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Abstract. With a number of students, the purpose of collaborative
learning is to assign these students to the right teams so that the pro-
motion of skills of each team member can be facilitated. Although some
team formation solutions have been proposed, the problem of extract-
ing more effective features to describe the skill proficiency of students
for better collaborative learning is still open. To that end, we provide a
focused study on exploiting cognitive diagnosis to model students’ skill
proficiency for team formation. Specifically, we design a two-stage frame-
work. First, we propose a cognitive diagnosis model SDINA, which can
automatically quantify students’ skill proficiency in continuous values.
Then, given two different objectives, we propose corresponding algo-
rithms to form collaborative learning teams based on the cognitive mod-
eling results of SDINA. Finally, extensive experiments demonstrate that
SDINA could model the students’ skill proficiency more precisely and
the proposed algorithms can help generate collaborative learning teams
more effectively.

1 Introduction

Collaborative learning is the instructional use of small heterogeneous group of
students who team together (e.g., 5 to 8 students [10]) to work on a structured
activity. Over the past decades, many researches have confirmed the effective-
ness of this type of learning [23]. By maximizing the promotion of skills of stu-
dents, collaborative learning can not only help stdd,ents exhibit higher academic
achievement, but also can reduce the workload of instructors [22].

Indeed, the success of collaborative learning can be only guaranteed by assign-
ing each student to the right team. Generally speaking, two types of solutions,
based on manual decisions or automatical algorithms, have been studied for this
team formation problem. In manual approaches, students may select their own
teammates [11], or teams are assigned by instructors [20]. Unfortunately, by
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self-selecting best students tend to cluster and leave weak ones to shift for them-
selves. By instructors-assigning, it is almost impossible for instructors to assign
all students effectively. Thus, it is necessary to form learning teams automati-
cally. Based on students’ specific characteristics, some researchers focus on gen-
erating heterogenous teams which mix students of different levels [14], while oth-
ers try to form teams which can quantize and maximize the gain of students [1].
Usually, characteristics of students in these studies are directly extracted from
the biographical data, simple performance attributes or personality traits [27].
Meanwhile, without the real-world data, simulated values on these characteris-
tics are used to design the team formation algorithms [2,12,13,18,27]. In spite of
the importance of the existing research, features in these studies are too simple
to capture students’ skill proficiency very well, and thus, the performance of the
corresponding team formation solutions could be further improved. Actually, one
of the best ways to get the skill proficiency of students is to model the cognitive
information of them, e.g., from their performance in the exams [4,8]. However,
there are still two challenges to be addressed for exploiting cognitive diagnosis.
Firstly, how to precisely quantify the skill proficiency of students? Secondly, how
to design the appropriate algorithms to automatically get collaborative learning
teams based on this type of feature?

To conquer these two challenges, we propose a two-stage framework to apply
cognitive diagnosis for collaborative learning team formation. Specifically, in the
first stage we propose a novel cognitive diagnosis model Soft-DINA (SDINA).
Compared to the existing diagnosis model DINA [4,21], which quantifies the
students’ skill proficiency in binary values (either 0 or 1), SDINA is able to
model students with continuous values. Then, the output of SDINA is further
exploited to generate collaborative learning teams in the second stage. Following
the views that students in the same team should be diverse and the improvement
of each student should be maximized, we consider two optimization objectives –
dissimilarity based objective and gain based objective, and we propose effective
algorithms to generate collaborative learning teams for each of these objectives.
Finally, the results of extensive experiments demonstrate that (1) SDINA could
model the students’ skill proficiency by predicting their performance (i.e., exam
scores) more precisely, and (2) the proposed algorithms can help generate col-
laborative learning teams effectively under several evaluation metrics. The main
contributions of this paper could be summarized as:

– To the best of our knowledge, this is the first comprehensive attempt for the
problem of collaborative learning team formation by introducing cognitive
diagnosis to extract features of students’ skill proficiency.

– We propose a novel cognitive diagnosis model SDINA, which improves exist-
ing model DINA. SDINA automatically quantifies students’ skill proficiency
in continuous values for more accurate analysis of students.

– Given students’ skill proficiency, we propose two objectives following the exist-
ing research achievements, and then we design effective algorithms to generate
collaborative learning teams for each of these objectives.
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2 Related Work

In this section, we will introduce the related studies in two categories.

2.1 Student Modeling

Here we focus on team formation-oriented student modeling methods. In tradi-
tional collaborative team formation problems, the students were modeled by fea-
tures extracted directly from biographical data like age, gender, or some simple
performance attributes like grades, self-evaluation, peer-assessment, or personal-
ity traits like learning styles [27]. For instance, Hwang et al. [15] considered the
number of already known concepts and scores of a pre-test to model students.

Though few of existing team formation studies explored examination records,
this kind of data has been widely used for other student modeling tasks, e.g.,
performance prediction. Many data mining efforts have been conducted, for
instance, matrix factorization (MF) technique [19] has been adopted by con-
sidering student as user, problem as item, and student’s score on a problem
as rating. E.g., Toscher et al. [25] utilized singular value decomposition (SVD)
to model and predict students. But, latent factors of students inferred by MF
are unexplainable which limits the applicability of MF in scenarios where the
explanation of skills need to be specified.

To model students with examination data in an interpretative way, psycho-
metricians in education psychology have developed a series of cognitive diagnosis
models (CDMs) [8]. By capturing the students’ cognitive characteristics, CDMs
can predict students’ performance and obtain targeted remedy plan for each
student. Generally speaking, there are two main categories of CDMs: continuous
ones and discrete ones. The fundamental continuous CDMs are item response
theory (IRT ) models [9], which characterize a student by a continuous variable,
i.e., latent trait. However, IRT is unable to get the latent cognitive character like
students’ skill proficiency. For discrete CDMs, the basic method is determinis-
tic inputs, noisy “and” gate model (DINA) [4,21]. DINA describes a student
by a latent binary vector variable which denotes whether she masters the skills
required by the exam or not. And the specific relationship between problems and
skills is a prior knowledge given by education experts (e.g. the exam designer).
E.g., based on fuzzy system, Runze Wu et al. [26] proposed a solution for cogni-
tive examinee modeling from both objective and subjective problems.

2.2 Team Formation

Existing studies on collaborative learning team formation can be broadly split into
two basic types. The first type focuses on forming heterogenous or homogeneous
teams considering multiple student characteristics. E.g., authors in [18] designed
an algorithm named SPOS to form heterogeneous teams. Similarly, the fuzzy c-
means and random selection algorithm were used in [2] for formulating homoge-
nous and heterogeneous teams. Unfortunately, all these works implemented their
algorithms based on simulated student characteristics. The second type focuses on
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forming teams which can maximize the gain of students. E.g., Rakesh et al. [1] pro-
posed a framework for grouping students in order to maximize the overall gain of
students. Given specific objectives, there are also researches which formed teams
through optimization methods. E.g.,Virginia et al. [27] proposed a deterministic
crowing evolutionary algorithm to form teams. However, few of the existing team
formations exploit cognitive diagnosis results as features to better model students.
Therefore, the problem of how to apply this type of feature to design more suitable
team formation solutions is still open.

Besides collaborative learning team formation, the traditional team forma-
tion problem usually focused on forming a team from a large set of candidates
of experts such that the resulting team is best suited to perform the assign-
ment. This kind of team formation entails set-cover and is modeled by experts’
skills and their collaboration network [16]. In contrast, the collaborative team
formation problem is a partition problem rather than a set-cover one.

3 Collaborative Learning Team Formation

We will introduce details of our two-stage framework in this section. The flow-
chart is shown in Fig. 1. Given students’ examination results, we propose a cog-
nitive diagnosis model SDINA to automatically quantify the skill proficiency
of students. Then, we propose two objectives with heuristic algorithms to form
collaborative learning teams which can facilitate the promotion of all students.
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Fig. 1. Our two-stage framework.
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Fig. 2. Example of students’ pro-
ficiency in skills S1 to S11.

3.1 Cognitive Modeling of Students’ Skill Proficiency

In the following, we assume there are U students P = {P1, P2, . . . , PU}, partic-
ipating in the same course, e.g., math. We also assume S ={S1, S2, . . . , SV } to
be a universe of V skills in this course, e.g., skills in a math course may include
math concepts like set, formulas like computing sphere volume, process skills
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like calculation or induction. After cognitive modeling, each Pi will be associ-
ated with a vector of skill proficiency αi = {αi1, αi2, . . . , αiV }, where αij ranges
from 0 to 1 and represents that Pi’ proficiency in Sj is αij . We summarize the
proficiency of all students in all skills as α = {α1, α2, . . . , αU}, which need to
be evaluated according to an examination. Actually, Fig. 2 shows the proficiency
of 2 real-world students in skills S1 to S11, which is the output by our SDINA.
Although the two students have similar average abilities (about 0.5), there are
still distinctively differences in their proficiency in certain skills. If these two
students are put into a same team, they can learn from others’ strong points to
offset their own weakness. We will first briefly review the traditional cognitive
diagnosis model DINA, and then show the way to get α by our SDINA.

DINA Review. DINA [4] (the deterministic inputs, noisy and gate model)
assumes that each problem in an exam is involved with multiple predefined skills
(tagged by education experts in advance), and then it characterizes a student
by a binary vector variable, which denotes whether she has mastered the skills
required in the exam. Specifically, for an exam designed to assess V skills of
students, given a problem l, a student i, we observe a dichotomous response
which is a binary variable Ril with a value in {0, 1}. The response indicates
the correctness of the answer provided by the student i to the problem l, i.e., 1
represents true and 0 represents false. Then, DINA is defined as:

P (Ril = 1|αi, sl, gl) = (1 − sl)ηilg1−ηil

l . (1)

Here, student i is characterized by a latent binary vector variable αi =
(αi1, αi2, . . . , αiV ), i.e., αij = 1 represents that student i has mastered skill j
and vice versa, and problem l is characterized by two parameters: sl represents
carelessness or slipping; gl is a guessing parameter. ηil is a latent variable that
indicates whether student i is able to solve the problem l, and is defined as
ηil =

∏V
j=1 α

qlj

ij where qlj indicates whether problem l requires skill j. It means
student i is disable to solve problem l unless all of the skills required for problem
l have already been mastered by her. As for parameter estimation, we could
maximize the marginalized likelihood of Eq. (1), which can be implemented
using EM algorithm [3]. Then, with the estimated parameters ŝ1, ŝ2, · · · , ŝZ and
ĝ1, ĝ2, · · · , ĝZ (Z is the number of problems), αi can be determined via maxi-
mizing the posterior probability given student i’s response vector:

α̂i = argmaxαP (α|Ri) = argmaxαL(Ri|α, ŝl, ĝl)P (α)
= argmaxαL(Ri|α, ŝl, ĝl) = argmaxα

∏Z
l=1 P (Ri|α, ŝl, ĝl),

(2)

Thus, for an exam with V skills, α has 2V possible patterns and each pattern
is assumed to be with an equal prior distribution without loss of generality.

Soft-DINA. In DINA, binary skill vector αi of each student i can be found by
maximizing the posterior probability. Though it is intuitive, this binary repre-
sentation of students’ skill proficiency is too coarse to characterize the mastery
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degree (cognitive level) of students. For instance, a student with a mastery degree
of 0.9 in a specific skill and a student with 0.6 may have the same binary value
of 1 based on DINA, while the significant difference is missing. For the sake of
keeping as much information of vectors of proficiency as possible, we propose
another cognitive model Soft-DINA or SDINA for short, which is an improve-
ment of DINA, to get vectors of proficiency with continuous values.

Specifically, considering the 2V kinds of α from all zeros (0, 0, . . . , 0) to all
ones (1, 1, . . . , 1) and given the responses of a student i, Ri, each of these α is
involved with one posterior probability P (α|Ri), DINA only chooses the specific
skill vector α which can maximize the posterior probability. To precisely measure
the probability that the student i masters a specific skill j, we propose to consider
the posterior probability from all the possible α. Formally, in SDINA, we redefine
the estimated skill vector α̃i and calculate the posterior probability that student
i masters skill j as follows:

α̃ij = P (αij = 1|Ri) =
∑

αxj=1 P (αx|Ri)
∑2V

x=1 P (αx|Ri)

=
∑

αxj=1 L(Ri|αx,ŝl,ĝl)P (αx)
∑2V

x=1 P (αx|Ri)
=
∑

αxj=1
∏Z

l=1 L(Ril|αx,ŝl,ĝl)P (αx)
∑2V

x=1 P (αx|Ri)
,

(3)

where x = 1, 2, . . . , 2V , represents the 2V kinds of possible αi, and the numerator
part computes the probability of αij = 1 in these 2V kinds of possible αx. To
simplify the formulation, we also assume each αx has an equal prior probability,
then the equation above can be rewritten as follows:

α̃ij =

∑
αxj=1

∏Z
l=1 L(Ril|αx, ŝl, ĝl)

∑2V

x=1

∏Z
l=1 L(Ril|αx, ŝl, ĝl)

. (4)

In this way, we get α̃i = (α̃i1, α̃i2, . . . , α̃iV ), a vector of continuous values between
0 and 1, where α̃ij represents student i’s proficiency(i.e. probability) in skill j.
That is to say, α̃ij = 1 means i has fully mastered skill j, and α̃ij = 0 means i
has not mastered skill j at all.

Note that, although the skills accessed by each problem are manually labeled,
it is feasible and commonly used in pedagogy [8]. In fact, to construct an exami-
nation, designers must clearly delineate the assement purpose, specically describe
what skills are measured and develop proper assessment tasks1.

3.2 Collaborative Learning Team Formation

In this subsection, we show the way to form teams based on α. Assume G =
{G1, G2, . . . , GM} to be a set of M teams. We will put students into teams, with
two basic constraints. Firstly, only one team is assigned to a student, making
sure that a student only belongs to one team. Secondly, the team size is better
to be equal, with a difference of no more than one student, to ensure fairness and
1 There are also studies about the automatic labeling of skills [7], which is beyond the

scope of our research.
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team balance. Formally, given the students’ skill proficiency, the collaborative
learning team formation problem can be formulated as follows.

Problem 1 (Collaborative Learning Team Formation): Given a set of students
P, each student Pi’s proficiency αi = (αi1, αi2, . . . , αiV ), and a set of teams
G = {G1, G2, . . . , GM}. Under the following constraints,

Gk1

⋂
Gk2 = ∅,

−1 ≤ |Gk1 | − |Gk2 | ≤ 1,
k1, k2 = 1, 2, . . . ,M, k1 �= k2

(5)

assign every student Pi to a team Gk, Pi ⊆ Gk, k = 1, 2, . . . ,M . In order that,
the promotion of all students in these V skills can be facilitated.

With this definition, we should first clarify the measurements/objectives of a
good team, and then, the specific algorithms to generate effective collaborative
learning teams in terms of these objectives could be designed. Generally, there
are two types of different objectives in existing studies, i.e., the skill proficiency
of students in the same team should be heterogeneous [14] and the improvement
of each student should be maximized [1]. In terms of these objectives and our
extracted feature, we propose a dissimilarity based objective to form teams by
maximizing the average dissimilarity of students within a team and a gain based
objective to form teams by maximizing the average gain of students, respectively.

Dissimilarity Based Objective. According to [13], in a reasonably hetero-
geneous group student-scores reveal a combination of low, average and high
student-scores. However, this measurement is limited to 3 discrete classes of
only one attribute value (student-score). Indeed, a better mechanism is to use
continuous values of several attributes, e.g., the continuous value of students’
proficiency in several skills. Inspired by the heterogeneity definition in [12], we
also use the average dissimilarity between team members as the metric of het-
erogeneous degree. Without loss of generality, the difference between Pi1 and
Pi2 in the proficiency of Sj , Dj(Pi1 , Pi2), is defined as |αi1j − αi2j |. Thus, the
heterogeneity of Gk consisting of N students with respect to Sj , is defined as

HGk(Sj) =
∑N

i=2
Dj(Pi, Pi−1). (6)

Here, the students in Gk have been sorted by values of skill proficiency in Sj ,
i.e., α1j ≤ α2j ≤ . . . ≤ αNj . Then, the heterogeneity of Gk is computed as

HGk =
∑V

j=1
HGk(Sj). (7)

One step further, the heterogeneity of the solution G is the average of the het-
erogeneity of all teams in the solution, i.e.,

HG(G) =

∑
Gk∈G HGk

|G| . (8)
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Since not only heterogeneity but also the team balance, i.e., the difference of the
heterogeneity among the teams, should be considered for the quality of the team
formation solutions [18], we also define the balance of the solution G as

B(G) = V ariance({HGk|∀Gk ∈ G}). (9)

That is, the teams in each solution should be as balanced as possible to ensure
the fairness. Overall, the higher the solution heterogeneity is and the lower the
solution balance is, the better the team formation result is.

Given this dissimilarity based objective, consisting of both solution hetero-
geneity HG(G) and solution balance B(G), we utilize the idea of clustering to
solve the team formation problem. Intuitively, students could be first clustered
using clustering algorithm, e.g., k-means [17], where features are their skill profi-
ciency vectors. Then students of same cluster will be assigned to different teams.
However,clusters under the classical k-means settings are often of different size,
and this will have a negative effect on the team’s heterogeneity. For instance,
if there is a cluster with a very large size, which is bigger than the number of
teams, according to the pigeon-hole principle , at least two students in the same
cluster will be assigned to the same team. To address this problem, we think of
an improved clustering method called uniform k-means to get uniform clusters
with the same size. More specifically, in the process of k-means, the number of
clusters is set to be � U

M 	. Then, for every object(student), after calculating the
distance between it and the center of every cluster, this student will be put into
cluster which is not merely with shortest distance but also is not full, i.e., size
of this cluster is no larger than M . After this, students are equally divided into
� U

M 	 clusters. Next, students in same cluster should be assigned into M different
candidate teams. In this way, as students with similar skill proficiency will be
put into different teams, the dissimilarity based objective can be easily achieved.
The Uniform K -means Based algorithm (UKB), is summarized in Algorithm 1.

Algorithm 1. UKB: the uniform k-means based algorithm
Require:

The set of U students P = {P1, P2, . . . , PU}; The number of teams M ;
Ensure:

The set of teams G = {G1, G2, . . . , GM};
1: Divide U students into � U

M
� clusters using uniform k-means;

2: Determine the size of teams, each one with student number of � U
M

� or � U
M

� + 1;
3: Calculate the number of students that every team still needs;
4: for each cluster c do
5: while c is not empty do
6: Put one student into every not-full team;
7: Calculate the number of students that every team still needs;
8: end while
9: end for

10: return G;
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Gain Based Objective. In addition to the dissimilarity based objective,
another intuitive approach of measuring the quality of a team is to quantize
the promotion of every student. Inspired by [1], we define a gain function to
measure the promotion of students in terms of their skill proficiency.

In collaborative learning teams, the students can promote their skills through
mutual exchanges and emulations. As a general rule, there are two factors which
can influence the students’ promotion. The first factor is the proficiency of each
student, i.e., a student with higher proficiency is easier to promote than a student
with lower proficiency. Another factor is the gap between her and the other
students in the team, i.e., a student who collaborates with more capable team-
mate can get more knowledge. According to these facts, we define a student’s
promotion in a skill as follows.

Suppose there is a non-empty team Gk with N students Gk = {P1, P2, . . . ,
PN}. Gk has a vector of maximum proficiency in every skill ak = {ak1, ak2, . . . ,
akV }, akj is the maximum proficiency in Sj among the students in Gk, i.e.,
akj = MAX(α1j , α2j , . . . , αNj). Then the leader of Gk in Sj , namely Lkj is the
student with maximum proficiency in Sj ,

Lkj = {Pi|αij = akj , i = 1, 2, . . . , N}. (10)

Now, we put a new student Pi into Gk, if Pi is not the leader in Sj , i.e., αij < akj ,
then Pi’s promotion in Sj , Qj(Pi, Gk), is defined as:

Qj(Pi, Gk) = (akj − αij) · αij . (11)

Here, (akj −αij) is as the gap between Pi and Lkj , which is always positive. The
definition is in conformity with the actual situation. For instance, there is a team
with a leader who has a proficiency of 0.9 in a certain skill, suppose we put three
new students A, B, C with proficiency of 0.2, 0.5, 0.8 respectively in the team.
According to our definition, the promotions of them will be 0.14, 0.20, 0.08.
A gets a small promotion of 0.14 because A has a low proficiency which brings
bad influence for the promotion, C only gets 0.08 because there is only a little
gap between C and the leader. Only B gets a big promotion of 0.20 due to B’s
higher proficiency and the bigger gap between B and the leader. For simplicity,
we ignore the leader’s promotion in her leading skill. Then, we define Q(Pi, Gk),
the gain of Pi as the overall promotion in every skill,

Q(Pi, Gk) =
∑V

j=1Qj(Pi, Gk)
= (ak − αi) · αT

i .
(12)

Next,the average gain of Gk will be:

Q(Gk) =

∑
Pi∈Gk

Q(Pi, Gk)
|Gk| . (13)

Here, |Gk| is the number of students in Gk. Finally, the average gain of a solution
G, Q(G), can be defined as the average gain of all the teams,

Q(G) =

∑
Gk∈G Q(Gk)

|G| . (14)
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We use the solution gain Q(G) as the evaluative criterion for the quality of team
formation solutions. We also propose a team formation algorithm which consists
of two steps: First, the leader in each skill is chosen for each team; Then, all the
non-leader students are put into teams according to their gains.

Specifically, Q(G) is a monotone-increasing function of akj , so for maximizing
Q(G), the leader in each skill for each team should have proficiency as greater
as possible. Given a set of U students and the number of teams M , the leader-
choosing process is as follows. For each skill Sj , firstly we pick out M students
P = {P1, P2, . . . , PM} with maximum proficiency. Secondly, for every student
Pi ∈ P, if Pi has been a leader in a team, then Pi will be the leader in Sj of this
team; Otherwise, we choose a team Gk which still has no leader in Sj , and if Gk

is not full, then Pi will be the leader in Sj of Gk, or else, a student in Gk with
the maximum proficiency in Sj will be picked out as the leader.

After the leaders have been chosen, we show the way to put all non-leader
students into teams. Assume all teams have the same size of λ, and the λ students
in team Gk are presented by Pki, i = 1, 2, . . . , λ. Then Q(G) will be

Q(G) =
∑

Gk∈G Q(Gk)

|G|
= 1

|G|·λ · ∑
Gk∈G

∑λ
i=1Q(Pki, Gk).

(15)

Obviously, Q(G) will only be determined by
∑

Gk∈G
∑λ

i=1 Q(Pki, Gk) since
1

|G|·λ is a constant. Also, Q(G) increases with Q(Pki, Gk). As one student can only
belong to one team, it is naturally to put Pi to Gk which can maximize Q(Pi, Gk).
In addition, since size of teams is limited, students with higher proficiency should
be put into teams in priority. However, such team formation result violates the
principle of heterogeneity because students with higher proficiency tend to be put
into teams with higher maximum proficiency. To avoid this unbalanced result,
we propose an algorithm which takes both the gain of students and the average
level of teams into consideration, to get balanced teams.

To be specific, there are two factors determining the selection of groups for
non-leader students. One is the gain of this student, another is the average level
of the team. Here, we define LPi, the level of a student Pi, as the average of
Pi’s proficiency in every skill, and LGk, the average level of a team Gk, as the
average level of all the students in team Gk,

LPi =

∑V
j=1 αij

V
, LGk =

∑
Pi∈Gk

LPi

|Gk| .

Then we define a balanced gain vector BGi = {BGi1, BGi2, . . . , BGiM}, where
BGik is called the balanced gain of Pi if putting her to Gk,

BGik =
Q(Pi, Gk)

LGk
. (16)

With the above definition, the entire process of Balanced Gain Based algo-
rithm (BGB), is shown in Algorithm 2. In summary, we first choose the leaders
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Algorithm 2. BGB: the balanced gain based algorithm
Require:

The set of U students P = {P1, P2, . . . , PU}; The number of teams M ;
Ensure:

The set of teams G = {G1, G2, . . . , GM};
1: Determine the size of teams, each one with student number of � U

M
� or � U

M
� + 1;

2: Select the leaders in every skill for each team.
3: Sort all the non-leader students by their levels LP in descending order;
4: for each sorted students Pi do
5: Calculate the balanced gain vector BGi;
6: Put student Pi in a not-full team Gk with maximum BGik;
7: end for
8: return G;

in each skill for each team, and then sort all the non-leader students by their
levels LP in descending order. Next, for each sorted student Pi we put her into
a not-full team Gk with maximum BGik. In this way, the higher level students
will be put into relatively low level teams and vice versa, getting her a relatively
high gain and keeping the heterogeneity of the teams, simultaneously.

4 Experiments

Firstly, we use the prediction of students’ scores to evaluate the effectiveness
of SDINA. Secondly, we make an expert evaluation to explore the effectiveness
of features extracted by SDINA. At last, we evaluate the performance of our
proposed team formation algorithms from various aspects.

4.1 Experimental Setup

Our experiments are conducted on three real-world datasets and two simulated
ones. The real-world datasets contain two real private datasets and a public
online dataset. The public dataset is Tatsuoka’s fraction subtraction dataset [5],
consisting of scores from middle school students on fraction subtraction prob-
lems. The two private datasets2 are from two final math exams for high school
students. Each of these three datasets is represented by a score matrix and also
has multiple predefined skills. We denote these datasets as FrcSub, Math1 and
Math2. The brief summary is shown in Table 1. Figure 3 gives a brief preview
of these datasets, where each column for each subfigure stands for a problem
and each row for a student. The black element means the student is wrong in
the problem, while white one means right. The two simulated datasets are made
up of 500 and 1,000 students with 10 features3. The value of each feature is

2 They will be publicly available after the paper acceptance.
3 Unlike the real-world datasets, the simulated ones only consist of students with

values between 0 and 1 on some features rather than students’ test scores.
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generated by random sampling from a uniform distribution of 0 to 1. We denote
these two datasets as SiData1 and SiData2.

All experiments are implemented by Matlab on a Core i5 3.10 Ghz machine
with Window 7 and 4 GB memory.

Table 1. Datasets Summary.

Dataset #Student #Skill #Problem

FrcSub 536 8 20

Math1 4,206 11 12

Math2 3,907 16 12

FrcSub

10 20

100

200

300

400

500

Math1

2 4 6 8 10 12

1000

2000

3000

4000

Math2

2 4 6 8 10 12

1000

2000

3000

Fig. 3. The preview of the datasets.

4.2 Evaluation on Student Modeling

To demonstrate the effectiveness of SDINA on modeling students’ skill profi-
ciency, we conduct experiments of predicting students’ scores (right as 1 and
wrong as 0) on each problem. We perform 5-fold cross validation on the real-
world datasets, i.e., 80 % of the students are randomly selected for training while
the rest for testing. We consider two baseline approaches:

– DINA [4]: a cognitive diagnosis model which is detailed in Sect. 3.1.
– PMF [19]: a latent factor model, widely used in recommending system.

We record the best performance of each method by tuning their parameters, e.g.,
the latent dimension of PMF is set to be 10. As this task is actually a binary
classification problem, Accuracy and F1-measure are used as evaluation metrics.

The experimental results are shown in Fig. 4. SDINA performs better than
DINA and PMF in both Accuracy and F1 over all datasets. In Accuracy DINA
performs better than PMF but in F1 PMF performs better than DINA. As a
cognitive diagnosis model, SDINA is effective in modeling students’ skill profi-
ciency.

4.3 Evaluation on Feature Selection

After evaluating SDINA’s effectiveness on student modeling, to demonstrate
SDINA’s effectiveness on team formation, first the performance of three different
kinds of features on team formation are evaluated by educational experts, then
teams based on these features are visually displayed for better illustration.

Specifically, we compare reasonablity of teams formed with the same algo-
rithm based on three kinds of features, i.e., the continuous skill proficiency
inferred by SDINA, the binary skill proficiency inferred by DINA and the raw
examination scores4. Since conducting large-scale in-classroom experiments are
4 The latent factor getting by PMF has not been used here since it’s unexplainable.
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Fig. 4. Performance on score prediction.

Table 2. Gold standard evaluation.

Feature HR

Raw score 0.066

DINA 0.267

SDINA 0.667

currently impractical, we choose to collect a Gold Standard [24] to evaluate effec-
tiveness of team formation by various features. As educational experts, teach-
ers are obviously able to give a relatively fair and convincing assessment with
decades of educating experience. We will first specify the process of collecting a
gold standard and then compare the performance of three kinds of teams.

To construct a gold standard, we simulate the team formation on real dataset
and then ask corresponding teachers who are familiar with the chosen students,
to evaluate the effectiveness of different methods. Specifically speaking, due to
the labour cost of manual assessment, we first randomly draw five classes with
283 students in total, then we form teams with a fixed size (e.g. 5) by three
different features based on UKB. And for each class, we randomly draw three
formed teams for each method, that is, nine teams will be chosen and randomly
ordered. Subsequently, we ask teachers of the five classes to pick three most
reasonable teams for each class out of their understanding of students. So, nine
of the forty-five formed teams are chosen and regarded as most effective.

Taking the gold standard as ground truth, we compute hit rate (HR) [6] for
each method. Here this metric measures how closely the output of a method is to
the gold standard and is defined as HRi = |Ti∩GS|

|GS| . Here, HRi is the HR of the
ith team formation method, Ti represents the teams formed by the ith method
and GS means the teams picked by the gold standard. As is shown in Table 2,
the effectiveness of team formation by SDINA greatly outperforms DINA and
Raw score methods by a quantitative and more accurate cognitive diagnosis, and
at the meanwhile DINA obtains more satisfying results than Raw score method.
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Fig. 5. An example of teams by using three kinds of features.
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One step further, for better illustration about the difference between teams
formed by three kinds of features, Fig. 5 shows a toy visualized example. We use
UKB to form five-students teams on public dataset FrcSub. Figure 5(a) shows
a team formed through continuous skill proficiency output by SDINA. Here,
SD-Stu1 to SD-Stu5 represent five students and S1 to S5 represent five skills.
Figure 5(b) shows a team formed through binary skill proficiency output by
DINA. DI-Stu1 to DI-Stu5 represent students and S1 to S5 represent skills which
are the same with Fig. 5(a). Figure 5(c) shows a team formed directly using
students’ score on every problem. P1 to P5 represent five problems respectively.
Only five skills or problems are shown for better visualization. We can observe
that team in Fig. 5(a) contains different levels of students, SD-Stu1 and SD-
Stu2 are of highest ability. Others can promote skills following the lead of them.
Since proficiency of students in each skill is also of great difference, students can
promote their skills through learning from each other. Compared with other two
kinds of features team formation using SDINA has better explanation. SDINA
not only can support automatic team formation but also can provide guidance
for manually forming teams.

4.4 Evaluation on Team Formation

In this subsection, we first fix features as continuous skill proficiency inferred
by SDINA and evaluate performance of UKB and BGB on real-world datasets.
Then, to demonstrate that UKB is not just effective with features of SDINA’s
output, we evaluate its performance on two simulated datasets. Quality of team
formation solutions is evaluated with Heterogeneity, Balance and Gain, which
are defined in Sect. 3.2. For Heterogeneity and Gain, higher value is better while
for Balance, lower value is better. Our algorithms are compared with:

– SPOS : short for Semi-Pareto Optimal Set, which is proposed in [18].
– RANDOM : a standard random algorithm to form heterogeneity teams [2].

We should note that the algorithm in [1] is not chosen as a baseline, because it
can only be applied to form teams for students with 1-dimensional ability.

Firstly, we perform team formation experiments on three real-world datasets
and use the output of SDINA as input features for all the algorithms, to make
sure grouping algorithms will be comparable. Figure 6 shows the experimental
results. The subfigures in row 1 to row 3 represent three datasets and columns
represent three measurements. The X-axis in each subfigure represents team size
from 5 to 8 since the optimal team for collaborative learning should contain 5 to
8 students [10]. Please note that, if the student number is not evenly divisible by
the team size, then actually team size here represents the basic student amount
in every team, and there is at least one team which has one more student.
The result shows the effectiveness of our proposed algorithms. In terms of the
dissimilarity based objective, i.e., Heterogeneity and Balance, UKB outperforms
the two baselines among all the team sizes in three datasets, and among the
baselines, SPOS has a relatively good performance. Similarly, in terms of the
gain based objective, BGB outperforms the two baselines in all cases.
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Table 3. Runtime(seconds).

Datasets UKB BGB SPOS RANDOM

FrcSub 1.936 0.174 1.811 0.122

Math1 595.2 16.89 750.3 22.7

Math2 664.2 10.73 620.4 19.5

Secondly, to demonstrate that UKB is not just effective with features of
SDINA’s output, we perform team formation experiments on datasets with sim-
ulated features. We can see from Fig. 7 that UKB has larger Heterogeneity and
lower Balance among all team sizes on both datasets. We don’t test BGB as it
only focuses on features of students’ skill proficiency.

Moreover, Table 3 shows runtime of each method to form five-students teams.
BGB and RANDOM run much faster in general. For our methods UKB run faster
than SPOS on Math1, BGB run faster than RANDOM on Math1 and Math2.
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5 Discussion

The experimental results demonstrate that SDINA could better model students
with continuous skill proficiency. Through more accurate analysis on students
and following the existing research achievements, UKB and BGB could generate
more effective collaborative learning teams for dissimilarity based objective and
gain based objective. In the meanwhile, the team formation results are explain-
able, which makes the framework has more practical value.

Both stages of this general framework may be further improved. Firstly, we
can employ SDINA on more data (e.g., the homework data) for feature extrac-
tion. Secondly, relationship between these two objectives could be studied and
maybe the trade-off between them can be researched. Optimization methods
should be tried to formulate an optimization problem for maximizing gain and
heterogeneity, and minimizing balance. Thirdly, we plan to design more efficient
solutions than UKB and we would like to consider more influence factors to get
a more reasonable definition of students’ promotion in BGB. Finally, we plan
to apply this theoretical research in the real-world teaching and learning, e.g.,
we already served high schools where we collected the data. Indeed, given that
modeling students’ cognitive skills for collaborative learning has largely been
neglected, there are many research directions remain to be explored.

6 Conclusion

In this paper, we designed a two-stage framework to exploit cognitive diagnosis
for collaborative learning team formation. Firstly, we proposed a cognitive diag-
nosis model SDINA, which can automatically quantify students’ skill proficiency
in continuous values. Secondly, we proposed two objectives, the dissimilarity
based objective and the gain based objective with heuristic algorithms to solve
the team formation problem. At last, extensive experiments on several datasets
demonstrated that our SDINA could model the students’ skill proficiency more
precisely and the proposed algorithms can help generate collaborative learning
teams more effectively. We hope this work could lead to more future studies.
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