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Abstract

Current works on facial action unit (AU) recognition
typically require fully AU-annotated facial images for su-
pervised AU classifier training. AU annotation is a time-
consuming, expensive, and error-prone process. While AUs
are hard to annotate, facial expression is relatively easy
to label. Furthermore, there exist strong probabilistic de-
pendencies between expressions and AUs as well as depen-
dencies among AUs. Such dependencies are referred to as
domain knowledge. In this paper, we propose a novel AU
recognition method that learns AU classifiers from domain
knowledge and expression-annotated facial images through
adversarial training. Specifically, we first generate pseudo
AU labels according to the probabilistic dependencies be-
tween expressions and AUs as well as correlations among
AUs summarized from domain knowledge. Then we propose
a weakly supervised AU recognition method via an adver-
sarial process, in which we simultaneously train two mod-
els: a recognition model R, which learns AU classifiers,
and a discrimination model D, which estimates the prob-
ability that AU labels generated from domain knowledge
rather than the recognized AU labels from R. The train-
ing procedure for R maximizes the probability of D making
a mistake. By leveraging the adversarial mechanism, the
distribution of recognized AUs is closed to AU prior distri-
bution from domain knowledge. Furthermore, the proposed
weakly supervised AU recognition can be extended to semi-
supervised learning scenarios with partially AU-annotated
images. Experimental results on three benchmark databas-
es demonstrate that the proposed method successfully lever-
ages the summarized domain knowledge to weakly super-
vised AU classifier learning through an adversarial process,
and thus achieves state-of-the-art performance.

1. Introduction
Facial behavior is one of the most important channels for

emotional communication between humans. Automatic ex-

pression analysis has attracted increasing attention in recent

∗This is the corresponding author.

years due to its wide potential in human-robot interaction.

Both expression categories and facial action units are adopt-

ed to describe facial behavior. For expression categories,

Ekman’s six universal expression categories (i.e., anger, dis-

gust, fear, happiness, sadness, and surprise) are frequently

used. In addition to the six basic expressions, people ex-

press many other complex expressions, such as hatred and

awe. Some expressions even can not be described verbally.

Until now, there have been no established complete expres-

sion categories. Unlike expression categories, which on-

ly describe several limited facial behaviors, the Facial Ac-

tion Coding System (FACS) [6] describes facial behavior as

combinations of facial action units (AUs), which are related

to the contraction of a set of facial muscles. Using FAC-

S, nearly any facial behavior can be deconstructed into the

specific AUs and their temporal segments.

Most AU recognition includes supervised learning, in

which the fully AU-annotated training images are re-

quired.Due to subtle facial appearance changes and signif-

icant subject-dependent variations, automatic AU recogni-

tion is rather challenging. Many fully AU-annotated facial

images would be helpful for automatic AU recognition, but

collecting this data is time-consuming and error prone, if

not impossible. Since AUs are local, subtle, and difficult

to recognize, ground truth AU labels should be provided

by qualified FACS experts. Compared to AUs, expression

categories are easier to annotate, because expression cat-

egories describe global facial behavior, and people recog-

nize global changes more quickly and accurately than local

variations. Furthermore, expression categories and facial

action units are closely related, since both are used to de-

scribe facial behavior. For instance, Du et al. [4] found that

99% of the time, people show happiness by raising their

cheeks and stretching their mouths. The Emotional Facial

Action Coding System (EMFACS) [7] lists emotion-related

AU combinations. Prkachin et al. [19] found that pain in-

tensity can be inferred from the combination of several AUs

(i.e., AU4, AU6, AU7, AU9, AU10 and AU43). In addition

to expression-dependent AU relations, there are expression-

independent AU relations, such as the co-existence between

AU1 and AU2, due to the constraints of facial muscles.

2188

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

2575-7075/18 $31.00 © 2018 IEEE
DOI 10.1109/CVPR.2018.00233

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 17,2020 at 02:22:58 UTC from IEEE Xplore.  Restrictions apply. 



Recently, several researchers have leveraged AU rela-

tionships to facilitate AU classifier learning through either

generative strategy [26, 23, 14] or discriminative strate-

gy [13, 1, 30, 5, 28]. However, all of these works required

fully AU-annotated facial images. A few recent studies fo-

cus on AU recognition from partially AU annotated sam-

ples. For example, Song et al. [22] proposed to encode

sparsity and co-occurrent structure of facial action units

via compressed sensing and group-wise sparsity inducing

priors through a novel Bayesian graphical model. Their

method can handle partially observed labels by marginal-

izing over the unobserved values as a part of the inference

procedure. Wu et al. [27] and Li et al. [15] proposed a

multi-label learning method (MLML) that explicitly han-

dles missing labels by enforcing consistency between the

predicted labels and the provided labels as well as the local

smoothness among the label assignments. Wang et al. [25]

proposed a Bayesian network model to capture both the de-

pendencies among AUs and the dependencies between AUs

and expressions, and adopted Structure Expectation Maxi-

mization (SEM) to learn the structure and parameters of the

Bayesian network when AU labels are missing. Although

AU labels can be partially missing in these works, they still

require AU labels to learn AU classifiers.

In this paper, we propose a novel weakly supervised

AU recognition method from expression-annotated facial

images without any AU labels through adversarial train-

ing. Specifically, we simultaneously train two models: a

recognition model R that learns AU classifiers, and a dis-

criminative model D that estimates the probability that AU

labels generated from domain knowledge rather than the

recognized AU labels from R. The training procedure

for R is to maximize the probability of D making a mis-

take. By leveraging an adversarial mechanism, the distri-

bution of recognized AUs is closed to AU prior distribution

from domain knowledge. Furthermore, we extend the pro-

posed weakly supervised AU recognition method to semi-

supervised learning scenarios when partially AU-annotated

images are available. We conduct weakly supervised and

semi-supervised experiments on three benchmark databas-

es. The proposed method performs best in most scenarios,

demonstrating superiority over state-of-the-art works.

To the best of our knowledge, there is only one related

work that can handle AU recognition without AU annota-

tion but with expression labels. Ruiz et al. [21] proposed

Hidden-Task Learning (HTL) to learn both AU classifiers

from images and expression classifiers from AUs without

any AU annotations but with extra large-scale facial images

labeled with expressions by exploiting domain knowledge

about the relation between expressions and AUs. They al-

so extended HTL to Semi-Hidden Task Learning (SHTL)

when partial AU annotated samples are provided. Unlike

Ruiz et al.’s work, which requires both facial images with-

out any annotations and extra large-scale facial images la-

beled with expressions, our method learns AU classifier-

s from facial images with expression labels directly and

does not need large-scale expression-annotated facial im-

ages. Furthermore, since Ruiz et al.’s work learns both

AU classifiers and expression classifiers, the error caused

by expression classifiers may propagate to the AU clas-

sifiers. Therefore, we prefer to learn AU classifiers di-

rectly. Rather than exploiting expression-dependent do-

main knowledge only as Ruiz et al. did, we exploit both

expression-dependent and expression-independent domain

knowledge to weakly supervise the learning process of AU

classifiers from expression-annotated facial images via an

adversarial process.

2. Proposed Method
We propose a weakly supervised AU recognition

method from expression-annotated facial images and do-

main knowledge through adversarial training. First, we

summarize a large amount of domain knowledge about AU

relationships and sample pseudo AU data based on the sum-

marized domain knowledge. After that, we propose a novel

adversarial network for AU recognition, with the goal of

making the distribution of AU classifiers’ output converge

to the distribution of the pseudo AU data generated from do-

main knowledge. Specifically, the proposed AU recognition

adversary network consists of two models: a recognition

model R, which learns AU classifiers, and a discriminative

model D, which estimates the probability that AU labels

generated from domain knowledge rather than the recog-

nized AU labels from R. These two models are trained si-

multaneously through an adversarial process. The training

procedure for R is to maximize the probability of D making

a mistake, while the training procedure for D clearly distin-

guishes the pseudo AU data generated with domain knowl-

edge from the predicted AU labels of the recognition model.

By leveraging this adversarial mechanism, the distribution

of recognized AUs is closed to AU prior distribution from

domain knowledge after training. Furthermore, we extend

the proposed weakly supervised AU recognition to semi-

supervised learning scenarios when partially AU-annotated

images are available by adding a cross-entropy term for the

AU-annotated images.

2.1. Summary of Domain Knowledge
To generate pseudo AU data through sampling, we

need the expression-dependent and expression-independent

probability of AUs. The expression-independent proba-

bility is the joint probability of two AUs. Expression-

dependent probabilities can be subdivided into two kinds of

AU probabilities: the marginal probability of a single AU

and the joint probability of multiple AUs. If we generate

pseudo AU data based only on the marginal probability of

each single AU given an expression, it assumes that all AUs
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Table 1: Probabilities of AUs observed in expressions [4].

Expression Prototypical(and variant AUs)

Anger 4, 7, 24 [10(26%), 17(52%), 23(29%)]

Disgust 9, 10, 17 [4(31%), 24(26%)]

Fear 1, 4, 20, 25 [2(57%), 5(63%), 26(33%)]

Happiness 12, 25 [6(51%)]

Sadness 4, 15 [1(60%), 6(50%), 11(26%), 17(67%)]

Surprise 1, 2, 25, 26 [5(66%)]

pain 4(>50%),6(>50%),7(>50%),9(>50%),10(>50%),43(>50%)

Table 2: Expression-related AU combinations from EM-

FACS [7, 10].

Expression AU combinations

Anger 4+5, 4+7, 4+5+7, 17+24,23

Fear 1+2+4, 20

Disgust 9, 10(only)

Happiness 12, 6+12, 7+12

Sadness 1or1+4, 15, 6+15, 11+17, 11+15

Surprise 1+2+5(low), 1+2+26, 1+2+5(low)+26

Table 3: Expression-independent AU relations [6, 14].

coexistent mutually exclusive

AU1—AU2—AU5 AU12—AU15, AU12—AU17

AU4—AU7—AU9 AU2—AU6, AU2—AU7, AU2—AU9

AU15—AU17—AU24 AU15—AU25, AU17—AU25

AU23—AU24 AU23—AU25, AU24—AU25

are independent to each other given that expression. This is

unreasonable. Therefore, we need both types of expression-

dependent probabilities.

For expression-dependent AU relations, we first consid-

er the domain knowledge about the six basic expression-

s and AUs. For marginal probability of single AU given

expressions, we adopt the observations from [4], as shown

in Table 1. In Table 1, the percentage in parentheses fol-

lowing the AU is the marginal probability of a single AU

given the expressions. The expression-dependent marginal

probability of AUs which are not followed by parentheses is

larger than 70%. The expression-dependent marginal prob-

ability of AUs which are not listed is less than 20%. For

example, the fourth row of Table 1 means: P( AU12 | hap-

piness )≥ 70%, P( AU25 | happiness)≥ 70%, P( AU6 |
happiness)= 51% and P(AU4 | happiness)< 20%. These

probabilities can provide weak supervisory information for

classifiers’ training.

For joint probability of multiple AUs given expressions,

we adopt the domain knowledge from the Emotion Facial

Action Coding System (EMFACS) [7] as shown in Table 2.

Table 2 lists AU combinations for each expression. These

combinations are co-existent relations among AUs. For ex-

ample, though AU 6 and AU12 don’t correlate to each oth-

er according to facial anatomy, they almost always appear

simultaneously during happiness,i.e., P(AU6 |AU12, happi-

ness) is very large.

In addition to the domain knowledge about six basic ex-

pressions, we also have domain knowledge about pain ex-
pression. In 1992, Prkachin et al. [19] found that four ac-
tions, i.e. brow lowering (AU4), orbital tightening (AU6
and AU7), levator contraction(AU9 and AU10) and eye
closure(AU43), carry the bulk of information about pain.
Prkachin et al. [20] explicitly defined the Prkachin and
Solomon pain intensity(PSPI) as shown in Eq. 1:

PSPI = AU4 + (AU6orAU7) + (AU9orAU10) + AU43 (1)

Eq. 1 suggests that these six AUs play a significan-

t role in pain expression. So for pain frames, we think

the occurrence probability of each of these AUs should

be higher than 50%, as shown in Table 1, For example,

P(AU4|pain)>50%.

Expression-independent AU relations include both

co-existent and mutually exclusive relations. These

expression-independent AU probabilities are mainly caused

by muscular structure of human face. For example, inner
brow raiser (AU1) and outer brow raiser (AU2) are both

related to the muscle group Frontalis. Most people cannot

make a facial movement of AU1 without AU2, and vice ver-

sa. It means both P(AU2 |AU1) and P(AU1 |AU2) are very

large. This is a kind of co-existent relation. Lip Corner
Puller (AU12) rarely appears with Lip Corner Depressor
(AU15). The former is produced by the muscle group zy-
gomaticus major, and the latter is produced by the muscle

group depressor anguli oris. It means P(AU15 |AU12) and

P(AU12 |AU15) are very small. This is referred as a mu-

tually exclusive relation. These relations are caused by the

mechanism of muscles and are universal for all expression-

s. Therefore, they are referred as expression-independent

AU probabilities. Table 3 lists expression-independent AU

relations summarized from [6, 14]. Take the first row of Ta-

ble 3 for example, AU1 and AU2 are co-existent, AU12 and

AU25 are mutually exclusive.

2.2. Pseudo AU Label Generation

After summarizing domain knowledge including

expression-dependent and expression-independent AU

probabilities, we must translate the domain knowledge

into pseudo AU labels. We generate pseudo AU labels for

each expression, since expression annotations are available

during training. Table 1 provides expression-dependent AU

probabilities, therefore we sample first AU with P(AU1|
Expression) from Table 1. For the AUs with concrete

expression dependent AU probabilities, such as P(AU17

| anger)=0.52, we adopt their probabilities listed in Table

1 directly. For AUs whose expression dependent proba-

bilities larger than 0.70, such as P(AU4 |anger)≥ 70%,

we sample the probability parameter in [0.7, 1]. For AUs

whose expression dependent probabilities less than 0.20,

such as P(AU1 | anger)< 20%, we sample the probability

parameter in [0, 0.2]. The process for the rest of the AUs

depends on whether the AU has relation with existing
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AUs. If not, we still generate pseudo AU labels according

to its expression-dependent marginal probability listed in

Table 1. If there is a relation, we generate pseudo AU

labels according to the coexistence relations and mutual

exclusive relations with existed AUs, as listed in Table 2

and Table 3 respectively. For expression-dependent and

expression-independent AU probabilities listed in Table 2

and Table 3, we sample the probability parameter in [0.7, 1]
with co-existence and [0, 0.2] with mutual exclusion,

following the same criterion of Table 1. The detailed

sampling algorithm is shown in Algorithm 1.

2.3. AU Recognition Adversary Network (RAN)
We propose a novel adversary network for AU recog-

nition inspired by the generative adversarial network

(GAN) [9]. Given a training set X = {(Xi,Ei)}mi=1,

where Xi ∈ R
d represents the sample features and Ei ∈

{1, 2, ..., P} is the expression label. Our goal is to train AU

classifiers from expression labels and domain knowledge

without any AU labels. Therefore, the object is to make

sure that the output of AU classifiers are consistent with our

domain knowledge. The distribution of output PYc
should

converge to the distribution of pseudo AU data PYs
.

The framework of the proposed AU recognition adver-

sary network is shown in Figure 1. Instead of including a

generator G like GAN, the proposed RAN includes a recog-

nition model R, as shown in Part 1 of Figure 1. The recog-

nition model R is an AU classifier to recognize AUs from

facial images. The recognized AU labels are the adversari-

al samples and are regarded as “fake”. As shown in Part 2

of Figure 1, the pseudo AU data generated through domain

knowledge are regarded as “real”. The input of the discrimi-

Algorithm 1 The sampling of pseudo AU data.

Input: The domain knowledge about expressions and AUs

listed in Tables 1, 2 and 3, and sampling size N .

Output: The pseudo AU samples.

for expression Ep (p = 1, 2, ..., P ) do
repeat

generate sample Yi = {y1i , y2i , ..., yLi }.
sample first AU with P (AU1|E) from Table 1.

for j-th(j = 2, 3, ..., L) component yji do
if any AUs related to AUj is already generated

and this relation is from Table 2 then
sample AUj with P (AUj |AUs,E).

else if this relation is from Table 3 then
sample AUj with P (AUj |AUs).

else
sample AUj with a P (AUj |E) from Table 1.

end if
end for

until we have already got N samples.

end for

�

��

��

�

�

�

��

��

��

���

�	
��
�

����

����


��	
��

��	
�


��	
��

Figure 1: The framework of RAN. In Part 1, the facial fea-

ture X is inputted into recognizer R and get the “fake” AU

vector, the “real” AU data generated in section 2.2 are in

Part 2. In part 3, P discriminators are trained, “real” or

”fake” AU data are inputted to corresponding discriminator

with the same expression label. See text for details.

nator D includes both the expression label and the AU label-

s (either pseudo AU labels or recognized AU labels ). The

expression label is used as a switch to select the correspond-

ing Di. Without loss of generality, assume we consider P
expression categories in this paper. Therefore, as shown

in Part 3 of Figure 1, P discriminators, {D1, D2, ..., DP }
are used to distinguish “fake” from “real” AU labels for P
expressions respectively, since the AU distributions are de-

pendent on expression labels. The objective is given as:

min
R

max
D1,D2,...,DP

P∑

E=1

[EY ∼PYs (Y |E)[logDE(Y )]+

EX∼PX (X|E)[log(1−DE(R(X)))]],
(2)

where PX(X|E) represents the distribution of facial im-

ages with expression label E. Since we train D and R al-

ternately, we define objective LD for P discriminators and

LR for AU classifiers as Eqs. 3 and 4. In practice, it’s better

for R to maximize log(D(R(X))) instead of minimizing

log(1−D(R(X))) [8]. The training process is described as

Algorithm 2.

LD = min
D1,D2,...,DP

−
P∑

E=1

[EY ∼PYs
(Y |E)[logDE(Y )]+

EX∼PX (X|E)[log(1−DE(R(X)))]],

(3)

LR = min
R
−

P∑
E=1

EX∼PX (X|E)[logDE(R(X))]. (4)

Any classifier can be used in our RAN model. For the
discriminator, we use a three-layer feedforward net, and Re-
Lu for the hidden layer and sigmoid for the output layer. For
the recognition model, we use a linear function as follows:

R(X) = fθ(X) = σ(WX + b), (5)

where σ is the sigmoid function and θ = {W, b} are pa-

rameters to be trained. For the optimization method, any

gradient-based learning rule could be used to update param-

eters. We use the ADAM [11] algorithm in this paper.

2.3.1 Extension to Semi-Supervised Learning
We extend the proposed weakly supervised AU recognition

method to semi-supervised learning when partial AU anno-
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tations are available. Let XS = {(Xi, Yi)}ni=1(n ≤ m)
is a subset of X that is annotated with AU labels, where

Yi ∈ {0, 1}L and L is the number of AUs. For examples

with AU labels, a cross-entropy term is incorporated into

the objectives from Eq. 4. The cross-entropy loss for data

pair (Xi, Yi) is given as:

LCE(Xi, Yi) = −
[
Y

T
i logR(Xi) + (1− Yi)

T
log[1− R(Xi)]

]
. (6)

Then, the updated objective LS
R for classifier R in semi-

supervised RAN are given as Eq. 7, where α ∈ [0, 1] is a

trade-off between two terms. The objective of discriminator

D has not changed: LS
D = LD.

LS
R = min

R
(1− α)E(X,Y )∼XSLCE(X,Y )−

α

P∑

E=1

EX∼PX (X|E)[logDE(R(X))]
(7)

3. Experiments
3.1. Experimental Conditions

In our experiments, one posed and two spontaneous

databases are used: the Extended Cohn-Kanade database

(CK+) [16], the MMI database [18], and the UNBC-

McMaster Shoulder Pain Expression Archive database [17].

The CK+ database contains 593 sequences from 123

subjects performing posed expressions. Among them, we

use 309 sequences of 106 subjects that are annotated with

six basic expressions and AUs; 12 AUs (1, 2, 4, 5, 6, 7, 9,

12, 17, 23, 24, 25), whose frequency of occurrence is larg-

er than 10 % are considered. The MMI database consists

Algorithm 2 Adversarial weakly supervised AU learning.

Input: The training images with expression labels, pseudo

AU data, max number of training step K, update number

of D per step (TD), update number of R per step (TR).
Output: The AU recognizer R.

Initialize parameters of classifier and six discriminators.

for k = 1, 2, ...,K do
for t = 1, ..., TD do

Sample minibatch of m samples (x1,Ex1),
(x2,Ex2), ..., (xm,Exm) from training images.

Sample minibatch of m samples (y1,Ey1),
(y2,Ey2), ..., (ym,Eym) from pseudo AU data.

Update six discriminators by descending its gradi-

ent:

∇θd
− 1

m

m∑
i=1

[logDE
yi

(y
i
) + log(1−DE

xi
(R(x

i
)))]

end for
for t = 1, ..., TR do

Sample minibatch of m samples (x1,Ex1),
(x2,Ex2), ..., (xm,Exm) from training images.

Update the classifier by descending its gradient:

∇θr −
1

m

m∑
i=1

logDE
xi

(R(x
i
))

end for
end for

of 2900 videos and images from 75 subjects. As with the

CK+ database, the sequences annotated with six basic ex-

pressions and AUs are chosen, and we obtain 171 sequences

from 27 subjects. 13 AUs (1, 2, 4, 5, 6, 7, 9, 10, 12, 17,

23, 25, 26) with occurrence frequency larger than 10% are

considered in our work. The UNBC database consists of

200 video recordings of 25 different patients suffering from

shoulder pain. Each frame is code with PSPI. In this paper,

we define the frames with PSPI>4 as “pain” and frames

with PSPI=0 as “no pain”. From 30 sequences of 17 sub-

jects where exist pain frames, we select all pain and no pain

frames, 7319 frames in total. Six AUs (4, 6, 7, 9, 10, 43)

associated with pain are considered.

Facial feature points are used for feature. On the CK+

database and the UNBC database, the feature points are pro-

vided by the database constructors. On the MMI database,

the feature points are extracted with IntraFace [3]. All fea-

ture points are normalized, so that the eye centers fall on

the given positions for all images based on affine transfor-

mation. We report F1 score as the performance measure.

We conduct experiments of both AU recognition from

facial images with expression labels only (i.e., weakly

supervised learning) and AU recognition from facial im-

ages with expression labels and partial AU labels (i.e.,

semi-supervised learning). For both weakly supervised

learning and semi-supervised learning scenarios, we con-

duct within-database experiments via five-fold subject-

independent cross-validation and cross-database experi-

ments. For weakly supervised learning scenarios,we com-

pare our work with state-of-the-art works, i.e., HTL [21],

the only work which recognizes AUs without AU-labeled

images. For the MMI database, we conduct AU recog-

nition with the implementation of the HTL method, since

Ruiz et al. [21] does not provide experimental results on the

MMI database. For other databases, we directly compare

our results to the experimental results listed in [21]. For

semi-supervised learning scenarios, we randomly miss AU

labels with certain probabilities, i.e., 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, and 90%, and conduct AU recogni-

tion experiments for each missing rate five times. We com-

pare our work with state-of-the-art works, including BGC-

S [22], MLML [27], BN [25] and SHTL [21]. These works

can recognize AUs from partially AU-labeled images. S-

ince the experimental conditions of these works are differ-

ent from ours, we re-conduct the experiments using the pro-

vided code. Specifically, Song et al. [22] only provided the

result under missing 50% labels, not nine missing rates; Wu

et al. [27] used four missing rates, (i.e., 20%, 40%, 60% and

80%) and adopted different performance metrics; Wang et
al. [25] conducted semi-supervised experiments by missing

one certain AU with a specific proportion (unlike our ex-

periment, which misses all AUs of one image), and Ruiz et
al. [21] didn’t provide the results of nine missing rates ei-

2192

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on September 17,2020 at 02:22:58 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2: Evaluation of Adversarial Learning. The absolute

difference between the distribution of pseudo AU labels and

the distribution of recognized AU labels from R model.

ther. Furthermore, none of them conducted experiments on

the MMI database.

3.2. Evaluation of Adversarial Learning
To evaluate the adversarial learning process, we compare

the distribution of pseudo AU labels generated from do-

main knowledge and the distribution of recognized AU la-

bels from R model. Take experiments on the CK+ database

for example, Figure 2 illustrates the absolute difference be-

tween the distribution of 12 pseudo AUs generated from

domain knowledge and the distribution of recognized AU

labels from R model for the training set when the pro-

posed RAN reaches convergence. From Figure 2, we can

find that the differences are very small, ranging from 0.04

to 0.26. This demonstrates that the adversarial learning

process successfully makes the distribution of recognized

AU labels close to the distribution of pseudo AU labels.

Therefore, the proposed RAN effectively leverages domain

knowledge to provide weak supervision for AU recognition

from expression-annotated facial images. It leads to supe-

rior performance of the proposed method to state of the art

work in the following sections.

3.3. Weakly Supervised AU Recognition
The within-database experimental results are illustrated

in Table 4. From Table 4, we find that RAN outperforms

HTL on all three databases, with a higher average F1 s-

core and higher F1 scores for most AUs. Specifically, on

the CK+ databases, the average F1 score of common AUs

of RAN is 0.7691, achieving a 22.8% improvement over

HTL. For specific AUs, the F1 scores of RAN are higher

than HTL on 7 out of 10 AUs. On AU1, AU2 and AU9,

this improvement is more than 50%. On the MMI database,

the average F1 score of RAN is 0.5206, achieving a 20.8%

improvement over HTL. For specific AUs, RAN achieves

better performance on 10 out of 13 AUs; on AU1, AU4, and

AU17, the improvement is more than 50%. On the UNBC

database, the average F1 score of common AUs of RAN

is 0.3365, achieving more than double the performance of

HTL. For all specific AUs except AU 10, the F1 score

of RAN are higher than HTL. The results above strongly

demonstrate that the proposed method not only works well

on posed facial expressions (in the CK+ database), but al-

so works well on spontaneous facial expression. Especial-

ly the better performance on the UNBC database, which is

Table 4: Within-database experiment results (F1) of weakly

supervised AU recognition.

AU
CK+ MMI UNBC

HTL RAN HTL RAN HTL RAN

1 0.6190 0.9365 0.3857 0.6754 - -

2 0.4510 0.8987 0.6000 0.5967 - -

4 0.8160 0.7414 0.3407 0.6097 0.0830 0.4416
5 0.7480 0.7989 0.5882 0.7092 - -

6 0.5870 0.5337 0.3922 0.3430 0.2950 0.5019
7 0.3270 0.4465 0.3220 0.4258 0.1720 0.3632
9 0.4870 0.8861 0.3495 0.4088 0.0530 0.3068

10 - - 0.4118 0.2355 0.0850 0.0689

12 0.8520 0.8292 0.5439 0.6881 0.4260 -

17 0.6750 0.6789 0.2167 0.5110 - -

23 - 0.4122 0.2178 0.2239 - -

24 - 0.4879 - - - -

25 0.7010 0.9369 0.6631 0.7025 0.1240 -

26 - - 0.5714 0.6379 0.1500 -

43 - - - - - 0.5754

Avg. 0.6263 0.7156 0.4310 0.5206 0.1735 0.3763
Avg. of com 0.6263 0.7691 0.4310 0.5206 0.1367 0.3365

a database of non-basic emotion setting, suggests that our

method will be not limited to basic emotion settings. As

long as there exists domain knowledge about the considered

expression, the proposed method can achieve good results.

Unlike HTL, which uses expression-dependent AU re-

lations, the proposed RAN employs both expression-

dependent and expression-independent AU relations, like

the expression-independent joint probability of two AUs

(e.g., AU1/AU5 and AU7/AU9). These expression-

independent relations provide more structure information of

AUs, and result in better performance. Furthermore, HTL

trains one classifier from AU to expression and another clas-

sifier from feature to AU separately. Any error caused by

expression classifiers may propagate to the AU classifiers.

While the proposed RAN learns classifiers and discrimina-

tors simultaneously through adversarial process, thus avoid-

ing error propagation. As discussed in Section 2.3, the

adversarial learning process successfully approximates the

distribution of recognized AU labels so that it is close to the

distribution of pseudo AUs generated from domain knowl-

edge, and effectively leverages domain knowledge to pro-

vide weak supervision for AU recognition from expression-

annotated facial images. This leads to better performance.

We compare our method to HTL for cross-database ex-

periments. The results are listed in Table 5. Our method

outperforms HTL in first four experiments, i.e., training on

the CK+ database and testing on the MMI database, training

on the CK+ database and testing on the UNBC database,

training on the MMI database and testing on the CK+

database, and training on the MMI database and testing on

the UNBC database. Our method performs especially well

on experiments that test on the UNBC database. These re-

sults demonstrate the proposed method successfully lever-

ages more complete domain knowledge for better perfor-

mance. For experiments that train on the UNBC database
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Table 5: Cross-database experiment results (F1) of weakly supervised AU recognition.

AU
From CK+ to MMI From CK+ to UNBC From MMI to CK+ From MMI to UNBC From UNBC to CK+ From UNBC to MMI

SVM HTL RAN SVM HTL RAN SVM HTL RAN SVM HTL RAN SVM HTL RAN SVM HTL RAN

1 0.6463 0.3857 0.5455 - - - 0.6215 0.6190 0.7459 - - - - - - - - -

2 0.5546 0.6000 0.6748 - - - 0.6638 0.4510 0.7845 - - - - - - - - -

4 0.3857 0.3407 0.6395 0.1900 0.0830 0.2572 0.5799 0.8160 0.5959 0.0987 0.0830 0.1647 0.2412 0.8160 0.4470 0.2804 0.3407 0.2927

5 0.4355 0.5882 0.6316 - - - 0.7393 0.7480 0.6279 - - - - - - - - -

6 0.2811 0.3922 0.3485 0.2919 0.2950 0.4526 0.5244 0.5870 0.5240 0.2627 0.2950 0.2899 0.3438 0.5870 0.4066 0.2432 0.3922 0.2727

7 0.2373 0.3220 0.4430 0.2405 0.1720 0.4311 0.4397 0.3270 0.4504 0.1041 0.1720 0.0123 0.1522 0.3270 0.4036 0.2198 0.3220 0.2833

9 0.4127 0.3495 0.3288 0.3453 0.0530 0.0381 0.3907 0.4870 0.4298 0.5342 0.0530 0.4543 0.2899 0.4870 0.1714 0.4308 0.3495 0.3800

10 - - - - - - - - - 0.0534 0.0850 0.3212 - - - 0.1111 0.4118 0.2376

12 0.4156 0.5439 0.5354 - - - 0.4434 0.8520 0.7634 - - - - - - - - -

17 0.1765 0.2167 0.4478 - - - 0.3636 0.6750 0.6543 - - - - - - - - -

23 0.0702 0.2178 0.2203 - - - 0.2206 - 0.2037 - - - - - - - - -

25 0.7984 0.6631 0.7577 - - - 0.6870 0.7010 0.8421 - - - - - - - - -

Avg. of com 0.4014 0.4200 0.5066 0.2669 0.1508 0.2948 0.5453 0.6263 0.6418 0.2106 0.1376 0.2482 0.2567 0.5543 0.3572 0.2571 0.3632 0.2933

Figure 3: Within-database experiments (F1)of semi-supervised AU recognition. Left: results on the CK+ database, Middle:

results on the MMI database, Right: results on the UNBC database.

Figure 4: Cross-database experiment results (F1) of semi-

supervised AU recognition.

and test on the CK+ or MMI database, HTL achieves bet-

ter performance than RAN. This is because HTL trains on

a large facial image database, which has the same emotion

setting as the testing set. While the proposed method only

trains on the UNBC database, which is a database of pain e-

motion setting. Therefore, when testing on the databases of

basic emotion setting like the CK+ and MMI databases, the

performance of the proposed method is worse than HTL.

3.4. Semi-Supervised AU Recognition
The within-database experimental results of semi-

supervised scenarios are listed in Figure 3. From Figure 3,

we find that on all three databases, the performance of the

proposed method decreases as the missing rate increases.

This is expected, since more AU labels provide more accu-

rate information for AU classifiers.

Compared with four state-of-the-art semi-supervised AU

recognition methods, we find that RAN performs best in

most scenarios, which demonstrates the superiority of the

proposed method in handling missing AUs for AU recogni-

tion. MLML handles missing labels by leveraging the la-

bel consistency and label smoothness, but the smoothness

between labels isn’t always correct. BGCS naturally han-

dles partially observed labels by marginalizing over the un-

observed values as a part of the inference procedure. BN

adopts expression labels to assist in AU classifier training

and complements the missing AU by capturing the relations

between facial expression and AUs. All methods mentioned

above handle missing AU labels through AU relations or

AU-expression relations learned from partially available

ground-truth labels, while the proposed method learns AU

relations from pseudo data generated from summarized do-

main knowledge through adversarial training. The AU re-

lations coded in domain knowledge are more general than

those embedded in ground truth AU labels, and lead to bet-

ter performance. SHTL leverages the expression-dependent

probability of a single AU summarized from domain knowl-

edge to handle missing labels. However, SHTL only consid-

ers single AU probability given expression, while the pro-

posed method considers both expression-dependent AU re-

lations and expression-independent AU relations. The more

complete AU relations employed in the proposed method

result in better performance on AU recognition.

For both weakly supervised and semi-supervised exper-

iments, the performances on the CK+ database are better

than the performances on the MMI database. The CK+

database is a posed expression database, while the MMI

database is a spontaneous expression database. It demon-

strates that it is more challenging to recognize spontaneous

expressions than posed expressions. The performances on
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Table 6: Comparison to state-of-the-art supervised methods with fully AU labeled data on three databases.
Database Method AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU10 AU12 AU17 AU23 AU24 AU25 AU26 AU 43 Avg.

CK+ MC-LVM [5] 0.8249 0.8696 0.7916 0.7347 0.7280 0.5752 0.8794 - 0.8760 0.8676 0.6727 0.5102 0.9181 - - 0.7707
STM [2] 0.6220 0.7620 0.6910 - 0.7960 0.7910 - - 0.7720 0.7430 - - - - - 0.7396

HRBM [26] 0.8686 0.8547 0.7258 0.7204 0.6147 0.5447 0.8591 - 0.7265 0.8166 0.5664 0.3529 0.9257 - - 0.7147

RAN 0.9365 0.8987 0.7414 0.7989 0.5337 0.4465 0.8861 - 0.8292 0.6789 0.4122 0.4879 0.9369 - - 0.7156

MMI SVM-HMM [24] 0.5850 0.7300 0.6150 0.5610 0.6930 0.3900 0.8870 0.7900 0.7730 - - - 0.7760 0.5830 - 0.6712
FFD [12] 0.7270 0.7270 0.6930 0.4850 0.7370 0.3640 0.6920 0.7590 0.6220 0.7650 0.4120 - 0.8470 0.8180 - 0.6652

RAN 0.6754 0.5967 0.6097 0.7092 0.3430 0.4258 0.4088 0.2355 0.6881 0.5110 0.2239 - 0.7025 0.6379 - 0.5206

UNBC MC-LVM [5] - - 0.4720 - 0.9775 0.6788 0.3713 0.5823 - - - - - - 0.7251 0.6345
HRBM [26] - - 0.4720 - 0.9393 0.6367 0.2980 0.5239 - - - - - - 0.6954 0.5942

lp-MTMKL [29] - - 0.3769 - 0.9775 0.7008 0.3328 0.4179 - - - - - - 0.4403 0.5410

RAN - - 0.4416 - 0.5019 0.3632 0.3068 0.0689 - - - - - - 0.5754 0.3763

the CK+ and the MMI database are better than perfor-

mances on the UNBC database. Both the CK+ database

and the MMI database consist of facial images with six ba-

sic expressions, while the UNBC database is a database of

pain expression. The relations between AUs and six basic

expressions have been studied more thoroughly than the re-

lations between AUs and pain expression, so the reviewed

domain knowledge of six basic expressions provides more

detailed and concrete expression dependent AU probabili-

ties than the reviewed domain knowledge of pain expres-

sion. This clearer domain knowledge provides better super-

vision for AU recognition.

For cross-database experiments, we compare our method

with SHTL, and the results are listed in Figure 4. As in

the weakly supervised scenarios, our method achieves bet-

ter performances than SHTL in first four experiments. This

implies that our method is more generalizable that SHTL.

However, in the last two experiments (which train in the

UNBC database), the performances of RAN are worse than

SHTL. In addition to the labels from the UNBC database,

SHTL trains on another large facial image database that has

the same emotion setting as the testing set (i.e. basic emo-

tions setting). While the proposed method only trains on the

UNBC database, which is a pain expression database, and

has a different emotion setting with testing set.

3.5. Comparison to State-of-the-art Supervised
Methods with Fully AU-Labeled Data

Our weakly supervised learning method is also com-

pared with supervised methods with fully AU-labeled data.

For within-database experiments, on the CK+ database, we

compare RAN to MC-LVM [5], STM [2] and HRBM [26],

the results of HRBM are collected from [5]. On the M-

MI database, we compare RAN with SVM-HMM [24] and

FFD [12]. On the UNBC database, we compare RAN with

MC-LVM [5], HRBM [26] and lp-MTMKL [29]. We use

the results of HRBM and lp-MTMKL in [5]. The compar-

isons on the three database are shown in Table 6.

From Table 6, we find our method performs worse than

other supervised methods in most cases. This is reasonable,

because we train with expression labels only while other su-

pervised methods train with fully AU-labeled data. Yet even

so, the results of our method in some cases are comparable

or even better. Specifically, on the CK+ database, the aver-

age F1 score of RAN is 0.7156, which is 7.15% lower than

the best method (MC-LVM), but is 0.13% higher than HRB-

M, and RAN has the best results on AU1, AU2, AU5, AU9

and AU25. On the MMI database, the average F1 score of

RAN is 22.44% lower than the best method (SVM-HMM),

but the performances on AU5 and AU7 are better than oth-

er methods. On the UNBC database, the proposed method

has close results to compared methods on AU4, AU9 and

AU43. These results demonstrate that even though we train

AU classifiers without any AU labels, we achieve compara-

ble or even better results than supervised methods with fully

AU-labeled data, demonstrating the effectiveness of the pro-

posed method which leverages domain knowledge through

an adversarial mechanism.

For cross-database experiments, we compare the pro-

posed RAN with SVM, and the results are listed in Table 5.

From this table, we find that our method outperforms SVM

in all scenarios, although SVM is a fully supervised method.

Fully supervised learning from ground truth labels limits the

generalization ability of SVM due to database bias. While

the proposed method uses domain knowledge, which is not

dependent on databases.

4. Conclusion
We propose a novel weakly supervised AU recognition

method to learn AU classifiers with only expression labels.

Specifically, we notice that there exist domain knowledge

about expressions and AUs that can be represented as pri-

or probabilities. We generate pseudo AU data for each ex-

pression; for AU classifiers’ training, we propose an RAN

model, which consists of a recognition model and a discrim-

ination mode trained simultaneously by leveraging an ad-

versarial process, to make the distribution of the recognized

AU close to the distribution of the pseudo AU data. Further-

more, we extend the proposed method to semi-supervised

learning with partially AU-annotated images. Both weak-

ly supervised and semi-supervised experiments demonstrate

the effectiveness of the proposed method.
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