tail entity

t. In the ideal case, if all fdist(hi, r, t) are fully mini-

mized, we will have hi = t − r, ∀i ∈ 1, · · · , N , which

implies that h1 = h2 = · · · = hN . It means that all the

embedding vectors for the head entities {hi}
N
i=1 are the

same, which is clearly unreasonable. We may encounter

similar issues for one-to-many relationships {(h, r, tj)}j
and many-to-many relationships {(hi, r, tj)}i,j .

Note that RNet corresponds to Lr = Rr = Id×d in

(2) and since the identity matrix Id×d can be written

in the form of (5), RNet can be regarded as a special

case of ProjectNet.

TransH. TransH[14] is proposed to overcome the non

one-to-one mapping problem. It first projects the en-

tity embedding vectors h and t onto a hyperplane w.r.t.

relationship r, and then the projected vectors h⊥ and

t⊥ are used to define the scoring function fdist. Specifi-

cally,

h⊥ = h−wT
r hwr, t⊥ = t−wT

r twr ,

fdist(h, r, t) = ||h⊥ + r − t⊥||22,
(6)

where wr ∈ R
d is the normal vector of the hyperplane

with unit length (i.e., wr · r = 0 and ||wr||2 = 1).

Our proposed ProjectNet model differs from TransH

in two ways: 1) we adopt different projections to head

and tail entities; 2) we adopt general projection matri-

ces rather than a hyperplane based projection. Actua-

lly, TransH (6) can be regarded as a special case of

ProjectNet (4), as shown below. Starting from (6), we

have

h⊥ = h−wT
r hwr = h−wrw

T
r h = (I −wrw

T
r )h.

Hence, by substituting Lr = (I−wrw
T
r ) in (2) and (3),

we get TransH. We still need to check whether Lr =

(I −wrw
T
r ) can be written in the form of (5), i.e., the

weighted sum of mL rank-1 matrices, where mL < d.

We answer this question in the following two steps. 1)

As Lr = (I − wrw
T
r ) is an idempotent matrix (i.e.,

LrLr = Lr) andwr is a unit length vector, it holds that

rank(Lr) = trace(Lr) = d − 1[24]. Therefore, Lr has

d − 1 non-zero eigenvalues. Furthermore, by observing

that the eigenvalues of wrw
T
r are 0 and 1, we can con-

clude that Lr = (I−wrw
T
r ) has 1 as one of its eigenva-

lues, corresponding to d−1 linearly independent eigen-

vectors, and 0 as its another eigenvalue, corresponding

to one eigenvector. 2) Further considering that Lr is a

real symmetric matrix, we can decompose Lr as Lr =

UrΣrU
T
r , where Ur = (u

(1)
r ,u

(2)
r , · · · ,u

(d)
r ) ∈ R

d×d

and Σr = diag(1, 1, · · · , 1, 0) ∈ R
d×d, where diag(x)

means the diagonal matrix with vector x as its diago-

nal. The first d− 1 columns {u
(i)
r }d−1

i=1 of Ur are all the

unit-length eigenvectors of Lr corresponding to eigen-

value 1 and Σr stores all the eigenvalues of Lr. Thus

we can write Lr =
∑d−1

i=1 u
(i)
r u

(i)
r

T
.

The same procedure holds for the relation between

Rrt and t⊥. Then according to the above discussions,

we can obtain the following proposition.

Proposition 2. In the knowledge model of Project-

Net (3) and (5), letting mL = mR = d−1, µ
(i)
r = ζ

(i)
r =

1 and p
(i)
r = q

(i)
r = o

(i)
r = s

(i)
r = u

(i)
r , where u

(i)
r is

the i-th eigenvector of the matrix I −wrw
T
r with unit

length, i = 1, 2, · · · , d − 1, we can obtain the TransH

model (6).

SE. SE[15] adopts the following scoring function:

fdist(h, r, t) = ||Lrh−Rrt||1.

SE looks very similar to our proposed knowledge model.

However, there is a key difference: SE does not add the

low-rank constraints to matrices Lr and Rr. In other

words, they fix the rank of these two matrices to be

full, while in our model, the rank of the matrices is a

variable. Therefore our model is more general than SE
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and can handle the non one-to-one relationship when

the rank is low while SE cannot, since its rank is al-

ways full. In this sense, we could also regard SE as a

special case of our proposed ProjectNet model.

TransR. TransR[25] treats relationships and entities

as different objects and thus separates their embeddings

into different spaces,

fdist(h, r, t) = ||Mrh+ r −Mrt||
2
2.

Different from (4) and (5), the authors of [25] did not

add the low-rank constraint to matrix Mr (or we say

that it sets matrix Mr to be full-rank). In addition,

TransR adopts the same transformation matrices to

head and tail entities, by assuming that they are located

in the same space. Therefore, the knowledge model in

our ProjectNet algorithm is more general than TransR,

and can include it as our special case. Moreover, in

terms of parameter complexity, TransR uses total d2

parameters in modeling projections for each relation-

ship r, where ProjectNet uses 2(mL+mR)d+mL+mR

parameters. When 2(mL + mR) > d (just the case

in our experiments), ProjectNet owns more parameters

than TransR and thus is more expressive.

4 Experiments

We conducted a set of experiments to verify the ef-

fectiveness of the ProjectNet model. The source code,

together with dataset can be downloaded via the link

https://github.com/ProjDLer/ProjectNet.

4.1 Experimental Setup

4.1.1 Training Data

For the free text corpus, we used a public snap-

shot of English Wikipedia named enwik9 1○. The cor-

pus contains about 120 million word tokens. We re-

moved digital words and words with frequency less than

5. Then we leveraged a knowledge graph FB13 [13]

to impose relationships onto those entities covered by

enwik9. Since FB13 contains many entities whose

names have multiple words, in enwik9, we merged these

words into phrases and regarded both single words and

phrases as embedding units in the dictionary. Finally

the dictionary size is about 230k.

4.1.2 Baseline Methods

We considered the following algorithms as our base-

lines (we used the codes released by the authors of these

studies for implementation):

1) Skip-Gram (SG): the original Skip-Gram model

in word2vec, corresponding to α = 0 in (1).

2) RNet: the joint embedding model in [10] and

[11], which adopts the objective min ||h+r− t||22 in the

knowledge model 2○.

3) Skip-Gram + TransH (SG+TransH): the com-

bination of Skip-Gram (for the text model) and TransH

(for the knowledge model). According to the discus-

sions in Subsection 3.3, this baseline is a special case of

ProjectNet.

4.1.3 Parameter Settings

In our experiments, we set the embedding size to

d = 100. Stochastic Gradient Descent (SGD) is used

to train all the models. We set the initial learning rate

to be 0.025 and linearly dropped it during the train-

ing process. For the knowledge model in ProjectNet,

we initialized the projection matrices Lr and Rr to be

diagonal matrices with randomly assigned elements 0, 1

(with mL and mR non-zero elements respectively). For

mL and mR, we varied their values according to the set

{10, 20, · · · , 80, 90, 95, 100}. For all the joint embed-

ding models, we varied the trade-off parameter α in (1)

according to the set {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

The margin value is set to γ = 1.

We used two tasks to evaluate our algorithm and

the baseline models: one is the analogical reasoning

task and the other is the word similarity task. The cor-

responding experimental results are shown in the fol-

lowing two subsections.

4.2 Analogical Reasoning Task

The analogical reasoning task is a word relationship

inference task proposed in [5]. It consists of several

quadruple word questions a : b, c : d, in which the re-

lationship between word a and word b is the same as

that between c and d. For instance, (a : b, c : d) =

(Berlin : Germany, Paris : France) and the relation-

ship r is capital-countries. The task aims to infer word

d given words a, b, and c using their word embedding

vectors. To be more concrete, the inferred word d̂ is

given by d̂ = argmaxw∈V cosine(b − a + c,w). Once

1○http://mattmahoney.net/dc/enwik9.zip, Feb. 2016.
2○As aforementioned, the models in [10] and [11] differ only in the loss function (i.e., ranking loss vs approximate softmax loss).

Hence, we unify these two models using the name RNet and report the better performance of the two loss functions.
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d̂ = d, the result on this quadruple word question is

right; otherwise, it is wrong.

The original analogical reasoning dataset given in [5]

is too special in the sense that almost all the relation-

ships in it are one-to-one mappings. For fair compari-

son, we constructed a dataset derived from real-world

knowledge graph, that is FB13 3○. In addition, in Sub-

section 4.2.3, we still report the experimental results

on Mikolov’s original semantic/syntactic dataset[5] to

make our experimental results more comprehensive.

To construct the test set for the analogical reasoning

task, we randomly sampled 1% triples from FB13, and

filtered them according to the dictionary of enwik9.

This constructed dataset consists of about 20k ques-

tions belonging to seven non one-to-one relationships.

The detailed statistics for this test dataset can be found

in Table 2.

Then, we went through the remaining triples in

FB13 and removed all those triples containing over-

lapped entities with the test data. In this way, we ob-

tained a training set with roughly 76k triples, which

has no overlap with the test set in either relationship

triples or entities. The goal of doing so is to examine

whether the free text corpus can act as a bridge be-

tween known and unknown entities, so as to verify the

necessity of jointly embedding text and knowledge into

the distributed representation space.

For ProjectNet, as we imposed Lra−Rrb = −r =

Lrc − Rrd instead of a − b = c − d, we took a two-

step approach instead of directly using the original word

vectors to perform the analogical reasoning task: 1) we

chose an optimal relationship r∗ that best describes the

relationship between a and b, i.e., r∗ = argminr ||Lra+

r−Rrb||
2
2; 2) under r

∗, we chose the answer word d̂ ac-

cording to d̂ = argminw∈V ||Lr∗c+ r∗ −Rr∗w||22. The

same evaluation method was applied to SG+TransH as

well.

The experimental results are listed in Table 2, from

which we have the following observations.

• All the knowledge based models (RNet, SG

+TransH, and ProjectNet) outperform the original SG

model, indicating that the quality of word embedding

can be improved by leveraging knowledge graphs.

• The two models that take non one-to-one map-

pings into consideration (i.e., SG+TransH and Projec-

Net) are superior to RNet, showing the necessity of

modeling the non one-to-one mappings into the loss

functions.

• Among all the models, ProjectNet achieves the

best performance in all the seven subtasks. For the

overall accuracy, it achieves over 30% relative gain com-

pared with SG+TransH. This well demonstrates the ad-

vantages of our proposed model.

4.2.1 Sensitivity to Different Ranks

The best performance of ProjectNet was obtained

with α = 0.2, mL = 50, and mR = 90. To show

the influence of the ranks of the projection matrices,

in Fig.1, we plotted two curves that reflect the per-

formance of ProjectNet w.r.t. different rank values mL

and mR: one curve corresponds to changing mR while

fixing mL = 50, and the other corresponds to changing

mL while fixing mR = 90. From the figure, we have the

following observations. 1) The performance becomes

bad when the rank is too low. This is because in this

case the model expressiveness becomes poor due to a

small number of free parameters in the projection ma-

trices. 2) For the projection matrix for head entities,

medium values of mL correspond to the better perfor-

mances (the red line), while for the projection matrix

for tail entities, higher values of mR lead to better per-

formances (the green line). This result is consistent with

the statistical information in Table 1: the degree of non

one-to-one mappings for head entities is much higher

Table 2. Accuracy of Different Models on Analogical Reasoning Task

Relationship #Question SG (%) RNet (%) SG+TransH (%) ProjectNet (%)

Cause of death 04 290 03.29 04.31 07.55 10.84

Nationality 00 870 14.60 14.14 14.82 17.47

Gender 00 650 67.08 59.38 75.54 84.62

Profession 06 320 03.73 05.78 08.66 13.42

Institution 04 556 01.54 03.03 04.92 06.72

Ethnicity 00 342 16.96 15.50 15.79 18.71

Religion 03 192 13.00 12.47 15.88 22.06

Total 20 220 07.33 08.15 11.24 15.28

3○https://github.com/ProjDLer/ProjectNet/tree/master/dataset, Feb. 2016.
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than that for tail entities, suggesting a lower rank of

projection matrix for head entities.

0 10 20 30 40 50 60 70 80 90 100

9

10

11

12

13

14

15
15.28

16

Rank

T
o
ta

l 
A

c
c
u
ra

c
y
 (

%
)

 

 

Head Rank = 50
Tail Rank = 90

Fig.1. Accuracy w.r.t. different head and tail ranks. The red
line records the accuracy varying with different head ranks when
tail rank is fixed to 90. The green line records the accuracy vary-
ing with different tail ranks when head rank is fixed to 50.

Here we would like to give some practical sug-

gestions on setting different rank values for the head

project matrices Lr and the tail project matrices Rr.

First, the rank values of all the tail projection ma-

trices Rr can be set near to full rank, given that

#Tail per Head is only a little bit larger than 1.

For example, Fig.1 shows that mR values taking from

{80, 90, 95, 100} yield fairly good results. Second, for

the head projection matrices Lr, their rank values

can be configured as an identical smaller value (e.g.,

mL = 50 suggested by our experimental results). In

addition, as stated in Subsection 3.2.2, a more reasona-

ble way to configure rank values for head projection

matrices is that for different relationships r, different

rank values mr are adopted. In practice, we found that

setting mr = max (10, ⌊100 − 10 ln pr⌋ will generate

good experimental result (i.e., total accuracy 14.86%

for analogical reasoning task), where pr is #Tail per

Head values for relationship r.

4.2.2 Sensitivity to Different α Values

We report the parameter sensitivity of the trade-

off parameter α in (1). Different accuracy scores on

the new analogical reasoning dataset w.r.t. different

α values are listed in Fig.2. From this figure, it can

be observed that in a large range of α values (i.e.,

α ∈ (0.1, 0.5)), the accuracy scores are fairly good

(greater than 10%), which shows the robustness of Pro-

jectNet with regard to the hyperparameter that bal-

ances text loss and knowledge loss.
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Fig.2. Accuracy w.r.t. different trade-off parameters α, when
fixing mL = 50 and mR = 90.

4.2.3 Results on Miklov’s Dataset

In Table 3, we report the experimental results on

Miklov’s semantic and syntactic dataset[5]. Since in this

dataset, nearly all of the relationships are one-to-one

mappings (such as capital-countries, currency-countries

and words-plural forms), in our ProjectNet model, we

imposed the head and tail projection matrices to be of

full-rank, i.e., in (5), mL = mR = d.

Table 3. Accuracy of Different Models on

Miklov’s Analogical Dataset[5]

Task SG RNet SG+TransH ProjectNet

(%) (%) (%) (%)

Semantic 25.06 26.91 25.13 26.62

Syntactic 36.49 39.37 35.89 38.76

In Table 3, the performance of Skip-Gram model

and RNet is referenced from previous work[11]. We

can observe that the best model on both semantic and

syntactic dataset is the RNet model. Our ProjectNet

performs comparatively with the best model. We con-

jectured on this dataset, ProjectNet is a little inferior

because it has much more parameters in the two projec-

tion matrices Lr and Rr, leading to more optimization

difficulties. In addition, ProjectNet significantly out-

performs the other baseline methods including original

Skip-Gram and SG+TransH model.

4.3 Word Similarity Task

Word similarity is a task to investigate whether the

similarity computed from word embedding vectors is

consistent with human-labeled word similarity. We

used three word-similarity tasks in our experiments,

namely Word Similarity 353 (WS353)[26], SCWS[3] and

Rare Word (RW)[19]. There are 353, 2 003, and 2 034

word pairs in these datasets respectively. From the

word embedding vectors, we obtained the similarity

scores (e.g., cosine similarity) for each word pair, based
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on which a ranked list is derived on the word pairs.

Then the generated ranked list is compared with the

ranked list produced by the ground-truth similarity

scores assigned by human labelers. To evaluate the con-

sistency between two ranking lists, we used Spearman’s

rank correlation (denoted as ρ ∈ [−1, 1]). Higher ρ cor-

responds to better word embedding vectors.

Table 4 summarizes the results. For ProjectNet

and SG+TransH, the word embedding vectors were

directly used to compute the similarity scores, which

is different from the analogical reasoning task. This

is because there is no explicit relationship available

in the evaluation process. The best performances of

ProjectNet on the three datasets were obtained with

the parameters setting to (mL = 50,mR = 95, α =

0.05), (mL = 40,mR = 90, α = 0.01), and (mL =

60,mR = 95, α = 0.05) respectively. Table 4 reveals

that ProjetNet achieves the best performance on all the

datasets, which further indicates that ProjetNet pro-

duces higher quality word embedding vectors than the

baseline methods.

Table 4. Spearman’s Rank Correlation (ρ) on Three Word

Similarity Datasets: WS353, SCWS, and RW

Task/Model SG RNet SG+TransH ProjectNet

WS353 0.647 0.661 0.666 0.684

SCWS 0.610 0.614 0.618 0.630

RW 0.179 0.184 0.187 0.198

Note: each ρ is reported as the average value of five repeated
runs.

5 Conclusions

In this paper, we proposed a novel word embedding

algorithm called ProjetNet, which leverages knowl-

edge graphs to improve the quality of word embed-

ding. In ProjetNet, we adopted different asymmetric

low-rank projections to head and tail entities in an

entity-relationship triple, and thus successfully main-

tained both non one-to-one mapping and heterogeneous

head/tail entities properties of knowledge graph. Ex-

perimental results demonstrated that ProjetNet signifi-

cantly outperforms previous embedding models.

For the future work, we plan to apply the proposed

approach to fulfill knowledge mining tasks, such as

triplet classification and link prediction[14]. In addition,

we plan to use the word embedding vectors generated

by ProjectNet in some real-world applications such as

document classification and web search ranking.
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