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Abstract—Given the emerging concerns over app privacy-related risks, major app distribution providers (e.g., Microsoft) have been

exploring approaches to help end users to make informed decision before installation. This is different from existing approaches of

simply trusting users to make the right decision. We build on the direction of risk rating as the way to communicate app-specific privacy

risks to end users. To this end, we propose to use sensitivity analysis to infer whether an app requests sensitive on-device resources/

data that are not required for its expected functionality. Our system, Privet, addresses challenges in efficiently achieving test coverage

and automated privacy risk assessment. Finally, we evaluate Privet with 1,000 Android apps released in the wild.

Index Terms—Mobile applications, sensitivity analysis, automated testing, privacy
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1 INTRODUCTION

MOBILE devices hold a lot of personal data, but many
app makers are not completely transparent on their

data collection practice. As a result, there have been broad
concerns over privacy risks from unjustified access to sensi-
tive resources (or data) on mobile devices [1], which vary
from user location traces being uploaded unexpectedly [2]
to health apps transmitting more data than necessary [3].
Privacy risks arise when an app unnecessarily requests sensi-
tive data that do not contribute to its expected functionality.
For instance, it is acceptable for maps to request for geo-
locations, but such requests might pose a privacy risk in the
case of presidential campaign apps [4].

Interestingly, the public tends to put faith on the mobile
platform to preserve privacy. One mechanism is to display
warning before app installation to inform users of permis-
sions required by an app. However, a survey [5] of 308
Android users and a laboratory study of 25 Android
users found that only 17 percent paid attention and only
3 percent demonstrated full comprehension of such warn-
ings. The mobile platform can allow users to configure
per-app privacy settings, e.g., ON/OFF switches for indi-
vidual resource categories. The academic community has
extended this manual resource control with the flexibility
of fabricating returned data [6], [7], [8]. The downside is
that these defense mechanisms trust end users to properly
configure privacy settings, especially that mobile users

might not have visibility into the app nor the necessary
background.

Another popular research direction is flow-sensitive taint
analysis [9], [10], [11], which identifies all possible data
flows from sensitive on-device sources to sinks in real time.
However, such tools cannot determine whether a data flow
is really necessary for an app to function properly, and man-
ually inspecting lists of data flows can have a high burden.
Furthermore, several efforts [12], [13] try to statically learn
feature values of benign and malicious apps, but their clas-
sification precision relies on the feature set and app catego-
ries pre-defined. If the feature set does not significantly
differentiate between malicious and benign apps, it can pro-
duce many false positives.

There are efforts using crowdsourcing to collect expert
advices on an app’s privacy risks [14], [15]. We believe that
this approach can complement the industry’s recent initia-
tive of using risk rating as a way to improve the existing
warning mechanism. Specifically, in addition to simply
informing users what permissions an app requests, risk rat-
ing tries to convey the need with a number. However, most
crowdsourcing approaches require the app to first be
released in the wild, and a large group of experts who are
instructed to fully explore the app.

We argue that the problem of risk rating can be reformu-
lated as the proven sensitivity analysis [16], or an iterative
process that substitutes alternative input parameter values
to measure changes in output values. In the case of mobile
apps, we want to determine if app outputs (i.e., user-
perceived app functionality) change with different app
inputs (i.e., privacy settings for an on-device resource/
data). Such cases would suggest the app functionality has a
high probability of dependence on the corresponding
resource, and hence a lower risk rating. We note that this
article focuses on sensitive on-device data, as full analysis
on the closed app backend is typically not possible.

Privet is a cloud-based system that implements sensi-
tivity analysis to assess an app’s privacy risks. The system
follows an explore-log-analysis pipeline. Privet first
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systematically automates the app while applying differ-
ent privacy settings, e.g., rejecting or manipulating
resource requests. During each test run, it logs app per-
formance and behavioral metrics. Then, Privet performs
sensitivity analysis between app inputs (i.e., privacy set-
tings) and app outputs (i.e., user-perceived app function-
ality). This analysis decides whether there is a user-
perceived equivalence between a particular privacy set-
ting and no privacy restriction. Privet realizes the follow-
ing design principles.

First, in contrast to static analysis, dynamic analysis
allows Privet to observe user-perceived app functionality
such as visual and audible feedback. While one common
dynamic analysis strategy is random UI exploration [17],
the large testing space (due to the wide spectrum of pri-
vacy settings) renders it inefficient in achieving testing
coverage. The problem exacerbates, as we consider the
typical time budget allocated for testing each app is lim-
ited to minutes. On the other hand, a pure static analysis
approach does not consider code blocks dynamically
loaded from remote servers or rendered at run time. To
this end, Privet runs Targeted App Automation (TARA), a
novel approach of leveraging code mining (i.e., static
code analysis) to infer automation UI paths potentially
affected by adjusting privacy settings, before exercising
app automation.

Second, while many related efforts rely on human to
identify privacy-violating apps from raw logs [9], [10], this
approach does not scale well at the size of app stores.
Instead, Privet assesses app privacy risks by applying sensi-
tivity analysis to multi-dimensional user-perceivable fea-
tures of app functionality. Specifically, if user interaction
feedback does not change with the value of a sensitive data,
the app functionality most likely does not depend on that
data. Previous efforts have applied similar observations to
other privacy problems [7]. To this end, Privet addresses
challenges in comparing visual and audible feedback, and
incorporates SVM-based classification model for assigning a
privacy risk rating.

This article makes following contributions. We present a
novel concept of applying sensitivity analysis to assess an
app’s privacy risks, by considering whether a requested
sensitive resource would contribute to any user-perceivable
app features. Then, we systematically implemented this
concept as Privet, and we evaluated with top 1,000 Android
apps (from Google Play) over 10 categories of sensitive
data. We found that more than 48.7 percent of apps can
have at least one type of resource requests blocked or
manipulated, without impacting user perceptions. For
example, the lack of home addresses from the address book
does not prevent most social networking from recommend-
ing friends. Moreover, the system scalability is practical for
real-world testing-compared to the standard practice of ran-
dom automation, targeted app automation can achieve the
same testing coverage, with an average of 85.3 percent less
testing time. Finally, the automated assessment can achieve
a classification accuracy of 93.4 percent, as evaluated against
human labels.

2 BACKGROUND AND MOTIVATIONS

This section motivates gaps that existing solutions cannot
adaquately fill, and reformulates them into concerns that
Privet addresses.

2.1 Automated Testing of Mobile Apps
The community has invested efforts in detecting and pro-
tecting users from privacy risks. Many efforts rely on
dynamic analysis [10], [18] with the advantage of catching
app execution contexts, and one popular realization is the
“UI monkey”. This section first introduces Android app UI
controls, and then discusses the test space explosion prob-
lem faced by dynamic analysis.

Android App UI Elements.Generally, an Activity provides a
screen (c.f. Fig. 1) with which users can interact. Transitions
from one Activity to another are through sending OS the
Android inter-component communication (ICC)message. An
Activity consists of layouts, which are built using a hierarchy
of View (i.e., UI elements) and ViewGroup (i.e., layouts)
objects. UI elements can be added in the following two ways.
First, Android provides an XML vocabulary for developers to
define the UI in an XML file. Second, developers can declare
UI elements in the app code. The former is more popular, as it
has less overhead in creating layouts for different screen sizes.

Not all UI elements are click-interactive (or invokable), as
they are used to display texts, pictures, or even gestures. For
invokable UI elements, there is typically a handler associ-
ated to handle any user invocation. For example, a Button
invokes the OnClick event handler, and a CheckBox
invokes the OnChecked event handler. Developers can add
event handlers in either XML (e.g., android:onClick

attribute) or run-time code (e.g., setOnClickListener).
Concern #1: Handling Test Space Explosion. An invokable

UI element can trigger its event handler to execute a
sequence of system APIs and functions, which may request
and consume sensitive data or resources. In our case of
assessing app privacy risks, the ideal outcome is for the test-
ing tool to invoke all UI elements that would contribute to
sensitive data flows.

App UI automation can be described as an exploratory
process. A black-box implementation without any knowl-
edge of the app’s inner working would simply perform ran-
dom UI clicks, with the hope to achieve code coverage.
However, this approach has been shown to be ineffi-
cient [19]. Fortunately, test space explosion can be
addressed by leveraging one observation-Fig. 1 shows two
UI pages of a popular English grammar learning app. And,
while there are multiple UI elements on the Page 1 (home
page), some UI elements do not trigger sensitive resource
requests, e.g., the three cross-marked UI elements on
Page 1. Exposing such information can guide app automa-
tion and minimize any unnecessary UI exploration.

Fig. 1. To address the test space explosion, app automation should
invoke only UI elements that would contribute to any sensitive data flows.
In the figure, check-marked UI elements access the sensitive data sink,
network. And, cross-marked UI elements do not call any sensitive sys-
tem APIs.
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2.2 Quantifying and Measuring App Behavior
While time-series resource utilization (e.g., CPU and mem-
ory) is popular [17], [20], [21], theymight not reveal sufficient
insights for app privacy risks. For assessing app privacy
risks, we argue that the user interaction feedback from the
app should be the metric. This feedback can be visual (e.g.,
displayed contents) or audible (e.g., audio). Under sensitive
analysis, if this feedback does not change with the value of a
particular sensitive data, the app functionality unlikely
depends on that data. Previous efforts have applied similar
observations to other privacy problems [7].

Concern #2: Detecting App Behavioral Changes. Detecting
changes is relatively trivial for audible feedback, as inputs
to audible APIs are typically file-based-changes in audio file
attributes would signal changes in the auditory output.
Depending on whether the file is hosted remotely or locally,
attributes to compare include file name, size, date, and URL.

However, it is much more difficult to perform the same
assessment for visual feedback. There are cases where two
app pages look different while they can still be functionally
equivalent, and an example is news apps that periodically
refresh displayed contents. So, simply comparing attributes
and contents of UI elements would not be sufficient. Finally,
the impact of changing privacy settings might only be
observable until some time later. An example is where a
background service periodically downloads new contents
from servers. This suggests that selecting the right app
pages to examine is also important.

3 SYSTEM OVERVIEW

3.1 System Architecture
Fig. 2 is architectural view of the end-to-end system flow. It
shows two main system components to bring sensitivity
analysis to privacy risk assessment: App Hosts and Privacy
Assessment Engine. Conceptually, the former automates
the app and reformulates app behavior as inputs of sensitiv-
ity analysis, and the latter implements the comparison nec-
essary for sensitivity analysis.

Technically, Privet adopts the typical explore-log-
analysis app testing pipeline. Considering a social app that
recommends friends with the address book on device, the
exploration phase would efficiently automate this app mul-
tiple times, under a wide spectrum of privacy settings.
These privacy settings dictate what data address book APIs
can return. We note that app automation also allows us to
accurately capture the app presentation, without dealing
with language-specific analysis tools or contents loaded
dynamically from remote servers. At the same time, app
behavioral and performance metrics are logged. Both auto-
mation and logging are run inside App Hosts.

Next, app metrics logged during different test runs are
analyzed and compared, by Privacy Assessment Engine.

Intuitively, as mobile apps are mostly user-interactive, two
app pages should be functionally equivalent if the user-
perceivable visual and audible contents are virtually indistin-
guishable to users. In our previous example, if the social app
displays the same list of friend recommendations regardless
of the street address field, then it might unnecessarily request
for toomuch data. Finally, based on the likelihood that an app
poses privacy risks, Privet assigns a risk rating.

3.2 Challenges in Applying Sensitivity Analysis to
Privacy Risk Assessment

We now discuss challenges that App Hosts and Privacy
Assessment Engine need to address. These challenges arise
from concerns discussed in Section 2.

Completeness and Efficiency of Profiling App Behavior. While
app automation simplifies examining the rich interactions
between apps and the environment [17], [22], it is known to
be challenging to balance testing coverage and efficiency.
Specifically, rich interactions explode dimensions that can
be exercised. Even with only the dimension of UI interac-
tion, there can be hundreds of UI paths to consider.

In fact, the problem exacerbates when we consider that
app distribution providers tightly budget the time and
resources on approving each app. This restriction limits
what naive automation can catch, e.g., Google Bouncer.
Therefore, the commonly employed random exploration
can not well balance testing coverage and efficiency [19].
While test history can provide hints on certain automation
dimensions [20], it has limitations in other dimensions such
as UI, as apps (even those in the same category) can have
very different UI interactions.

App Host addresses this challenge, by using static analy-
sis techniques to learn about the app UI elements and their
API usage, and then leveraging this knowledge in the
dynamic context testing. In our setting, static analysis needs
to learn three types of information: (1) all UI elements’
attributes (e.g., ID, value, layout, activity, etc), (2) the event
handler of invokable UI elements, (3) the sensitive system
APIs called by the invoked event handler. Furthermore, it
needs to deal with additional problems, such as multiple UI
elements assigned with the same ID, a UI element being
added to multiple activities, and non-standard UI elements
defined by developers (Custom).

Automated Inference of App Functional Equivalence. Relying
on human inspectors to look through all app logs to deter-
mine any connections between sensitive data requests and
app functionality is not realistic nor scalable. Unfortunately,
this is not a trivial task to automate. For instance, a news
app can display contents based on the current locale and
time, so straight pixel-by-pixel UI comparisons can make
wrong judgment. In addition, looking at performance coun-
ters do not reveal UI information [17]. We address this chal-
lenge with Privacy Assessment Engine.

3.3 Privacy Risks Targeted by Privet
We formally define privacy risks as unnecessary requests of
sensitive resource/data that do not contribute to how end-
users would perceive core app functionality. As with all
security and privacy tools, there are scenarios out of scope
for Privet, as elaborated below.

First, many apps require backend servers for data proc-
essing, aggregation and storage. However, without the
server-side source code, it is difficult for any tool to fully

Fig. 2. System overview. (1) Exploring relevant parts of the app via tar-
geted automation. (2) Logging. (3) Analyzing logs for potential privacy
risks, which then help human inspectors to prioritize vetting tasks.
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validate privacy compliance. A nuanced example is when
the backend might claim to store only aggregated data (e.g.,
fitness data), but it unexpectedly shares raw data with the
third-party companies. Full server-side code disclosure is
necessary for validation. Second, apps can be written in
ways that are difficult to automate. For example, purely
gesture-based apps have no explicit UI element to discover
and invoke. Since games make up a large fraction of these
apps, Privet currently does not inspect games. Finally, some
data sources may be sensitive depending on their contexts.
An example is input text fields that can hold values from
passwords to random strings. Detecting such cases can ben-
efit from techniques (such as natural language processing)
that are out of scope for Privet.

4 APP HOST

This section describes App Hosts features. Individual App
Hosts are isolated environment that can be physical mobile
devices or emulators on the cloud. The isolation simplifies
setting up parallel and clean-slate tests.

4.1 Targeted App Automation
App automation can be driven by various workloads. While
being popular, the random automation workload has short-
comings in balancing testing coverage and efficiency met-
rics [19]. In contrast, Privet improves both metrics of app
automation (i.e., dynamic analysis) with inputs from code
mining (i.e., static code analysis). Two observations suggest
this approach is practical for mobile app testing-First, not
all code paths request sensitive data. Second, the majority of
mobile app packages (e.g., Android Java-based apps, Win-
dows managed code) can be decompiled.

Generating App-Specific Automation Models. For Privet, app
automation workload models are graph representations
combining control, data, and UI flows. The widely known
control flow graph (CFG) and data flow graph (DFG) do not
have the necessary UI information. Instead, Privet builds
the UI Flow Graph (UIFG) and the UI Dependency Graph
(UIDG). Fig. 3 illustrates both graphs with a news app.

In UIFG, each node represents an app page layout, and
each directed edge represents a page layout transition trig-
gered by a UI invocation. We annotate edges with (1) the
triggering UI element’s ID and attributes (e.g., value and
type), and (2) a list of sensitive APIs called as a result of the
UI invocation. The first step to construct UIFG is to discover

all page layouts and UI elements-in the case of Android app
packages, the included manifest lists all page layouts (i.e.,
activities), and layout XML files detail all UI elements (e.g.,
ID, name, type, and text). The second step is to map individ-
ual UI elements to the app page that they are shown on.
Privet searches the decompiled app binary for code blocks
related to UI initialization, and an example is btnStart =

(Button) findViewById(R.id.btnStart). In this case,
Privet also needs to find the variable holding the resource
ID of R.id.btnStart, and it backward-searches in the
code for the last variable assignment. The final step is to
analyze the code that handles UI invocation (e.g., onClick
callback method), to look for (i) calls to sensitive system
APIs, and (ii) calls to initiate any page layout transitions
(e.g., LayoutInflater.inflate method). Also, we note
that code can be indirectly triggered through inter-compo-
nent communication via Intents, and we leverage existing
efforts to find such code blocks [23]. At this point, by merg-
ing all layout transitions discovered, we get the UIFG.

In UIDG, each node represents a UI element, and each
directed edge indicates that the destination node has a
data dependency on the source node. For example, an
app can have a SEND button that uploads the geo-location
data collected by clicking the LOCATE button. Technically,
Privet leverages static taint analysis efforts (e.g., [24]), to
determine whether a variable is shared by two UI invoca-
tion handlers.

Automating Apps. Ideally, Privet exercises only UI paths
that request (and possibly depend on) some sensitive
resources. And, the same UI paths are exercised several
times, while manipulating resource requests under different
privacy settings. Both UIFG and UIDG guide TARA to pre-
select such paths during run-time, as described below.

Given a targeted sensitive resource, TARA starts by
searching in UIFG for edges, which represent UI element
invocations (UItarget) that can trigger such resource requests.
Then, starting from the UIFG root node (or app’s home
page layout), TARA tries to iteratively make progress
towards UItarget from the current node. During each step,
TARA invokes one UI element on the current page layout,
and this UIFG edge is determined by running Dijkstra’s
algorithm over UIFG. Dijkstra’s algorithm guarantees the
traversed UI path to be shortest. Being iterative allows
TARA to deal with any mismatching between UIFG and
dynamic analysis, as explained later.

At this point, TARA searches in UIDG for UI elements
(UIdep) that depend on the sensitive data requested by
UItarget. If so, TARA also needs to invoke these UI ele-
ments (by running Dijkstra’s algorithm again). This cov-
ers the case where two code blocks (triggered by different
UI elements) pass sensitive data via code variables, for
instance. Finally, this statically generated end-to-end UI
path is recorded for subsequent test runs under different
privacy settings.

One complication is that some page layout transitions
can depend on dynamic contents, or conditional variables
that are not easily satisfiable. Therefore, even with UIFG
and UIDG, TARA’s dynamic analysis tool can land on an
unexpected page layout or fail to find the expected UI ele-
ment. In either case, TARA starts an iterative process to try
to find another UI element that would also lead to UItarget,
by moving backwards in the sequence of previously tra-
versed page layouts. In the worst case, TARA resorts to
random app automation to make progress. Given this

Fig. 3. Partial UIFG and UIDG of a news app. The former shows transi-
tions among three page layouts, and the latter shows one dependency
in the app code.

282 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 2, FEBRUARY 2018



complication, the recorded UI path might not be the short-
est, and we describe Targeted Path Pruning (TPP) next to
address this problem.

Compacting UI-Automation Paths. If TARA resorts to ran-
dom app automation, it runs Targeted Path Pruning to com-
pact UI-automation paths. We formulate the TPP problem
as follows-a UI path P has nodes fC1; C2; . . . ; Cng represent-
ing a sequence of app page layouts, and edges represent UI
elements to invoke. Assuming that Cn is our targeted node,
TPP aims to skip UI element invocations that would lead to
cycles in UI automation.

To illustrate TPP, we consider the following UI path of a
simple news app: {article_list, article_1, article_list, article_2,
article_list, article_3, . . .}. Suppose our target page is article_3,
TPP recognizes that article_lists are the same page, and skips
the first four invocations in the path.

An important consideration is the dependency
between two app pages. In our previous example of news
app, it is possible that reaching article_3 requires reaching
article_2 first. So, we use a backward-traversing approach
that looks for the first available app page, starting from
the end of P . In the example above, TPP first looks for
article_3 on the page of article_list. If it cannot find it, then
TPP searches for article_2 on the page of article_list. If this
step succeeds, TPP retains article_2 in the final path, in
order to reach article_3.

4.2 Manipulating Sensitive Data Requests
Table 1 shows different sensitive APIs targeted by Privet.
Depending on privacy settings of each test run, App Hosts
can manipulate the arguments and return values of sensi-
tive API calls in two ways-the first way is to empty the
return value, and the second way is to replace the return
value with fake data (in place of the true data). App Hosts
can fake data based on the requirement of consistency (over
a testing session) and deviation (with respect to the true
data). For the former, an example is where App Hosts pro-
vide a phone ID that stays the same for an entire testing ses-
sion, or changes with each call. The latter determines the
content to return-in the case of address book requests, App
Hosts can manipulate some entry fields.

The space of possible API arguments and return values
introduces challenges. Fortunately, apps that are (function-
ally) similar should typically behave similarly to the same
type of input data. For instance, while trying all possible geo-
locations would be time-consuming, most news apps work

well with country-level locations, and most weather apps
need only city-level locations. Therefore, the functional cate-
gory of an app (which is also typically used by app stores)
can give hints on prioritizing experiment parameters.

5 PRIVACY ASSESSMENT ENGINE

Privacy Assessment Engine runs sensitive analysis on one
app at a time. Adopting One-at-a-Time (OAT) methodology
for sensitive analysis, the engine iteratively compares
logged app behaviors from each privacy setting with the
baseline of no intentional system API manipulations. The
output is a binary answer: true (i.e., app behaviors change
significantly without the corresponding sensitive data), and
false (i.e., otherwise). This is different from efforts that ver-
ify app UI compliance against predefined policies [25].

One key question to answer is the comparison metrics to
use for sensitivity analysis. For the privacy risks targeted by
Privet, ideally, these comparison metrics should adequately
tie to user-perceivable app functionality. We note that per-
formance counters, e.g., latency of web request/reply and
disk I/O, are not necessarily the defining features here. The
reason is that they are either indirectly reflected on the
screen, or can be masked through caching. Instead, interac-
tions between an app and the user are typically in both
audible and visual form.

Technically, Privacy Assessment Engine proposes User
Experience Deviation Inference (UEDI) to compare visual
and audible outputs of the same app under different privacy
settings. We now formulate the problem that UEDI targets.
Given logs from two runs of an app, UEDI estimates the
potential magnitude of user-perceived differences, and this
potential is presented as the UEDI score. The score is
between 0 and 100. The higher the score, the lower the poten-
tial difference. So, for Privet, this implies the app’s function-
ality does not depend on the corresponding sensitive data.

Since UEDI assigns a score to each edge in the UIFG
graph, a UI-automation path would have a set of scores.
This set of UEDI scores is then converted to the binary out-
put, based on some thresholds. Since the impacts of a sys-
tem API manipulation might show up only in subsequent
app pages, aggregating all UEDI scores can handle this case.

5.1 Evaluating Differences in Visual Outputs
In most cases, app functionality can be visually perceived
by users-for example, a news or weather app displays
real-time contents, and a social app displays feeds and
messages. Even local apps (e.g., media players, alarm
clocks, and calculators) have GUI. Therefore, we argue
that metrics defining the end-user visual perception are:
(1) the content values visible on the screen, and (2) the
screen layout.

Interestingly, classifying visual features above can be
challenging due to dynamic app contents. Simple compari-
sons of screen contents, e.g., pixel-by-pixel comparisons, do
not work well in this case. Considering the example of
weather apps, real-time content updates should not impact
end-user experience. To this end, UEDIVisual is a set of clas-
sification techniques to automatically evaluate differences
in visual outputs.

The basic idea behind UEDIVisual is to compare corre-
sponding app pages of two runs. Each comparison is based
on matching up as many individual UI elements as possible.

TABLE 1
Different Dimensions of API Data Manipulations

Explored by Privet

API Data Manipulations

Phone states Device ID and phone number
Network states Cellular and Wi-Fi status
Network Data payload sent and received
Geo-location Random location within 500 m and

1,000 m radius, and different countries
Contacts Emails, phone numbers, names
Photo albums Photo content
Browser History and bookmarks
SMS messages # of entries returned
Calendar # of entries returned
Accounts # of entries returned for each account type
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UEDIVisual considers the following element meta-data: type,
text or image (if applicable), location, and size. Intuitively,
the more UI elements that can be matched up between two
app pages, the more similar these two app pages should be,
and hence higher score. Next, we present the steps that
UEDIVisual implements (c.f. Fig. 4).

Content-Based Matching. The first step is to match up UI
elements of the same type based on their content values
(such as texts and images), and to count successful matches,
NumContent. We note that UI element IDs to be unreliable as
some mobile platforms do not enforce developers to assign
an element ID to all UI elements, e.g., list items in Android.
Also, UEDIVisual does not yet consider the visual layout of
each UI element (e.g., location and size) because many apps
can reorder screen contents based on the current mobile
device contexts (e.g., time and geo-location).

Fuzzy textual matching can have less false negatives than
exact matching. For instance, many news apps place a real-
time view count besides each news article. UEDIVisual com-
putes the widely used edit distance-the total number of
insertions, deletions, and substitutions necessary to turn
one string into another. Then, if the ratio of this distance to
string length is less than ThresholdEdit Dist, it considers both
UI elements to be the same. As Section 6 mentions, we use
human labels to learn this threshold.

At this point, UEDIVisual counts NumContent. For UI ele-
ments that cannot yet be matched, UEDI will try to match
them with layout information, as described next.

Layout-Based Matching. This second step relies on the
UI element type, location and size. The output is the
number of successful matches, NumLayout. From our
empirical observations, many apps use highly dynamic
page contents to provide users with real-time information
or the feeling of freshness. An example is the recommen-
dation list in radio apps. In these cases, while two runs of
experiments display different contents, they can still be
functionally equivalent.

It is possible that some UI elements are still not
matched up after this step. Interestingly, these UI ele-
ments could be residues or artifacts from previously
viewed page(s), and we describe how UEDI deals with
these elements next.

Inheritance-Based Matching. The third step tries to count
how many of the not-yet-matched UI elements are residues
or artifacts of the previously viewed page(s). These UI ele-
ments should not be considered by UEDIVisual, as they are
not the results of viewing the current app page layout. For

example, some apps implement page overlay (e.g., pop-
ups) to display information on top of visual contents from
the previous page. In these cases, UI elements not in the
overlay page should be ignored. We note that this step can
not be performed as the first step as many apps display
identical content items on consecutive pages.

To do this, UEDIVisual computes the intersection of the UI
element list of the current page layout and the previous one.
Then, it outputs the size of this intersection list,NumResidue.

Computing UEDIVisual Score. Through the multi-step
matching process, each app page on a UI-automation path
gets three numbers: NumContent, NumLayout, and NumResidues.
UEDI then computes the UEDIVisual score, UEDI ScoreVisual,
for individual app page layouts, as Equation (1) illustrates

UEDI ScoreVisual

¼ NumContent þWeight�NumLayout þNumResidues

Total Num UI Elements
:

(1)

Since layout-based matching is a heuristic, rather than
exact content matching, we use Weight (between 0 and 1) to
scale down its significance. Our experience with 1,000
Android apps suggests that layout-based matching has an
accuracy of about 80 percent, so we setWeight to be 0.8.

5.2 Evaluating Differences in Audible Outputs
For many app categories, audio can be a primary user inter-
action channel. Audio-related APIs generally accept file
name as the input argument, which points to either a locally
or remotely hosted audio file. Therefore, inferring user-
perceivable changes can be achieved by comparing the file
meta-data including name, size, and date. This approach of
comparing file meta-data is similar to many off-the-shelf file
synchronization tools. However, since it is not trivial to
obtain meta-data for remotely hosted files, Privet compares
the URL in such case.

As illustrated by Equation (2), UEDIAudible has a binary
output. A score of 0 means the audible output has a high
dependency on the privacy setting being tested. And, a
score of 1 suggests otherwise

UEDI Scoreaudible ¼ 0 or 1: (2)

5.3 Computing UEDI Score
Equation (3) shows that computing the UEDI score consid-
ers both the UEDIVisual score and the UEDIAudible score

UEDI Score ¼ UEDI Scorevisual � UEDI Scoreaudible: (3)

We note that the computation uses multiplication to pro-
duce the same effect of logical conjunction. If the UEDIAudi-

ble score is 0, then the UEDI score would also be 0. On the
other hand, if the UEDIAudible score is 1, then the UEDIVisual
score would determine the UEDI score.

There are various strategies to aggregate UEDI scores of
app pages from each test run: average, max, min, etc. Privet
takes the min score, i.e., the most significant impact from a
particular API manipulation on the entire run. Furthermore,
since different app categories (as already defined by app
stores) can exhibit different behavior and design, category-
specific thresholds might be needed to convert the UEDI
score. Thus, for each app category, we train category-
specific thresholds from human labels with Support Vector

Fig. 4. UEDI evaluates the magnitude of differences between two app
pages. This evaluation is based on both visual and audible outputs,
where each output type follows a different pipeline.
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Machine (SVM) [26], which is a very popular classification
algorithm with high accuracy and robustness.

Additional Considerations. In addition to out-of-scope
cases listed in Section 3.3, we acknowledge that a resource-
ful attacker can devise countermeasures to fool Privet-e.g.,
intentionally changing either visual or audible outputs,
regardless of the reason behind requesting sensitive data.
One solution is to multiply the UEDI score by a weight, to
factor in the relative user expectation for individual resour-
ces. Suppose geo-location is strongly assumed to be unnec-
essary for calculator apps, its UEDI score can be multiplied
by a weight for that app category. Privet can leverage efforts
on modeling user expectations for permissions to determine
the weight value for each app category [27].

6 IMPLEMENTATION

This section describes our implementation decisions. Fig. 5
illustrates the overall integration. The entire Privet imple-
mentation consists of � 53; 012 lines of code (loc)-App Host:
45,396 loc, App Host Coordinator: 2,200 loc, Privacy Assess-
ment Engine: 5,416 loc.

6.1 App Host
App Hosts currently support Android apps, and each
instance has its own Genymotion emulator [28], which is
one of the fastest emulators available on the market. In addi-
tion, Genymotion supports sensor emulations such as GPS.
We describe the three main components of App Hosts next.

App Automator. The construction of UIFG and UIDG
relies on Androguard [29] and Apktool [30]. Androguard
includes an Android app packages (APK) decompiler and
static analysis tools for instructions and permissions. Apk-
tool decodes resources (e.g., app page layouts) in app pack-
ages. From these outputs, our Python toolchain extracts UI
and control flows, by mapping caller-callee relationships of
methods, and associating registered UI events and call-
backs. In addition, we decode properties (e.g., component,
action, extra, and data) of Android ICC Intents, and
link two code blocks if there is an Intent between them.

App Host drives UI automation with the Appium [31] UI
library. Appium starts the app that matches the given
Android app ID, class name and text (optional). Then, it
obtains the user interface (UI) view tree describing attrib-
utes of all UI elements on the current app page: class name,
ID, screen coordinates, text contents, etc. App Hosts can
enter texts into fields with pre-specified UI elements IDs,
and this can be useful in entering login credentials. Apps
can collaborate to accomplish a task, e.g., the restaurant rec-
ommendation app passes control to the map app for driving
navigation. App Host stops the test once the target app is
not running in the foreground. The same applies to clicking
a URL that opens the web browser.

Finally, we note that App Host resets the testing environ-
ment prior to each session. This process includes clearing
app caches and system states (e.g., system clock and started
apps). Furthermore, for apps that require sign-in, develop-
ers are already required to provide a working credential
when making app submissions to distribution providers. To
enter credential, TARA can look for UI elements whose
meta IDs resemble login. Otherwise, the current industry
practice is to resort to manual inputs.

System API Manipulation. To intercept Android system
API calls, we have implemented one Xposed [32] module
for each API category in Table 1. Since most app distribu-
tion providers (e.g., Microsoft) have dedicated in-facility
testbeds for app testing, rooting devices is not a roadblock.
We implemented a JSON-based (over TCP) command chan-
nel to control our Xposed modules. This way, App Host
Coordinator can pass arguments such as target app name,
target API to manipulate, and API manipulation strategies.

Logging App Behavior. Each run of tests produces several
log files: system API calls, page layouts and screenshots
after each click, sensitive data blocked or injected, and a net-
work traffic dump. Due to the emulator’s limited storage,
we periodically upload logs to App Host Coordinator every
10 minutes.

For producing audible outputs, Android provides two
sets of APIs: SoundPool and MediaPlayer. The former
can play small audio clips that are stored on the local disk,
and the latter is for longer music and movies hosted locally
or remotely. We note that a remotely hosted audio file can
also be pre-cached locally, which is then considered as a
local file by Privet. We use the Xposed framework to cap-
ture arguments of three functions: (1) SoundPool.load,
(2) MediaPlayer.create, and (3) MediaPlayer.set-

DataSource. For remotely hosted audio files, we log the
URL string. For locally hosted audio files, we log the file
name, size and date.

6.2 App Host Coordinator
Currently, we maintain a pool of Android-based App Hosts
on a private cloud, and all hosts emulate the popular Nexus
5 device. A central server manages all App Hosts, and it
schedules and sends commands to execute testing tasks.
Each App Host has two JSON-based (over TCP) command
channels to App Host Coordinator: one is for sending user
interaction commands, and another one is for sending
Xposed commands. High-level instructions are translated
into commands of these two channels.

6.3 Privacy Assessment Engine
We highlight how two types of thresholds are set:
ThresholdEdit Dist and UEDI score thresholds. First, we
derive ThresholdEdit Dist from the evaluation dataset, which
is collected from nine human users looking at 8,153 pairs of
different app pages. With a ThresholdEdit Dist of 0.1, UEDI

Visual can well determine whether two similar strings should
be classified as being functionally identical (e.g., news title
with a real-time viewer count). Second, we keep separate
UEDI score thresholds for individual app categories, and
we use the same categories as the ones on Google Play. In
fact, from our human labels, SVM fails to identify a single
threshold for all app categories, and this further motivates
the design of having separate thresholds.

Fig. 5. Implemented components of Privet prototype.
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7 EVALUATION

This section is organized by the following major results: (i)
Targeted App Automation reduces our total testing time by
85.3 percent, as compared to popular random exploration;
(ii) UEDI can determine whether two app pages are func-
tionally equivalent with an accuracy of 93.4 percent, as eval-
uated with human labels; (iii) More than 48.7 percent of
apps can have at least one type of resource requests blocked
or manipulated.

7.1 Methodology
We downloaded 1,000 Android apps from the Google Play
store for system evaluations. Instead of a random selection of
apps, our set covers a diverse spectrum of popular apps. Spe-
cifically, we bucketized the top 50 apps of all 45 store catego-
ries this year into eight groups, and these groups were
defined by three dimensions: text-heavy versus image-heavy,
networked versus isolated, and sensor-dependent versus
sensor-independent. Finally, we took 125 most popular apps
from each of the eight groups, for a total of 1,000 apps. Table 1
lists targeted categories of sensitive systemAPIs.

Experiments started by generating UI-automation paths
for each app,with respect to event handlers that call sensitive
systemAPIs. Sincemobile systemAPIs typically do not over-
lap in functionality, manipulating multiple APIs at a time
would not reveal additional insights. Then, we exercised
each UI-automation path without any API manipulation, to
obtain the app behavior baseline. Next, for each UI-automa-
tion path, we manipulated the corresponding API in one
way. We logged screenshots, performance counters, audio
file attributes, and UI information, as described in Section 6.
Noticeably, we found 11.3 percent apps need sign-in creden-
tials (most of them are Social and Music & Video apps), and
we created accounts and logged in before testing.

7.2 Targeted App Automation Component
This section quantifies how TARA reduces the overall test-
ing time from (i) pre-selecting potentially interesting UI-
automation paths with static code analysis, and then (ii)
compacting these paths with TPP.

Extracting UI Elements in Real Apps. We start by showing
statistics about invokable UI elements from our Android
app pool. This result is important as automation tools can-
not automate non-invokable UI elements. As explained pre-
viously, UI elements can be of two types: Android-base or
Custom UI elements. Fig. 6 shows the average number of

invokable UI elements per app, for the most commonly
used categories of UI elements. We note that, while apps
can have Custom UI elements, Android-base UI elements
still dominate. And, there are UI-related libraries readily
available to interact with these UI elements.

Among invokable UI elements in an app, TARA calcu-
lates the UI-automation path to the ones that request per-
missions to sensitive resources. Fig. 7 shows the average
number of these sensitive UI elements per app. There is an
average of 6.59 invokable UI elements per app accessing the
Network (which is the highest number), an average of 1.56
and 0.56 invokable UI elements for geo-location and
account, respectively. This observation suggests that, while
Android apps can have an average of 163.21 of invokable UI
elements, having insights into these elements can signifi-
cantly reduce the testing time.

Pre-selecting UI-Automation Paths. Given that TARA
selects UI-automation paths that would trigger sensitive
system API calls, the prerequisite is being able to discover
and map these API calls to UI elements. This directly trans-
lates to the testing coverage achievable. Fig. 8 suggests that,
for more than 66 percent of apps, TARA can statically dis-
cover and map at least 90 percent of individual calls of sensi-
tive system APIs. We found that one major reason behind
mapping failures is the dead code blocks left by developers.

Next, we illustrate the advantage of driving app automa-
tion with static code mining. Our comparison baseline is the
standard industry practice of random workload. Due to the
random nature, we repeat each privacy setting 100 times
and report the average. Given the sensitive APIs listed in
Section 7.1, we record the amount of time necessary for both
TARA and random exploration to reach all calls in the code.
Specifically, this can be measured by considering the UI ele-
ments that trigger these calls. Fig. 9 shows the CDF of num-
ber of apps, with respect to the reduction in testing time
achieved. On average, TARA can achieve the same testing
coverage with 85.3 percent less testing time.

Fig. 6. While developers can include custom UI controls, most invokable
UI elements are still Android UI controls. (i) Layout: LinearLayout,
RelativeLayout, FrameLayout, and TableLayout. (ii) View: View,
ImageView, and ScrollView. (iii) Button: Button, ToggleButton,
ImageButton, and RadioButton. (iv): Text: TextView, EditText.

Fig. 7. Average number of UI event handlers that call sensitive system
APIs.

Fig. 8. CDF of apps that TARA can discover API call instances.
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While TARA can significantly reduce the testing time, we
note that analyzing code for pre-selecting UI-automation
paths does not take much time. On a PC with a 2.5 GHz of
quad-core CPU and 16 GB of memory, it takes about 65.8 sec
to analyze one app package (with an average size of 5.2MB).

Exercising Pre-Selected UI-Automation Paths. Since static
analysis lacks run-time contexts, some UI-automation
paths pre-selected might not be feasible to be automated.
Privet logs the progress of each testing session, and cross-
referencing this information with decompiled app binaries
reveals the following insights.

First, some execution paths need human intervention
such as taking a photo. Such cases are known to be difficult
for dynamic testing techniques, and Privet resorts to ran-
dom walking. In our experiments, 65.4 percent of the infea-
sible paths are fail due to this reason. Second, crafting
appropriate inter-process messages can be difficult, and
even current state-of-art tools can achieve only 85.0 percent
of accuracy in the best case [23], [24]. In Android, inter-
process communication is implemented by inter-component
communication that can carry data of arbitrary format.
While source code analysis can provide some hints on what
ICC messages should look like, this approach can handle
simple cases. Third, some UI elements are on a path contain-
ing dead code, and they cannot be executed in the real
world. In addition, we also found some UI elements trig-
gered at the alarm scheduled tasks are also fail to execute at
most time, due to the reason that TARA does not wait for
alarms to wake up. Finally, we also observed few cases
where the Appium UI library fails to detect all UI elements
on an app page.

Overall, excluding paths with a length of 1, Privet can
successfully exercise 81.7 percent of pre-selected UI-
automation paths (and reach the targeted UI element).

Targeted Path Pruning. As mentioned in Section 4, in the
worst case where TARA resorts to random app automation,
TPP compacts UI-automation paths to minimize testing
time. To evaluate the effectiveness of TPP, we randomly
explore all apps in our repository. Specifically, for each ran-
dom UI-automation path, we mark the nodes (i.e., page lay-
outs) that must be visited, as these nodes can trigger
sensitive API calls. Empirical results show that 81.3 percent
of random UI-automation paths can be compacted, with an
average length reduction of 35.7 percent (with a deviation
of 0.28). In addition, 32.6 percent of the paths can be com-
pacted by more than 50 percent. Therefore, this translates
into a significant reduction in testing time, especially in
large-scale app testing. In our case, TPP reduces the total
testing time by 56.2 percent.

Furthermore, we note that the effective amount of path
reduction varies with the app category. Fig. 10 shows the

distribution of path reduction ratio grouped by app cate-
gory. This depends on the general app UI structure of each
app category. For instance, many news apps rely on links at
the home page to reach other pages. Therefore, frequent
transitions from/to home page result in UI loops that can
be removed by TPP.

7.3 User Experience Deviation Inference (UEDI)
Component

Evaluation metrics for the UEDI mechanism are the false
positive rate and the false negative rate-cases where UEDI
mistakenly decides two app pages are functionally equiva-
lent and different, respectively. While false positives would
result in over-conservative privacy protection (and thus
user inconvenience), false negatives would result in relaxed
privacy protection (and thus a false sense of protection). To
provide evaluation baselines, we asked nine volunteers to
label 8,153 pairs of different app pages, based on whether
they think each pair is functionally equivalent. Participants
range from 20 to 45 years old, and they include one female
and eight males. Two are from US, and seven are from
China. And, they work or study at IT companies and insti-
tutes. We note that the variance of labels among these users
is reasonably small.

Table 2 shows the false positive rate and false negative
rate, per app category. In most cases, Privet can decide
whether two app pages are functionally equivalent with an
accuracy above 90.0 percent. The table also suggests that
Privet has false positives, or cases where it wrongfully
thinks two app pages are functionally equivalent. And,
since the UEDI score depends on both the UEDIVisual score
and the UEDIAudible score, we next delve into both.

UEDIVisual. 80 percent of data points (i.e., {UEDIVisual
score, human label} tuples) from each user are used by SVM
to train UEDIVisual classifiers, and 20 percent are for testing.
Privet achieves an accuracy of 93.4 percent on average, with
a false negative rate of 1.1 percent and a false positive rate

Fig. 9. CDF of test runs for which TARA can reduce the testing time.
Fig. 10. Histogram of TPP results organized by app categories.

TABLE 2
Accuracy and False Rates for UEDI to Decide Whether

Two App Pages Are Functionally Equivalent

Accuracy False Positives False Negatives

Shopping 89.4% 5.7% 4.9%
References 94.2% 4.2% 1.6%
Entertainment 94.5% 3.9% 1.6%
Health 96.1% 2.8% 1.1%
News &Weather 90.4% 6.0% 3.6%
Lifestyle 92.4% 4.5% 3.1%
Others 92.0% 6.3% 1.7%
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of 5.5 percent. Empirical data suggest that these false rates
come from two dominant sources: content loading problems
due to server and network performance (9.7 percent of false
positives and 23.1 percent of false negatives), and user pref-
erences (68.1 percent of false positives and 65.4 percent of
false negatives). For the former, a typical case is where
pages are not completely loaded as expected-i.e., some page
contents are not displayed, and UEDIVisual is unable to
make the right decision. We note that having visibility and
control on the backend and content delivery network are
impractical and out of scope for this work. For the latter, we
have observed cases where users have different opinions on
whether two app pages are functionally equivalent. In one
such case, a sports app automatically changes the default
display language if the current geo-location is available.
And, there was a disagreement on whether this app really
needs the geo-location data.

Fig. 11 illustrates the gain from each of the three UEDI

Visual matching strategies, by using labeled data from the
same nine volunteers. In effect, disabled strategies would
return zero matching pair. While the content-based match-
ing step can already achieve an accuracy of 80.4 percent, the
layout-based and the inheritance-based steps improve it to
86.1 and 93.4 percent, respectively.

UEDIAudible.Among the pool of 1,000 apps, we found
21 percent of them access audio-related APIs. This suggests
that audible outputs should not be overlooked by Privet.
Table 3 shows the distribution of the two audio sources:
locally hosted files and remotely hosted files. We note that
some apps can use both sources. Interestingly, remotely
hosted files occupy a large fraction of the distribution, so
wrongfully manipulating the network access can change
audible outputs. In this case, the UEDIAudible score is equal

to 0. Finally, empirical results suggest 3.08 percent of app
pages fall under this case.

7.4 Comparisons on Privacy Risk Assessments
We compare Privet with baseline obtained from two sour-
ces: human labels and related efforts.

Comparisons with Human Baseline.To obtain human labels,
we ask eight human inspectors employed by an app distri-
bution provider to go through 3,236 instances of risk assess-
ment, for a total of 25,888 data points. For each instance,
human inspectors are presented with app descriptions,
name of the sensitive resource manipulated, and two app
pages under two privacy settings. Then, they decide
whether that particular app would (i) legitimately need the
resource, (ii) or not need it, (iii) or be uncertain from the
app descriptions. On average, Privet agrees with human
labels 96.9 percent of time, and it can achieve this accuracy
without significant human overhead. Table 4 highlights
four categories with the worst acceptance rate. We note that
the Shopping category has the lowest acceptance rate due to
two apps that change the app background color, and differ-
ent users react differently.

Comparisons with Related Efforts. PrivacyGrade [27], [33] is
a publicly available database listing calculated Android app
privacy risks. It performs static analysis to analyze the per-
mission usage in top 400 third-party libraries, and then it
builds models by crowdsourcing people’s expectation of
resource usages for each app. Grades are assigned to indi-
vidual apps based on the deviation between people’s expec-
tation and what the app actually requests for. The grade is
between A and D, where D suggests high potential of pri-
vacy risks. Next, we compare Privet with PrivacyGrade
from two levels: individual permissions and apps.

60.2 percent of our app pool have also been evaluated by
PrivacyGrade. PrivacyGrade tries to classify the need of
three main resources (i.e., phone states, network, and geo-
location) into 10 potential usages: app functionality,

Fig. 11. Each UEDIVisual matching strategy improves the overall positive
rate, and lowers the false rates, as evaluated with human labels.
(C) Content-based matching, (L) Layout-based matching, and (I) Inheri-
tance-based matching.

TABLE 3
Distribution of Audio Sources in Android Apps

Remotely Hosted Locally Hosted

News &Weather 35.8% 64.2%
Shopping 20.0% 80.0%
Lifestyle 47.9% 52.1%
Reference 33.3% 66.7%
Entertainment 36.1% 63.9%
Travel 20.0% 80.0%
Music 47.9% 52.1%
Health 40.0% 60.0%
Tools 48.0% 52.0%
Others 25.9% 74.1%

TABLE 4
App Categories with Lowest User Acceptance

of Privacy Assessment

Resource Average Std Dev

Shopping

Network 90.5% 0.054
Geo-location 96.8% 0.031
Net states 96.4% 0.022

Phone states 98.9% 0.047
Others 97.8% 0.016

References

Network 98.9% 0.011
Geo-location 98.7% 0.022
Net states 97.8% 0.011

Phone states 98.0% 0.008
Others 94.6% 0.031

News &Weather

Network 95.1% 0.018
Geo-location 98.0% 0.025
Net states 95.2% 0.039

Phone states 96.2% 0.041
Others 95.5% 0.008

Lifestyle

Network 98.3% 0.011
Geo-location 99.2% 0.022
Net states 95.4% 0.043

Phone states 94.0% 0.045
Others 98.1% 0.021
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user payment, utility usage, targeted advertis-

ing, social service, mobile analytics, market/

customer analysis, content providers, game

engines, and SMS SDKs. We label app functionality

and utility usage as legitimate permission usage, and
remaining categories are labeled as illegitimate. We then
compare the labels with Privet.

Table 5 shows results about the three resources, and it
suggests that PrivacyGrade and Privet achieve an average
87.4 percent of agreement on assessing the need for these
resources, and 12.6 percent of disagreement. We looked into
the disagreement cases and found Privet performed better
in several cases. First, we find that some apps can work and
show no behavioral differences when we fake the device ID.
Therefore, while Privet thinks that requests to device ID can
be regulated to preserve privacy, PrivacyGrade thinks the
device ID is used for some undetermined app functionality.
Second, most disagreement cases are due to the fact that Pri-
vacyGrade does not analyze an app’s internal code, but only
third-party libraries. So, if a privacy-violating data flow is
present in the app’s internal code, it would not be detected
by PrivacyGrade.

To compare the privacy risks at app level, we consider
apps in our pool with a PrivacyGrade grade lower than A,
and see whether Privet also identifies the same privacy risks.
We label an app as B if there are 25- 50 percent of permissions
can be manipulated or blocked, and label an app as C if the
percentage is between 50 percent with 75 percent, as D if the
percentage is above 75 percent. Results show that Privacy-
Grade and Privet agree 93.6 percent of the time. Most instan-
ces of disagreement are due to the same piece of sensitive
data being used by both app functionality and potential pri-
vacy-violating actions. In these overlapping cases, Privet
would allow the data request to pass as not to impact any
app functionality, but PrivacyGrade will assign a low grade
to reflect those potential privacy-violating behaviors.

8 DEPLOYMENT EXPERIENCE AND CASE STUDIES

This section presents our deployment experience in rating
app privacy risks for an app distribution provider. The pilot

classifies each app into three labels according to UEDI clas-
sification results: LOW (risk), MEDIUM (risk), and HIGH
(risk). Particularly, LOW implies all requests are classified as
functionally necessary, and HIGH implies none of them is
necessary. Otherwise, we label it asMEDIUM.

Risk Rating Distribution. The first question we want to
answer is the distribution of apps with respect to the three
classification labels above. Table 6 shows a 28.5 percent
highly suspicious sensitive data usage, and a 16.8 percent
less suspicious behavior (“MEDIUM”). Then, Table 7, 8, and
9 illustrate the three most frequently accessed sensitive
resources on mobile devices-network, geo-location and
phone state. Some modern apps depend on network to
deliver user-perceived content, and they are susceptible to
network-related API manipulations. Likewise, since News
andWeather apps typically use geo-location to provide local-
ized content, they are relatively sensitive to location-related
API manipulation. Finally, phone states are typically used to
maintain browsing history, but substituting them with fake
IDsmight impact the visual contents perceived by users.

Integrating Third-Party Libraries. An interesting question
is how much of privacy risks are attributed to third-party
libraries. We found over 82.2 percent of apps use at least
one third-party libraries: over 55.4, 22.3, and 58.5 percent of
apps call libraries related to ads, social networking, and
web services. Table 10 shows that over half of the requests
are from third-party libraries. This suggests that many data
requests are out of developers’ control, and they require
system-level mechanisms to manage.

LinkedIn (com.linkedin.android). Privet rated the
Contacts permission of LinkedIn as “MEDIUM (risk)”,
which indicates it is less suspicious privacy risky of the cor-
responding permission. In our test, we did seven experi-
ments with different privacy settings (i.e., fully block
Contacts, provide only Emails/Phone numbers/names,
etc). Our results suggest that LinkedIn can recommend
friends by uploading only email addresses. While LinkedIn

TABLE 5
Risk Assessment from Privet and the Related Effort,

PrivacyGrade

Agreement Disagreement

Geo-location 89.3% 10.7%
Network 88.2% 11.8%
Phone states 82.5% 17.5%

TABLE 6
Percentage of Apps Whose Requests for Sensitive

Resources Might Pose Privacy Risks

LOW MEDIUM HIGH

Account 68.4% 15.8% 15.8%
Geo-location 71.9% 12.5% 15.6%
Net states 43.0% 20.3% 36.7%
Network 24.6% 22.3% 53.1%
Phone states 61.9% 21.0% 17.1%
Others 58.1% 9.3% 32.6%

Results are organized by the resource type.

TABLE 7
Percentage of Apps Whose Requests for Network

Might Pose Privacy Risks

LOW MEDIUM HIGH

Shopping 0.0% 50.0% 50.0%
References 33.3% 19.1% 47.6%
Entertainment 31.3% 28.1% 40.6%
Health 54.5% 9.1% 36.4%
News &Weather 10.4% 17.9% 71.7%
Lifestyle 41.2% 11.7% 47.1%
Others 31.6% 36.8% 31.6%

TABLE 8
Percentage of Apps Whose Requests for Geo-Locations

Might Pose Privacy Risks

LOW MEDIUM HIGH

Shopping 96.2% 2.0% 1.8%
References 97.0% 2.0% 1.0%
Entertainment 83.3% 0.0% 16.7%
Health 50.0% 50.0% 0.0%
News &Weather 65.8% 18.4% 15.8%
Lifestyle 66.7% 1.3% 32.0%
Others 82.3% 1.0% 16.7%
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has a rather ethic privacy policy (e.g., no selling of data),
some users may still prefer phone numbers and names not
to be exposed to the app. Unfortunately, most modern
mobile operating systems offer a rather coarse-grained app-
specific ON/OFF switches for such cases.

Eleme (Ele.me). Eleme is a popular online-to-offline
(O2O) meal ordering app in China. It periodically
uploads the current location to retrieve nearby restau-
rants. When we faked the geo-location coordinates by
randomly selecting one within 100 and 500 m radius, we
observed the restaurant listing changed only slightly. As
a result, Privet rates Eleme’s location requests as a
“MEDIUM (risk)”, to indicate that fine-grained localiza-
tion might not be necessary.

Notepad (ru.andrey.notepad). Notepad is a popular
Android app for editing users’ notes. Interestingly, Privet
rates its Internet permission as “HIGH (risk)”. By manually
inspecting screenshots and decompiled IR code, we found
Notepad uses Internet only for Google Ads advertising, and
there is always an advertisement banner on the app page.
While advertisement is a gray area to regulate for app distri-
bution providers, as it ties to a long-established business
model, Privet currently reports these cases to help end-users
make informed decisions.

9 RELATED WORK

UI Control Flow Graphs. Yang et al. [34] propose a callback
control-flow graph that shows interactions between user-
defined UI event handlers and Android’s lifecycle callbacks.
And, their follow-up work [35] considers more lifecycle call-
backs and window stack states.

However, these efforts cannot handle custom windows/
widgets, and they do not consider asynchronous transitions
(e.g., due to timers and sensor events). This makes real-
world testing difficult to reach these UI elements success-
fully. Second, they do not consider data flows between these
callbacks.

User-Facing Tools for Privacy Control. The research com-
munity offers more ways to control resource permissions
beyond simple warnings. Apex [36] and Dr. Android [37]
are tools for enforcing permission-related policies, and they
expose Android users to fine-grained permission settings
by modifying Android runtime or rewriting app binaries.
Rahmati et al. [38] ensure that an app is limited to its mini-
mum set of required permissions with user inputs in the
feedback loop. AppFence [7] retrofits the Android runtime
to impose privacy controls on apps by shadowing and
blocking sensitive data from being exfiltrated off the device.
AppIntent [39] presents a sequence of GUI events that lead

to sensitive data flows and let analysts decide whether the
data flows are intended.

However, without inside knowledge of an app, users can
have difficulties in properly configuring tools.

Automated Permission Analysis.Many efforts leverage static
code analysis. PScout [40] extracts permission specification
from the Android OS source code, and it builds mappings
between API calls and permissions. PiOS [9] finds uncon-
sented transmissions of data in iOS apps. Amandroid [41]
focuses on computing precise inter-procedural control flow
graph. AppProfiler [42] maps patterns of API calls to prede-
fined (human-readable) behavioral profiles. However, with-
out domain knowledge, profile-based approaches can give
generic feedback. In contrast, Privet infers impacts of sensi-
tive data based on user-perceived features.

Taint analysis flags information flows from sensitive data
sources to sinks. TaintDroid [10] implements run-time taint
analysis for Android, but incurs a 14 percent performance
overhead on a CPU-bound micro-benchmark. AppsPlay-
ground [18] applies static taint analysis to sensitive API and
kernel-level monitoring. Unfortunately, taint analysis alone
cannot reveal whether an information flow is necessary for
user-perceived functionality.

With thousands of daily app submissions, app distribu-
tion providers have been trying to shift to automated app
vetting process. For example, Google Bouncer [43] auto-
mates apps and looks for certain violations of Android Dis-
tribution Agreement, rather than unjustified access of
resources. However, app distribution providers typically
implement random UI exploration, which has poor testing
coverage, especially under tight time budget (< 30 min).

Crowdsourced Privacy Analysis. Previous efforts have
explored strategies to help users with their disclosure deci-
sions to increase the amount of disclosure without
decreased user satisfaction [44], and crowdsourcing has
been used for privacy recommendations in tool [45]. Liu
et al. [46] demonstrate that a relatively small number of
privacy profiles could capture the vast majority of peoples’
privacy preferences by a data mining study among 239K
real users’ app privacy settings. And, they have released a
tool called PPA [47]. ProtectMyPrivacy (PMP) [14] crowd-
sources privacy settings for sensitive data requests per iOS
app from over 90K real users. Lin et al. [15] crowdsource a
different kind of privacy data-user expectations and reac-
tions on what an app claims to need. These information is
then analyzed and made public through PrivacyGrade [33].

As PrivacyGrade analyzes third-party libraries only, it
might miss illegal permission usage in app internal code.
Moreover, crowdsourcing privacy settings implies that app
distribution providers need to first release unvetted apps in
the wild, and this is generally against the app store policy.

TABLE 9
Percentage of Apps Whose Requests for Phone States

Might Pose Privacy Risks

LOW MEDIUM HIGH

Shopping 61.5% 23.1% 15.4%
References 53.8% 30.8% 15.4%
Entertainment 66.0% 26.4% 7.6%
Health 76.9% 1.4% 21.7%
News &Weather 59.3% 18.7% 22.0%
Lifestyle 61.5% 15.4% 23.1%
Others 63.0% 25.9% 11.1%

TABLE 10
Percentage of Resource Requests Made by Apps

and Their Third-Party Libraries

App Ads Libs Other Libs

Network 42.6% 27.8% 29.6%
Account 36.9% 2.2% 60.9%
Geo-location 56.4% 32.8% 10.8%
Net states 50.5% 25.8% 23.7%
Phone states 57.4% 22.6% 20.0%
Others 63.3% 20.0% 16.7%
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Furthermore, given the vast space of possible privacy set-
tings, effective crowdsourcing requires a sufficient amount
of expert user base and time budget. We believe Privet can
well compliment these crowdsourcing approaches.

Machine Learning Based Privacy Analysis. Many efforts try
to model how benign or malicious apps look like, to find
new malicious apps. CHABADA [13] uses the textual app
description to estimate what an application should do.
AsDroid [48] analyzes the text associated with UI elements.
MUDFLOW [12] leverages information flows as the classifi-
cation feature and learns sensitive data flows from trusted
apps to detect malicious abnormal flows. These approaches
are trained with different features on a set of apps.

However, the accuracy of these approaches greatly
depends on the pre-defined feature set. On the other hand,
Privet leverages dynamic analysis to profile run-time app
behavior, and uses it as analysis inputs.

10 DISCUSSION AND FUTURE WORK

Privacy Concerns From Ads. Many app developers are
unaware of the kind of information that advertisement pro-
viders collect. Interestingly, since advertisement presents a
relatively clear end-purpose and is typically delivered by
well-established companies, many users can be more lenient
in giving up personal data [49]. We acknowledge that this
mixed feeling complicates how ads libraries should be con-
sidered as privacy risks. Privet currently flags these ads
libraries and leave the final decision to human inspectors.

Combinations of Resource Requests. Each test run currently
focuses on one resource, and this set up is enough for the
purpose of Privet. In the case of multiple data sources being
requested, since mobile system APIs typically do not pro-
vide overlapping data, manipulating multiple sensitive
APIs simultaneously would not reveal additional insights.
And, in the case of both a data source and a sink being
requested, blocking one can stop the potential privacy risk.

Lack of Sensitive Data Sinks. Some apps do not access sen-
sitive data sinks (or permanent storage media)-for example,
while 13 of our apps request for phone state info, they do
not issue external I/Os (e.g., storage medium and backend
servers) nor inter-process communication (e.g., Android’s
Intent and Binder). One app developer explained the use of
phone state info for the seeding the random number genera-
tor. We also observed eight similar apps that request for
location info. The “closeness” of these apps implies that
they have little chance in leaking user privacy, so Privet
skips all apps that do not access sensitive data sinks.

11 CONCLUSION

This article demonstrates the potential of applying sensitiv-
ity analysis to rate app privacy risks. Then, we realize this
concept in a system, Privet, for app distribution providers
(e.g., Microsoft, Apple, and Google). Our deployment expe-
rience suggests that Privet can complement existing tools
and human inspectors towards usable privacy that balances
privacy protection and app functionality.
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