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Abstract
Patent litigation is an expensive legal process faced
by many companies. To reduce the cost of
patent litigation, one effective approach is proac-
tive management based on predictive analysis.
However, automatic prediction of patent litigation
is still an open problem due to the complexity of
lawsuits. In this paper, we propose a data-driven
framework, Convolutional Tensor Factorization
(CTF), to identify the patents that may cause
litigations between two companies. Specifically,
CTF is a hybrid modeling approach, where the
content features from the patents are represented by
the Network embedding-combined Convolutional
Neural Network (NCNN) and the lawsuit records
of companies are summarized in a tensor, respec-
tively. Then, CTF integrates NCNN and tensor
factorization to systematically exploit both content
information and collaborative information from
large amount of data. Finally, the risky patents
will be returned by a learning to rank strategy.
Extensive experimental results on real-world data
demonstrate the effectiveness of our framework.

1 Introduction
Recently, according to statistics of World Intellectual Prop-
erty Organization1, for the first time, more than 3 million
patent applications were filed worldwide in 2016, up 8.3%
from 2015. Indeed, more and more individuals, organizations
and companies have realized the power of patents, not only in
economic benefit but also in legal effect [Cohen et al., 2016].

In view of the importance of patents, a new research area,
called patent mining, aiming to assist patent analysts in pro-
cessing and analyzing patent documents, emerges in recent
years [Zhang et al., 2015]. The existing researches include
patent retrieval [Azzopardi et al., 2010], patent classifica-
tion [Loh et al., 2006], patent visualization [Huang et al.,
2003], patent valuation [Hasan et al., 2009; Jin et al., 2011;

∗Contact author.
1http://www.wipo.int

Lin et al., 2018] and patent litigation analysis [Marco and
Miller, 2017]. Since patent litigation is an effective manner
to protect the benefit and proprietary of companies [Jin et al.,
2016] , many efforts have been made to research the major
causes (e.g. protecting product features and exclusivity) as
well as the influential features (e.g. number of patent claims)
in patent litigation [Lim, 2014]. However, it is still an open
problem for the automatic prediction of potential patent liti-
gations, i.e. identifying the possible patents that may cause
litigations given two companies, for providing an early liti-
gation warning and leaving companies more time to develop
business strategies.

As a matter of fact, there are many technological and do-
main challenges inherent in designing an effective solution
for patent litigation prediction. First, the intentions of patent
litigations are both complex and various, including protect-
ing market shares, protecting product features and exclusiv-
ity, and for revenge2. The companies (plaintiffs) may even
file a lawsuit against another one (defendants) not only with
their own patents, e.g. Core Wireless have sued Apple sever-
al times by using the patents of Nokia. Therefore, the hidden
interactions in lawsuits cannot be easily captured. Second,
patent litigation records are much fewer and sparser to be
predicted compared with the whole patent dataset. Accord-
ing to the statistics of USPTO, there are more than 6,000,000
granted patents while only no more than 100,000 patent law-
suit cases until now. Third, the diverse content information of
patents should also be taken into consideration when predict-
ing patent litigation. According to the findings in [Cremers,
2004], the relatively valuable patents (e.g. with more claims
and citations) are more likely to be involved in lawsuit cases.

To conquer these challenges, in this paper, we propose
a novel data-driven framework i.e. Convolutional Tensor
Factorization (CTF) to precisely identify the patents that may
cause litigations for given company pairs. Indeed, CTF is a
hybrid modeling approach by leveraging the heterogeneous
factors of patent litigations. Specifically, we first devel-
op a deep learning method (Network embedding-combined
Convolutional Neural Network, NCNN) to represent the con-
tent features of patents, including the meta features (e.g. the

2http://blog.ipfolio.com/10-reasons-to-start-a-patent-war-by-
ipfolio-ip-management-software
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Figure 1: The visualization of Convolutional Tensor Factorization.

number of claims and citations) and the text features (e.g.
the patent title and abstracts), simultaneously. Meanwhile,
we summarize the lawsuit records of companies as a three-
dimensional tensor, where the axes indicate plaintiffs, defen-
dants and patents, respectively. Then, by combining NCNN
with tensor factorization, CTF can systematically exploit both
the content and the collaborative information. In this way, not
only the data sparsity of litigation records can be addressed,
but also the complex interactions among plaintiffs, defen-
dants and patents can be well captured by the factorized latent
factors. Next, we further use a learning to rank strategy to
generate the final ranking list of candidate patents. Finally,
we conduct extensive experiments on real-world data, whose
results clearly prove that CTF can help companies more pre-
cisely identify the risky patents by exploiting the hybrid in-
formation. To the best of our knowledge, it is the first com-
prehensive attempt for automatically predicting whether two
given companies will involve a lawsuit related to a specific
patent.

2 Related Work
We classify the related works into the following three re-
search aspects: Patent Litigation, Tensor Factorization and
Convolutional Neural Network.

Patent Litigation. Most of the existing works of patent
litigation focus on analyzing the major causes and the poten-
tial factors in patent litigation. For instance, Lanjouw and
Schankerman [2001] examined the characteristics of litigat-
ed patents and their owners and found the substantial varia-
tion across patents in their exposure to litigation risk. Cre-
mers [2004] statistically analyzed citation, number of claims,
and family size to identify the characteristics of patents most
prone to litigations. In more detail, Lim [2014] analyzed the
relationship between citations and patent litigations between
plaintiff and defendant firms, and found that the indirect and
latent citations have more influences than direct citations to
patent litigation. Recently, Marco and Miller [2017] tried
to model the relationship between patent examination qual-
ity and litigation, and found that some examination charac-
teristics can also predict litigation. Different from the above
studies, Jin et al. [2016] developed a collaborative filtering
framework, which aimed at predicting the litigation risk in a
specific industry category for high-tech companies.

Tensor Factorization. Collaborative Filtering (CF) is one
type of the widely-accept approaches in Recommender Sys-
tems [Schafer et al., 2007; Aggarwal, 2016] and it can be
further classified into memory-based CF methods and model-
based CF methods (e.g. Matrix factorization, MF). Specially,

Notation Description

SU The set of plaintiff companies
SV The set of defendant companies
SP The set of patents
R The observed litigation record tensor
Ui The latent vector of plaintiff i
Vj The latent vector of defendant j
Pk The latent vector of patent k
r̂ijk The litigation prediction between i and j because of k
Xk The patent features, i.e. the input of NCNN
Ok The output of NCNN for representing patent k
W The parameters of NCNN

Table 1: Several important mathematical notations.

Tensor Factorization (TF) can be considered as a generaliza-
tion of MF [Liu et al., 2011; 2015], in which a n-dimension
data cube is factorized, rather than a 2-dimension matrix
[Rendle et al., 2011], and the newly added dimensions can
represent the context such as time, location and social infor-
mation. For instance, to integrate the context information into
traditional CF, Karatzoglou et al. [2010] modeled the data as
a User-Item-Context N-dimensional tensor instead of the tra-
ditional 2D User-Item matrix, leading to a compact model of
the data for providing context-aware recommendations.

Convolutional Neural Network. Convolutional neural net-
work (CNN) is a variant of the feed-forward artificial neu-
ral network, which is originally designed for computer vi-
sion. Recently, CNN has also been successfully applied to
Natural Language Processing (NLP) [Goldberg, 2016], in-
cluding text similarity measures [Yih et al., 2011], search
query retrieval [Shen et al., 2014], sentence modeling [Kalch-
brenner et al., 2014], text understanding [Huang et al.,
2017] and other traditional NLP tasks [Kim et al., 2016;
Zhang et al., 2017]. It is notable that Kim et al. [2016] pro-
posed a novel context-aware recommendation model, convo-
lutional matrix factorization (ConvMF) that integrates convo-
lutional neural network (CNN) into probabilistic matrix fac-
torization (PMF). Similarly, in this paper, we design a two-
layer CNN for representing patent contents.

3 Convolutional Tensor Factorization
In this section, we first give the problem definition of patent
litigation prediction, and then show the details of the pro-
posed Convolutional Tensor Factorization (CTF) framework,
which combines Network embedding-combined Convolu-
tional Neural Network with Tensor Factorization. For better
illustration, Table 1 lists several mathematical notations.

Problem Definition. Suppose we have M companies that
could potentially be plaintiffs or defendants, N patents and
the summarized historical litigation records R, and our goal
is to precisely identify the patents that may cause patent liti-
gations between any two companies in the future.

Let’s take the plaintiff set as SU = {i|i = 1, 2, 3, · · · ,M},
the defendant set as SV = {j|j = 1, 2, 3, · · · ,M}, and the
patent set as SP = {k|k = 1, 2, 3, · · · , N}. Note that, one
company can be a plaintiff in a lawsuit and be a defendant in
another. Given a plaintiff i and a defendant j, we usually call
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Figure 2: The graphic model of CTF.

them as a company pair. If plaintiff i filed a lawsuit against
defendant j related to patent k, we can observe rijk = 1 in
tensor R. Then, our research problem becomes identifying
the potential patent litigations, e.g. in terms of patent k−, by
estimating the unobserved value of rijk− (noted as r̂ijk− ).

3.1 The Graphic Model of CTF
As shown in Figure 1, for the prediction of patent litigations,
we try to capture the collaborative information among plain-
tiffs, defendants and patents. Meanwhile, we hope to exploit
the content information of the patents, as they have a strong
connection with the lawsuit cases, and in this way, the chal-
lenge of sparsity in litigation records can be addressed.

Actually, the proposed CTF is a hybrid modeling approach
and its graphic representation is given in Figure 2, which con-
sists of two parts: (1) Network embedding-combined Con-
volutional Neural Network (NCNN); (2) Tensor Factoriza-
tion (TF). Specifically, the inputs of NCNN are the observed
patent contents Xk, including text features (Xt

k) and meta
features (Xm

k ). For simplicity, we use k to represent both
the patent k+ and patent k−.

After learning in NCNN with weights W , Ok is produced
for representing k, i.e. Ok = NCNN(W,Xk). In addi-
tion, a three-dimensional tensor is generated from the litiga-
tion records, and through TF, it can be decomposed into Ui,
Vj and Pk, corresponding to the latent vector of the plaintiff
i, defendant j and patent k, respectively, where Pk is restrict-
ed by Ok, and the details will be given later. As the litigation
records are implicit feedbacks, we resort to the learning to
rank strategy [Rendle et al., 2009] and estimate the person-
alized (for each company pair) ranking order of two patents
(k+ and k−) in CTF. This estimator r̂ijk+k− for the observed
rijk+k− could be defined as r̂ijk+k− = r̂ijk+ − r̂ijk− , for
(i, j, k+) ∈ R ∧ (i, j, k−) 6∈ R. Without loss of generality,
we compute each r̂ijk by:

r̂ijk = UT
i Vj + UT

i Pk + V T
j Pk, (1)

where UT
i Vj , UT

i Pk and V T
j Pk are exactly corresponding to

the latent interactions between the plaintiff and defendant, the
plaintiff and patent, the defendant and patent, respectively.

If using k+ >i,j k− to denote the ranking order of two
patents given company pair (i, j), we further define the prob-
ability that the companies (i, j) have a lawsuit with k+ while

Meta features Descriptions

Forward citations The number of citations received by subsequent patents.
Backward citations The number of patents cited in the patent document.
Number of claims The number of claims in a patent document.
Number of pictures The number of pictures in a patent document.
Number of sheets The number of sheets in a patent document.
Patent classifications The CPC groups a patent belongs to.
Grant lag The time elapsed between application and grant dates.
Patent group trend The variation grant trend of patents in the given group.
Patent assignee trend The variation grant trend of patents of their assignee.

Text features Descriptions

Patent title The title of the given patent.
Patent abstract The abstract of the given patent.
Patent claims The first thirty claims of the patent.

Table 2: Meta features and text features of patents.

not with k− as Eq. (2), where σ is the sigmoid function.

p(k+ >i,j k
−) = σ(r̂ijk+ − r̂ijk−). (2)

Then, in probabilistic point of view, the problem of finding
the best patent ranking >i,j⊂ SP × SP for a given company
pair (i, j) can be formalized as maximizing the probability by
Eq. (3), where U , V , P and W are the model parameters.

p(U, V, P,W | >i,j) ∝ p(>i,j |U, V, P,W )p(U, V, P,W ).
(3)

Assuming independence of company pairs, we can maxi-
mum the posterior estimator (MAP) of the model parameters:

argmax
U,V,P,W

∏
(i,j)∈SU×SV

p(>i,j |U, V, P,W )p(U, V, P,W ),

(4)
where the conditional distribution over all the observed liti-
gation preferences is given by

p(>i,j |U, V, P,W ) =

=
∏

(i,j,k+,k−)∈DR

p(k+ >i,j k
−|U, V, P,W ), (5)

where DR = {(i, j, k+, k−)|(i, j, k+) ∈ R∧ (i, j, k−) 6∈ R}
stores all the pairwise preferences. As a generative model, we
place a zero-mean spherical Gaussian prior on plaintiff latent
vectors U with variance δ2UI (I is the identity matrix) as:

p(U |δ2UI) =
M∏
i=1

N(Ui|0, δ2UI). (6)

Similar with plaintiff latent vectors, we have the defendant
latent vectors V with variance δ2V I as:

p(V |δ2V I) =
M∏
j=1

N(Vj |0, δ2V I). (7)

In the following, we will show how to represent the patent
latent vectors P by NCNN. Actually, several researches
[Campbell et al., 2016; Liu et al., 2017] have proved that
there is a strong relation between patent litigation status and
patent meta features, such as patent classification, forward
citations and backward citations. In addition, the patent doc-
uments include a rich resource of text materials, where the
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patent title provides the most important topic about the in-
vention, the abstract gives us a general outline, and the most
crucial texts are the patent claims because they are the direct
evidence of patent litigation. To better represent patents and
to deal with the data sparsity of litigation records, we extract
both the meta features and the text features as the input of
CTF (NCNN, more specifically), which are shown in Table 2.
Then, inspired by [Kim et al., 2016], we assume that a patent
latent vector is generated from two variables: internal weights
W in NCNN and the input featuresXk of patents, and the de-
tails will be illustrated in the next subsection. Thus, the final
patent latent vector is obtained by the following equations.

Pk = Ok + εk,

εk ∼ N(0, δ2P I).
(8)

Since Ok = NCNN(W,Xk), we will have:

p(P |W,X, δ2P I) =
N∏

k=1

N(Pk|NCNN(W,Xk), δ
2
P I), (9)

where for each weight Wq in W , we also place zero-mean
spherical Gaussian prior, which is shown as Eq. (10).

p(W |δ2W I) =

|W |∏
q=1

N(Wq|0, δ2W I). (10)

In this way, the output of NCNN is used as the mean of
Gaussian distribution for learning the patent latent vector,
which plays an important role as a bridge between NCNN
and TF, because it helps to fully analyze both the patent con-
tents and the historical litigation records between companies.

3.2 The Architecture for NCNN in CTF
We show details of the proposed Network embedding-
combined Convolutional Neural Network (NCNN) for gener-
ating the Ok. Figure 3 shows its architecture, which consists
of two input layers, one hidden layer and one output layer.

Input layer. Since there are two kinds of inputs for a patent
k, e.g. text materials (Xt

k) and meta features (Xm
k ), we design

two different methods to deal with them, which can be found
in: (1) text embedding layer and (2) meta embedding layer.

(1) Text embedding layer. We name each text material (the
title, abstract and claims) as a slice, and every slice can be re-
garded as a sequence of words. Then, we aim at transforming
Xt

k into a tensor TC×H×d0 , where C is the total number of
slices, H is the number of words in each slice, and d0 is the
pre-trained word embedding size [Mikolov et al., 2013].

Hidden layer for text embedding. For representing the
text information of TC×H×d0 , we design a two-layer Convo-
lutional Neural Network. As shown in Figure 3, the first hid-
den layer is at the word level and the second one is at the sen-
tence level, which is consistent with the nature of patent doc-
ument analysis in the following terms. First, as a strict logic,
patent descriptions are often sensitive to the word sequences
in patent documents because different sequences with the
same words may have quite different meanings, which can
be well learned through the hidden layer at word level. Sec-
ond, there are several independent claims following by many
dependent ones, and in general, each dependent claim is nar-
rower than the independent claim from which it depends, so
the order of claims is also of great significance, which can be
well learned at the sentence level. Note that both layers con-
tain a convolution and a pooling operation, and the weights
and bias variables here are parts of W defined in CTF.

(2) Meta embedding layer. In this layer, we first estab-
lish the citation network of patents, and the meta features
are summarized as attributes of the patent in that network.
Then, inspired by network representation learning, we intent
to produce a d1-dimension representation of each patent via
attribute network embedding. Here are some considerations.
First, the strong relations between patent litigation status and
patent meta features have been proved before [Campbell et
al., 2016]. Second, citation relations also play a significant
role in patent litigation[Lim, 2014] as a typical network struc-
ture ( e.g. following relations in Twitter), which are complete-
ly suitable for processing with network representation learn-
ing, especially for integrating more attribute information.

Specifically, we connect the meta features of each patent as
an attribute vector, and the details will be given in the experi-
ments. By integrating all the attribute vectors, we generate an
attribute matrix FN×Q , where a row fk is the attribute vector
of patent k. Following the idea of DeepWalk [Perozzi et al.,
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2014], we first design a method to generate sample paths from
the patent citation network G, which involves each patent as
the root, and then takes the random permutations of the neigh-
bour nodes of this patent into the path. We acquire many path-
s in the form of 〈root, neighborhood1, neighborhood2, ...〉.
After that, for each patent in generated paths, we except to
maximize the probability for predicting the central patent k
given the surrounding patents {k− l, ..., k+ l} \ {k} donated
as context(k), where l is the size of the window. Therefore,
we have:

max
∑
k

log p(k|context(k)) =

max
∑
k

log
exp(e′Tk econtext(k))∑
j exp(e

′T
j econtext(k))

,

(11)

where e′k and econtext(k) are the output embedding and con-
text embedding of patent k, respectively. In network embed-
ding, econtext(k) is usually defined as the average of input
embedding of the 2l surrounding patents of k:

econtext(k) =
1

2l

∑
j∈[k−l,k+l]\{k}

ej . (12)

Moreover, for integrating attribute information F into the
embedding process, we define the input embedding of patent
k as ek = ET fk, where EQ×d1

is the transformation matrix
needed to be trained. Finally, we employ wildly-used nega-
tive sampling to approximate this objective function, and ob-
tain the output embedding (e.g. e′k for patent k) by Adaptive
Moment Estimation [Kingma and Ba, 2014] algorithm.

Output layer. This layer targets at generating the represen-
tation vectorOk for patent k, with the input generated by both
the hidden layer and the meta embedding layer. There are two
operations here. The first one is concatenating the text em-
bedding and meta embedding together, and the second one is
mapping through the full connection layer. Eventually, after
all these operations, an alphabetic patent document is turned
into a simple numeric latent vectorOk with the patent content
information retained, and this vector is further used to learn
the patent latent vectors P (Eq.s (8) and (9)) in CTF.

3.3 The Optimization for CTF
This subsection provides the method for the variables to be
optimized in CTF, including the plaintiff latent vectors U , the
defendant latent vectors V , the patent latent vectors P , and
the weights and bias variables W in NCNN. Combining Eq.s
(4)-(10) and through maximizing the posterior distribution,
we have the formulation as Eq. (13):
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Figure 5: The distribution of observed patent claims and words.

argmax
U,V,P,W

∏
(i,j)∈SU×SV

p(U, V, P,W | >i,j , X, δ
2
UI, δ

2
V I, δ

2
P I, δ

2
W I)

= argmax
U,V,P,W

∏
(i,j)∈SU×SV

p(>i,j |U, V, P,W ) p(U |δ2UI) p(V |δ2V I)

p(P |W,X, δ2P I) p(W |δ2W I).

(13)

Then, the negative log of the above posterior distribution is
given by Eq.(14), where λU is 1/(2δ2U ), λV is 1/(2δ2V ), λP
is 1/(2δ2P ) and λW is 1/(2δ2W ):

L(U, V, P,W ) =
∑

(i,j,k+,k−)∈DR

−[lnσ(r̂ijk+ − r̂ijk−)]

+ λU

M∑
i

||Ui||2F + λV

M∑
j

||Vj ||2F + λW

|W |∑
q=1

||Wq||2F

+ λP

N∑
k

||Pk −NCNN(W,Xk)||2F .

(14)
In order to minimize the above object function, we adopt

Adadelta optimizer [Zeiler, 2012] to update the model param-
eters with back propagation algorithm, which can be imple-
mented automatically through Tensorflow3.

Finally, we could apply U , V and P to estimate the pref-
erences of the company pairs on the testing set, and thus, the
risky patent k can be identified based on r̂ijk (i.e. by Eq. (1)).

4 Experiments
We provide empirical validation on a real-world dataset
which contains two parts: patent lawsuit cases crawled from
Patexia4 and patent documents collected from the USPTO5.

4.1 Dataset Description
The USPTO dataset includes 6,422,962 granted US patents
and the Patexia dataset totally contains 60,081 patent lawsuits
from 2005-2016. For preprocessing, we first match the law-
suit cases with the USPTO data through the relevant patent
numbers, and match the litigated companies and patent as-
signees by their names. Then, after removing the companies
whose litigation records are less than a threshold (i.e. 2), we
finally get 13,024 lawsuit pairs related to 1,283 companies
and 4,397 litigated patents. For the model training, we further
randomly sample totally 100,000 non-litigated patents from
these companies.

3https://www.tensorflow.org
4https://www.patexia.com/
5https://www.uspto.gov/
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Figure 6: The experimental results on Leave one out.

Some statistics of the data are shown in Figure 4. Specifi-
cally, the left part is a pie chart denoting the distribution of the
owners of the litigated patents, where we can find that around
16% patents don’t belong to the plaintiff nor the defendant of
that lawsuit. This implies the complexity of relation between
patents and companies. The right part shows the differences
of the average content statistics (e.g. the number of claims)
between litigated patents and non-litigated ones, which sup-
ports idea that the relatively valuable patents are more likely
to be involved in litigations. Therefore, it is necessary to ex-
ploit content features for predicting patent litigations.

4.2 Baseline Approaches
Since there have been few prior works to directly predict the
patent litigation between two given companies, we introduce
some variants of CTF to highlight the effectiveness of each
component of our framework. Since the probability of litiga-
tion increases with the value of the patent [Marco and Miller,
2017], we also apply patent value, calculated by Generality,
as an indicator for litigation prediction. The details of vari-
ants are as follows:

• Meta-CTF: The framework is similar to CTF, but only
uses the meta features as the input of NCNN.

• Text-CTF: The framework is also similar to CTF, but on-
ly uses the text features as the input of NCNN.

• TF: TF only uses the lawsuit records for generating ten-
sor factorization based prediction [Rendle et al., 2011].

• SVM: Instead of tensor factorization (TF), the well-
trained patent vectors in NCNN are put into the SVM
classifier for making predictions.

• LR: LR has the same operations as in SVM.

• Generality: This is a widely used method for patent e-
valuation, and the prediction is made by the value of
Generalityk = 1 −

∑
c∈Ak

Cite2c , where Ak is set of
classes patent k belongs to, and Citec is the share of
forward citations to patent k from class c out of all the
forward citations to k [Hall and Trajtenberg, 2004].

4.3 Feature Extraction
First, we extract the patent title, abstract and claims as the
text features of patents, then remove stop words from them
and get the pre-trained word embeddings. Second, we extract
meta features of patents. The first 6 meta features in Table
1 are all numeric features that can be directly obtained from
the patent documents. Specifically, the patent classification

20% 40% 60% 80%
Ratio of Training Set

0.5

0.6

0.7

0.8

0.9

A
U

C

Generality SVM TF Meta-CTF Text-CTF CTFLR

Figure 7: The experimental results on Percentage wise.

is consistent with CPC (Cooperative Patent Classification)6,
and there are totally 656 groups. Since the patent authoriza-
tion numbers have changed greatly over years and their varia-
tion trends differ in different domains and companies, in order
to grasp the relative novelty of given patents, we define two
trend features (e.g. group trend and assignee trend), which
record the numerical features from 1976 to 2016 in the group
and the assignee that patent belongs to, respectively. By in-
tegrating all the meta features, we get a 742-dimension (i.e.
Q in NCNN equals to 742) vector of a given patent, which
is the attribute of a patent node in patent citation network for
network embedding.

4.4 Parameter Validation and Experimental
Settings

The size of latent dimension ofUi, Vj , and Pk is set as 10, and
they are initialized with Gaussian distribution N(0, 0.01I).
According to statics in Figure 5, we set the number of slices
in NCNN as 32, including the title, abstract, and 30 claims,
and the number of words in each slice is set as 300. Through
our test, the best performing values of λU , λV , λP and λW
are listed as 10−4, 10−3, 10−5 and 10−6 and the learning rate
is set as 0.1. For better proving the effectiveness of our CTF,
we develop two ways of dataset partition:

• Leave one out. To get testing set, we randomly selec-
t one litigated patent for each company pair (i, j) from
their litigation history, and by combining it with n non-
litigated patents, we get n + 1 testing samples for com-
panies (i, j). Then, the rest of litigated patents serve
as training set integrated with the same number of non-
litigated patents. In our experiments, we set n as 10. To
evaluate the performance of each method, we use Preci-
sion@K, Recall@K and F1@K as metrics on the testing
set, which are commonly used for measuring the ranking
results.

• Percentage wise. Different from Leave one out, we first
collect all samples using both the litigated patents and
the same number of non-litigated ones. Then, to observe
how each method behaves at different sparsity levels of
litigation records, we randomly sample training set ac-
cording to the ratio ranging from 20% to 80% and the
rest serve as testing set. Without loss of generality, we
report the evaluation result of predicted patent rankings
by the average AUC, similar with [Rendle et al., 2009].

6https://www.uspto.gov/web/patents/classification/cpc.html
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Companies Patents Lawsuits

Plaintiff (i) Defendant (j) ID (k) Title UT
i Vj UT

i Pk V T
j Pk r̂ijk rijk

MobileMedia Ideas Apple 5479476 Mobile telephone having groups of user adjustable... 0.0022 5.9228 5.1808 11.1058 1
6698825 Sunshade for a vehicle 0.0022 -0.6931 -3.4731 -4.1640 /

Apple Oracle International 5434872 Apparatus for automatic initiation of data transmission 0.0027 14.1623 19.7895 33.9545 1
6956752 Coolant sensor and bleed valve 0.0027 -3.7096 7.1919 3.4850 /

Table 3: A case study on patent litigation prediction output by CTF.

4.5 Experimental Results

All the experiments are run on a Tesla K20m GPU, and Fig-
ure 6 and Figure 7 show the experimental results on Leave
one out and Percentage wise, respectively. From Figure 6 we
can observe that CTF performs better than the baselines un-
der all the metrics with respect to different K. For instance, it
achieves more than 10% of improvement on the precision of
Top-1 prediction (i.e. Precision@1) compared with the sec-
ond best method Text-CTF, which is consistent with the ex-
isting discoveries of many researches [Campbell et al., 2016]
that meta features plays a significant role in patent litigation
analysis. On the other hand, Meta-CTF has a similar per-
formance with Text-CTF while both of them outperform TF,
which means the content information (both meta features and
content features) are helpful for patent litigation prediction,
which can be well represented by NCNN. One step further,
though the same content information is exploited in LR, SVM
and CTF, CTF performs much better than both LR and SVM,
which proves the effectiveness of tensor factorization by in-
tegrating the collaborative information. In terms of Figure
7, CTF still gets the best results at different sparsity levels.
Since TF and Generality can exploit few of the content in-
formation of patents, they do not perform very well. For in-
stance, when the ratio of training set is 20% and 40%, TF
performs much worse than LR and SVM. These experimen-
tal results demonstrates the rationality of integrating NCNN
and tensor factorization in CTF for exploiting the hybrid in-
formation.

4.6 Case Study

In Table 3, we present a case study of CTF on three com-
panies, Apple, Oracle International and MobileMedia Ideas,
respectively. From the first case between MobileMedia
Ideas and Apple, we find that CTF successfully predict that
there will be a lawsuit about patent “5479476” instead of
“6698825” in the test set. It is because both companies care
more about the core technologies of mobile phones than vehi-
cles, and this is indicated byUT

i Pk, V T
j Pk and r̂ijk. Actually,

the assignee of patent “5479476” is Nokia, which verifies that
companies might get involved in a lawsuit not only with their
own patents, and this phenomenon can be well captured by
CTF. The second case is between Apple and Oracle Interna-
tional, from which we can see both patents are very important
to Oracle International, but Apple shows more concern about
the first one, so there is a lawsuit for patent “5434872” while
not for “6956752”.

5 Conclusion
In this paper, we presented a focused study on patent liti-
gation prediction and proposed a hybrid modeling approach
Convolutional Tensor Factorization (CTF) for this problem.
Specifically, a deep learning method (Network embedding-
combined Convolutional Neural Network, NCNN) was de-
veloped to represent the content features from the patents.
Meanwhile, the lawsuit records were summarized as a three-
dimensional tensor. By integrating NCNN and tensor fac-
torization, CTF could systematically exploit both the content
information and the collaborative information. Finally, exten-
sive experimental results on the real-world data proved that
CTF can help companies more precisely identify the risky
patents. We hope this work could lead to more future studies.
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