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Recent decades have witnessed the rapid growth of educational data mining (EDM), which aims at auto-
matically extracting valuable information from large repositories of data generated by or related to people’s
learning activities in educational settings. One of the key EDM tasks is cognitive modelling with examina-
tion data, and cognitive modelling tries to profile examinees by discovering their latent knowledge state and
cognitive level (e.g. the proficiency of specific skills). However, to the best of our knowledge, the problem
of extracting information from both objective and subjective examination problems to achieve more precise
and interpretable cognitive analysis remains underexplored. To this end, we propose a fuzzy cognitive diagno-
sis framework (FuzzyCDF) for examinees’ cognitive modelling with both objective and subjective problems.
Specifically, to handle the partially correct responses on subjective problems, we first fuzzify the skill profi-
ciency of examinees. Then we combine fuzzy set theory and educational hypotheses to model the examinees’
mastery on the problems based on their skill proficiency. Finally, we simulate the generation of examination
score on each problem by considering slip and guess factors. In this way, the whole diagnosis framework is
built. For further comprehensive verification, we apply our FuzzyCDF to three classical cognitive assessment
tasks, i.e., predicting examinee performance, slip and guess detection, and cognitive diagnosis visualization.
Extensive experiments on three real-world datasets for these assessment tasks prove that FuzzyCDF can re-
veal the knowledge states and cognitive level of the examinees effectively and interpretatively.
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1 INTRODUCTION

During the past few decades, one of the most important innovations in computer aided education
has been educational data mining (EDM), which is designed for exploiting valuable information
from large-scale repositories of collected data with educational settings (Ma et al. 2000; Beck and
Woolf 2000). Involving the applications of data mining, machine learning, psychology, and statis-
tics, EDM has drawn a great deal of attention in various educational scenarios, e.g., massive open
on-line courses (MOOCs) (Anderson et al. 2014), intelligent tutoring systems (Burns et al. 2014),
and cognitively diagnostic assessment (CDA) (Nichols et al. 2012).

As the main participants in an education context, learners in different scenarios are usually tar-
geted for modelling or profiling. For instance, the examinees, i.e., learners in CDA, are modelled
based on examination data for discovering their knowledge state and cognitive level (e.g., the pro-
ficiency of specific skills), and this is referred to as cognitive modelling. With the comprehensive
understanding of examinees, cognitive modelling could be further applied to numerous applica-
tions, such as personalized remedy recommendation and teaching plan improvement. Therefore,
massive efforts in both psychometrics and data mining have been undertaken to improve the so-
lutions of cognitive modelling: In psychometrics, most of the existing studies focus on cognitive
diagnosis. In the cognitive diagnosis models (CDMs) (DiBello et al. 2006), examinees are character-
ized by the proficiency of specific skills (e.g., problem-solving skills like calculation), and typically
a Q-matrix (Tatsuoka 1984) is given as the prior knowledge from education experts for denot-
ing which skills are needed for each problem. In terms of data mining, matrix factorization (MF)
(Koren et al. 2009) is a classical modelling technique that is widely used to model examinees by
latent factors (Toscher and Jahrer 2010; Thai-Nghe et al. 2010; Desmarais 2012).

In spite of the importance of previous studies, there are still some limitations in existing meth-
ods. For instance, the latent factors in MF are unexplainable for describing the knowledge state
of examinees’ cognition. Comparatively, the results of CDMs could lead to a better interpreta-
tion. However, CDMs can only analyze examinees based on simple objective problems, and the
information from subjective problems is largely underexplored (Liu and Jansen 2015). As shown
in Figure 1, the objective problems differ from subjective ones in two respects: (1) Answer type,
where an objective problem has a standard answer while the subjective problem has no such pre-
set answer; (2) Scoring manner, where the response to an objective problem is objectively either
correct (the same as the answer) or wrong (anything else). Comparatively, the response to a sub-
jective problem can be totally correct, totally wrong, or partially correct based on the subjective
judgement given by the reviewers (teachers). Obviously, it is hard for examinees to respond to
subjective problems correctly by guessing an answer or wrongly by carelessness (e.g., a slip of the
pen). Thus, these subjective problems measure the examinees much better, and it is of significant
importance to extract information from both objective and subjective problems for cognitive mod-
elling rather than simply ignoring the subjective problems or treating them as objective problems
(Samejima 1972). There are several challenges: Is it possible to handle the dichotomous scores of
objective problems and the polytomous scores of subjective problems simultaneously? Is it pos-
sible to achieve both precise and interpretable cognitive analysis? What is the best approach to
cognitively assessing examinees based on this form of cognitive modelling (e.g., predicting exami-
nee future performance, detecting examinee characteristics like slip and guess, and visualizing the
cognitive diagnosis results)?
To conquer these challenges, in our preliminary work, we proposed a fuzzy cognitive diagnosis

framework (FuzzyCDF) for examinees’ cognitivemodelling (Wu et al. 2015). FuzzyCDF is a four-tier
(i.e., latent trait, skill proficiency, problemmastery, and problem score) generativemodel to capture
the relationship between examinees’ knowledge state and their performance on both objective
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Fig. 1. An example of objective and subjective problems.

and subjective problems. Since the response to a subjective problem may be partially correct, we
adopted a solution inspired by fuzzy systems. Specifically, we first fuzzified the skill proficiency
of examinees from a determinative variable (mastered/non-mastered) to a fuzzy one (the degree
of mastery). Then we assumed that the skill interactions on objective and subjective problems
satisfy two different hypotheses: conjunctive and compensatory (Pardos et al. 2008); we fuzzified
the problem mastery of examinees based on these two hypotheses by using fuzzy logic. Next, we
modelled the generation of problem scores (examinee performance) by considering two exceptions:
slip and guess. In this way, the whole diagnosis framework is built. We also proposed a Markov-
chain Monte Carlo (MCMC) sampling algorithm to estimate the parameters, and the effectiveness
of FuzzyCDF was finally verified by predicting examinee performance.
In this article, with the help of FuzzyCDF, we further address two additional cognitive assess-

ment tasks: slip and guess detection and cognitive diagnosis visualization. Specifically, an effective
Bayesian posterior–based method is proposed to calculate the probability of slip and guess given
the examinees’ responses. In this way, we can better understand the reasons behind the examinees’
responses (for example, is a wrong response because of the carelessness/slipping of the examinee
or because of her low mastery of the problem?). On the other hand, combining with the labelled
Q-matrix, we can depict the knowledge structure, i.e., the inferred specific skill proficiency, of each
examinee for visualized cognitive diagnosis analysis.
Overview. The rest of this article is organized as follows. In Section 2, we introduce the re-

lated work. Section 3 states the preliminaries and basic concepts in cognitive modelling. Section 4
details the whole framework of our FuzzyCDF. In Section 5, we specify how to accomplish three
cognitive diagnosis tasks with the help of FuzzyCDF. Section 6 shows the experimental results.
Finally, conclusions are given in Section 7.

2 RELATEDWORK

In this section, we first introduce existing cognitive modelling methods from two perspectives:
data-mining methods and cognitive diagnosis. Then, we discuss the related work on cognitive
assessment tasks.

2.1 Data Mining Methods

An increasing number of studies have demonstrated the effectiveness of matrix factorization (MF)
for cognitive modelling (Liu et al. 2015; Chen et al. 2017) as well as predicting examinee per-
formance by factorizing the score matrix. For instance, Toscher and Jahrer (2010) utilized singular
value decomposition (SVD) and other factor models tomodel examinees. In Thai-Nghe et al. (2010),
the MF technique was compared with regression methods for predicting examinee performance.
Thai-Nghe and Schmidt-Thieme (2015) adopted relational MF for modelling examinees in intel-
ligent tutoring systems. In addition, Desmarais (2012) and Sun et al. (2014) applied non-negative
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matrix factorization to infer theQ-matrix. In MOOCs, Díez Peláez et al. (2013) proposed MF-based
methods to model learning preferences. However, the latent factors inferred by traditional MF
models are usually unexplainable, i.e., each dimension of the factor vector cannot correspond to a
specific skill. In this work, we will adopt cognitive diagnosis of examination data to obtain more
interpretative results.

2.2 Cognitive Diagnosis

In educational psychology, many CDMs have been developed to mine examinees’ skill proficiency
(DiBello et al. 2006). CDMs can be roughly divided into two categories: continuous and discrete.
The fundamental continuous CDMs are item response theory (IRT) models (Rasch 1961; Birnbaum
1968; Embretson and Reise 2013), which characterize examinee by a continuous variable, i.e., la-
tent trait, and use a logistic function to model the probability that an examinee correctly solves
a problem. For discrete CDMs, the basic method is deterministic inputs, noisy “and” gate model
(DINA) (Haertel 1984; Junker and Sijtsma 2001; De La Torre 2011). DINA describes an examinee
by a latent binary vector that denotes whether she has mastered the skills required by the prob-
lem, and a given Q-matrix is used to guarantee the interpretation of the diagnosis results. The
DINA-based models are applied to further specific educational scenarios, such as differential item
functioning assessment (Hou et al. 2014), learning team formation (Liu et al. 2016) and comprehen-
sion test validation, and difficulty estimation across multiple forms (Clark 2013; Huang et al. 2017).
Though discrete CDMs are interpretable, their diagnosis results are usually not accurate enough.
Furthermore, existing methods can not handle the subjective problems.

2.3 Cognitive Assessment Tasks

Based on the cognitive diagnosis results, e.g., the proficiency of specific skills, cognitive assessment
tasks can be accomplished for deeper analysis of examinees. To discover what makes a problem
easier or harder for examinees, predicting examinee performance has been viewed as a key task
in Cen et al. (2006), Toscher and Jahrer (2010), Thai-Nghe et al. (2010), and De La Torre (2011)
in the fields of cognitive diagnosis and data mining. Meanwhile, many efforts have been made to
analyze the motivations and sentiment of examinees in problem-solving scenarios, such as slip
and guess detection (Baker et al. 2008; Gu et al. 2014) and gaming-the-system (Baker et al. 2004;
Wu et al. 2017). In addition, cognitive diagnosis results can be visualized for further analysis in a
more convenient and interpretative way. For instance, Ben-Naim et al. (2008) proposed a solution
trace graph to describe the problem-solving process, while Leony et al. (2012) provided another
visualization tool to represent the learning systems. In this article, we also address three cognitive
assessment tasks, i.e., predicting examinee performance, slip and guess detection, and cognitive
diagnosis visualization, based on our cognitive diagnosis model.

3 PRELIMINARIES

In this section, we introduce the basic concepts of cognitive diagnosis, describe the characteristics
of objective and subjective problems, and present the basic concepts of both fuzzy set and fuzzy
logic.

3.1 Cognitive Diagnosis

As shown in Figure 2, examinees are usually required to participate in the pre-designed examina-
tion to assess their proficiency. Based on the examination results (in the form of score matrix with
each examinee as a row and each problem as a column), psychometricians propose probabilistic
models to infer the actual knowledge state of each examinee (e.g., the proficiency of one ormultiple
specific skills) by fitting the real data. This type of cognitive modelling is formally named cognitive
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Fig. 2. A toy process of cognitive diagnosis.

Fig. 3. A toy example of Q-matrix.

Table 1. Main Differences between Objective and Subjective Problems

Attribute Objective Subjective
Answer Type closed, limited with standard answer open, theoretically unlimited without

standard answer
Scoring Manner dichotomous, objectively polytomous, subjectively
Superiority easy for designing, well-formed for

cognitive modelling

richer solving information for capturing

the actual knowledge level
Inferiority considerable effects of slip and guess irregular response for unified modelling
Examples chosen problem free-response problem

diagnosis (DiBello et al. 2006). Furthermore, the obtained diagnosis results can be reformulated
as a diagnosis report, which can help examinees, instructors, and educators improve the whole
learning cycle. The probabilistic models to fit the score matrix and infer the knowledge state are
formally named CDMs. During cognitive diagnosis, to specify the required skills (e.g., knowledge
components, such as triangles and inequalities, or problem-solving abilities, like calculation and
induction) of each problem, a Q-matrix (Tatsuoka 1984) is predefined by the examination designer
or education experts. Figure 3 shows a toy example of a Q-matrix. For instance, an examinee is
required to master Skill 2 and 3 to figure out Problem 2.
In this article, we also propose a cognitive diagnosis model to mine the actual knowledge state

of examinees accurately and interpretatively, and it is based on the real-world examination data
with the given Q-matrices.

3.2 Objective and Subjective Problems

In general, an examination consists of two different types of problems: objective and subjective
problems (Liu and Jansen 2015). Table 1 summarizes the differences between these problems.

Indeed, any problem is either objective or subjective depending on the answer type and scoring
manner. An objective problem has a clear correct answer, i.e., a standard answer, while a subjective
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problems is anything else. With the standard answer, objective problems are judged as either cor-
rect or wrong. In contrast, the response to a subjective problem could be marked as correct, wrong,
or partially correct according to the subjective judgement of a reviewer (teacher).
It is relatively easy and convenient to design an objective problem and predefine limited answer

scenarios, and this further benefits the cognitive diagnosis due to the well-formed binary response.
Therefore, a series of traditional psychometrical models are proposed based on objective problems
(Rasch 1961; Birnbaum 1968; Embretson and Reise 2013; Haertel 1984; Junker and Sijtsma 2001; De
La Torre 2011). Nevertheless, one obvious flaw with the pre-set answers of the objective problems
is that it cannot determine whether the examinee gets the correct answer based on her knowledge
or just a guess. Designing subjective problems differs from evaluating examinees with theoreti-
cally unlimited types of answers, and it is both harder and less intuitive for psychometricians to
cognitively analyze the polytomous scores. However, the richer information in the responses (like
the detailed solving process) provides a better way of capturing the actual knowledge state of ex-
aminees. For instance, it is much more difficult to answer a subjective problem correctly just by
guessing.
In this article, instead of ignoring subjective problems or simply treating them as objective ones

(Samejima 1972), we develop a more general cognitive diagnosis framework to handle the two
types of problems simultaneously.

3.3 Fuzzy Set and Fuzzy Logic

In classical set theory, the membership of elements in a set is determinatively binary, and this
is consistent with determinative concepts such as black versus white, success versus failure, and
correct versus wrong. To handle the “fuzzy” concept, fuzzy sets (the sets whose elements have de-
grees of membership) are introduced (Jantzen 2013; Zadeh 1965). Therefore, fuzzy sets can address
concepts such as whether a proposition is true to some degree, partially black/white, and partially
correct/wrong.
A fuzzy set is a pair (U , μ ), where U is a set and μ : U → [0, 1] is a membership function. For

each x ∈ U , the value μ (x ) is called the degree of membership of x in (U , μ ). For instance, let (U , μ )
be the fuzzy set of the black objects, and then an object x with μ (x ) = 1 is in (U , μ ) (absolutely
black); x with μ (x ) = 0 is not in (U , μ ) (absolutely not black), x with 0 < μ (x ) < 1 is partially in
(U , μ ) (somewhat black).
In terms of the relationship between one element and multiple fuzzy sets, researchers devel-

oped fuzzy logic as an extension of multi-valued logic (Klir and Yuan 1995). Classical multi-valued
logic operations such as “AND” and “OR” can be generalized by fuzzy set operations like fuzzy
intersection and fuzzy union.
In this article, we adopt fuzzy set theory to model examinees’ knowledge state and cognitive

level. In this way, the specific degree of skill proficiency can be measured rather than simply classi-
fied as absolutely mastered or non-mastered. Going one step further, for modelling problem mas-
tery, we utilize fuzzy logic to effectively capture two kinds of skill interactions to combine the
fuzzified proficiency of multiple skills.

4 FUZZY COGNITIVE DIAGNOSIS

In this section, we will introduce our FuzzyCDF. As shown in Figure 4 (from top to bottom), our
proposed method is a generation process that starts with examinees’ latent traits (e.g., a general
ability of math) and then determines the examinees’ skill proficiency (e.g., the proficiency of trian-
gles and functions); next, the examinees’ problem mastery is computed, and the observable scores
are generated by considering slip and guess factors. For better illustration, Table 2 shows some
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Fig. 4. Four-tier fuzzy cognitive diagnosis frame-

work.

Fig. 5. Fuzzified skill proficiency and problem

mastery.

Table 2. Some Important Notations

Notation Description
R ji the score of examinee j on problem i
θ j the high-order latent trait of examinee j
α jk the proficiency of examinee j on skill k
ajk ,bjk the discrimination, difficulty of examinee j on skill k
μk the membership function of fuzzy set related to skill k
ηji the mastery of examinee j on problem i
si ,дi the slip and guess factors of problem i

math notations, and each step of FuzzyCDF and the training procedure will be specified in the
following subsections.

4.1 Fuzzifying Skill Proficiency

Psychologically, each examinee j has a high-order latent trait θ j (e.g., a general ability of math)
(Rasch 1961; Birnbaum 1968). In this subsection, we show the way to get the proficiency of an
examinee in specific skills (e.g., problem-solving skills like calculation) from her latent trait. As
shown in the top two tiers of Figure 4, this is the first step in cognitive diagnosis models. Here, the
challenge is that we have to handle both objective and subjective problems, simultaneously.
In DINA-based CDMs, the examinees’ skill proficiency is assumed to be determinatively mas-

tered (i.e., 1) or nonmastered (i.e., 0), so that this modelling can fit objective problems with abso-
lutely correct or wrong responses. However, for a subjective problem that has a partially correct
response, the above “absolutely” modelling on skill proficiency cannot fit well as shown in the
experiments (detailed in Section 6.2.1). To address this issue, we adapt fuzzy set theory to cog-
nitive modelling (Zadeh 1965; Jantzen 2013; Chrysafiadi and Virvou 2015): We fuzzify the skill
proficiency and the problem mastery to model examinees’ responses to objective and subjec-
tive problems. Having said that, “fuzzify” means redefining the original determinatively binary
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variable (i.e., mastered or non-mastered) to a fuzzy one valued in [0,1]. We argue the assumption
as follows:

Assumption 1. The proficiency of an examinee on a skill is the degree of membership of the

examinee in a fuzzy set that is related to the skill.

Here, we assume that a skill k is related to a fuzzy set (J , μk ), where J is the set of examinees
and μk : J → [0, 1] is the membership function. Then, for each j ∈ J , we define the proficiency of
examinee j on skill k , α jk as the degree of membership of j in (J , μk ), μk (j ). Thus, if examinee j
masters skill k to some extent, then the element j is a fuzzy member of the fuzzy set, i.e., 0 ≤ α jk =
μk (j ) ≤ 1. In this way, we can fuzzify the skill proficiency of an examinee into a fuzzy variable val-
ued in [0,1]. For instance, as shown in Figure 5(a), examinee j (represented by her latent trait θ j )
is fully included, fully excluded, and partially included by the fuzzy sets related to Skill 1, Skill 2,
and Skill 3, respectively. It also means that examinee j has completely mastered, completely non-
mastered, and partially mastered Skill 1, Skill 2, and Skill 3, respectively. Formally, following an
IRT-like high-order logistic model (Rasch 1961; Birnbaum 1968; De La Torre and Douglas 2004; De
La Torre 2011), α jk and μk (j ) are defined as:

α jk = μk (j ) =
1

1 + exp[−1.7ajk (θ j − bjk )] . (1)

The implication is that the proficiency of an examinee on a specific skill (α jk ) depends on the
difference between the examinee’s high-order latent trait (θ j ) and the properties of the skill: the
difficulty (bjk ) and discrimination (ajk ) of skill k for examinee j (De La Torre and Douglas 2004).
The coefficient 1.7 is an empirical scaling constant in logistic cognitive models to minimize the
maximum difference between the normal and logistic distribution functions (Hulin et al. 1983;
Camilli 1994). In this way, we can determine the proficiency of an examinee in specific skills from
her latent trait.

4.2 Fuzzifying Problem Mastery

Based on the fuzzified skill proficiency in Section 4.1, we can further fuzzify the problem mastery
of examinees.
Similarly, traditional CDMs like DINA handle problem mastery as a determinative binary vari-

able, i.e., mastered or non-mastered. CDMs assume that problem mastery is a result of interaction
of examinees’ proficiency in required skills of this problem (Pardos et al. 2008). Thus, we will first
discuss the skills’ interaction on objective and subjective problems and then introduce a method to
model the two kinds of interactions according to fuzzy logic and fuzzify themastery of an examinee
on a problem.
The skill’s interaction on problems can be mainly categorized into conjunctive and compensatory

(Pardos et al. 2008). Conjunctive means that an examinee must master all the required skills to
solve a problem, while compensatory means that an examinee is able to solve a problem as long
as she masters any skill required by the problem. As for examinations, an objective problem has
a unique standard answer and cannot be answered correctly unless the examinee masters all the
required skills without any omission. Thus, the skill’s interaction on objective problems is usually
assumed to be conjunctive (Pardos et al. 2008). In contrast, a subjective problem is a free-response
one and the examinees can write not only the final answers but also the solution process, which
includes writing the equations, deducing, calculating, and so on (a toy example is shown in the
right part of Figure 1). That is, given a subjective problem and the required skills, the more skills an
examinee masters, the higher the score she will achieve for this problem. Therefore, in this study,
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we assume that the skill’s interaction on subjective problems is compensatory. In sum, we propose
an assumption about skill interaction on the problems as follows:

Assumption 2. The skills’ interaction on objective (or subjective) problems is conjunctive (or
compensatory).

Now, we model these two kinds of interactions in a fuzzy way to infer the problem mastery.
Specifically, given the set of examinees J , suppose we have a problem i requiring Skill 1, Skill 2,
and Skill 3, with their fuzzy sets (J , μ1), (J , μ2), and (J , μ3). As shown in Figure 5(b), examinee
j1 is fully included by the fuzzy sets related to Skill 1, Skill 2, and Skill 3 and examinee j2 is not
included by the fuzzy set related to Skill 3. This means that if we adopt the conjunctive assumption
(similarly to the “AND” operation), examinee j1 has mastered problem i (because she has mastered
all the skills needed by problem i) and examinee j2 has not. In addition, as shown in Figure 5(c),
examinee j1 is fully included by the fuzzy sets related to Skill 1 and Skill 2, and examinee j2 is not
included by any of the fuzzy sets. Here, under the compensatory assumption (similarly to the “OR”
operation) examinee j1 could possibly master problem i , because she has mastered at least one of
the required skills. In summary, the set of the examinees who master all (any) of the skills required
for problem i is the intersection (union) of the fuzzy sets related to the skills. Thus, we propose an
assumption to infer the problem mastery as:

Assumption 3. If the skills’ interactions between each other on a problem is conjunctive (or com-
pensatory), then the mastery of an examinee on this problem is the degree of membership of this
examinee in the intersection (or union) set of the fuzzy sets related to the skills required by the
problem.

Formally, given a Q-matrix with K skills, the mastery of an examinee j on an objective problem
i , ηji , is defined as the following equation under a conjunctive assumption:

ηji =
⋂

1≤k≤K,qik=1
μk (j ). (2)

Similarly, ηji for subjective problems is defined as the following equation under a compensatory
assumption:

ηji =
⋃

1≤k≤K,qik=1
μk (j ). (3)

Here, qik from the Q-matrix indicates whether problem i requires skill k (1 means required and
0 means non-required). Without loss of generality, we adopt the simplest fuzzy intersection and
union operation1 (the standard fuzzy intersection and union (George J and Bo 2008)) as:

μA∩B (x ) =min(μA (x ), μB (x )). (4)

μA∪B (x ) =max (μA (x ), μB (x )).

In this way, we could fuzzify the mastery of each examinee on every problem (ηji ), whether an
objective or subjective problem.
Here, we compare our fuzzy cognitive modelling with traditional methods as shown in Table 3.

Note that the introduction of fuzzification actually benefits our cognitive modelling in three re-
spects: (1) obtaining the more precise representation of skill proficiency for each examinee, (2) fit-
ting both the objective (dichotomous score) and subjective (polytomous score) problems well, and
(3) providing a convenient method (well-defined fuzzy logic) to incorporate two kinds of education
hypotheses (conjunctive/compensatory) for a combination of multiple skill proficiency.

1The effects of different kinds of fuzzy set operation are out of the scope of this article.
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Table 3. Comparison between Traditional and Fuzzy Cognitive Modelling

Traditional Methods Fuzzy Cognitive Modelling
Skill Proficiency binary variable in {0,1} fuzzy variable in [0,1]
Problem Mastery binary variable in {0,1} fuzzy variable in [0,1]
Conjunctive Interaction “AND” operation fuzzy intersection
Compensatory Interaction “OR” operation fuzzy union
Applicable Scope objective problems objective and subjective problems

(dichotomous scores) (dichotomous or polytomous scores)

4.3 Generation of Examinees’ Scores

With the problem mastery defined in Section 4.2, we can now determine examinees’ scores on
problems (R). Specifically, we take two exceptions, slip and guess (Baker et al. 2008), into ac-
count and adopt two distributions to simulate the generation of scores of objective and subjective
problems.
In a real-world examination, the score of an examinee on a problem depends not only on the

examinee’s problem mastery. For instance, an examinee who is unable to solve the problem can
get a correct response by guessing an answer (e.g., choosing “C” as the final answer somehow).
Meanwhile, someone who is able to do it correctly may get a wrong response as a consequence of
carelessness (e.g., a slip of the pen) (Embretson 1985). Here, we assume that each problem has its
own slip and guess factors and consider these two exceptions to model the generation of exami-
nees’ scores.
Meanwhile, we handle the different score patterns of objective and subjective problems. With

either a correct or wrong response, the score of an examinee on an objective problem can be
coded to a binary variable with a value in {0,1}. Thus, we adopt a Bernoulli distribution to model
the scores of examinees on objective problems. Considering different score scales of subjective
problems, we normalize the scores on a subjective problem by dividing the full score of the problem
into a continuous variable with a value in [0,1]. Then, we assume that the score of examinees on
subjective problems follow a Gaussian distribution, which is widely used in the literature (Mnih
and Salakhutdinov 2007).
Formally, combining the problemmastery of the examinees and the exceptions of slip and guess,

we simulate the generation of the scores as follows:

P (R ji = 1|ηji , si ,дi ) = (1 − si )ηji + дi (1 − ηji ). (5)

P (R ji |ηji , si ,дi ) = N (R ji |[(1 − si )ηji + дi (1 − ηji )],σ 2). (6)

Equations (5) and (6) stand for objective problems and subjective problems, respectively.
N (·|μ,σ 2) is the probability density function of a Gaussian distribution with mean μ and vari-
ance σ 2. Here, R ji denotes the score (normalized score for subjective problem) of examinee j on
problem i , ηji is the mastery of examinee j on problem i computed by Equation (2) or Equation (3),
si and дi denote the slip and guess factors2 of problem i , and σ 2 is the variance of the normalized
score of an examinee on a subjective problem. Thus, (1 − si )ηji means this examinee masters the
problem and answers it successfully (i.e., without carelessness), while дi (1 − ηji ) represents that
the examinee guesses a correct response without mastery. That is, these are the two ways for an
examinee to give a correct response.

2Note that wemodel the slip and guess factor of each problem andwewill address the slip and guess factor of each response
in the later sections.
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Fig. 6. The graphic model of FuzzyCDF.

Summary. To better understand our proposed FuzzyCDF method, we represent it using a
graphic model as shown in Figure 6. Here, what we can observe are the score matrix R withM ex-
aminees, No objective and Ns subjective problems, and the Q-matrix with K skills (if problem i re-
quires skill k , then qik = 1). An examinee j is related to skill proficiency α jk ,k = 1, 2, . . . ,K , which
depends on high-order latent trait θ j and skill parameters ajk ,bjk ,k = 1, 2, . . . ,K (Equation (1)). A
problem mastery ηji is determined by required skill proficiency α jk |qik = 1 (Equation (2) or Equa-
tion (3)), and a problem score R ji is influenced by ηji and problem parameters si ,дi (Equation (5)
or Equation (6)). Please also note that σ is only used for modelling the generation of the score of
an examinee on a subjective problem.

4.4 Training Algorithm for FuzzyCDF

In this section, we will introduce an effective training algorithm using the MCMC method (Gilks
2005) for the proposed FuzzyCDF model, i.e., to infer the unshaded variables in Figure 6. Using the
observed score matrix R and the Q-matrix, we could compute the full conditional probability of
the parameters to be estimated. Specifically, following the settings adopted in the HO-DINAmodel
(De La Torre and Douglas 2004), we assume the prior distributions of the parameters in FuzzyCDF
as

θ j ∼ N (μθ ,σ
2
θ ),ajk ∼ lnN (μa ,σ

2
a ),bjk ∼ N (μb ,σ

2
b ),

si ∼ Beta(vs ,ws ,mins ,maxs ),

дi ∼ Beta(vд,wд ,minд ,maxд ),

1/σ 2 ∼ Γ(xσ ,yσ ), (7)

where Beta(v,w,min,max ) is a four-parameter Beta distribution that has two shape parametersv
andw and is supported on the range [min,max]. Then, the joint posterior distribution of θ , a, b, s, g,
and σ 2 given the score matrix R is

P (θ , a, b, s, g,σ 2 |R) (8)

∝ L(s, g,σ 2,θ , a, b)P (θ )P (a)P (b)P (s)P (g)P (σ 2),

where L is the joint likelihood function of FuzzyCDF:

L(s, g,σ 2,θ , a, b) = Lo (s, g,θ , a, b)Ls (s, g,σ
2,θ , a, b), (9)
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where Lo and Ls denote the joint likelihood functions of objective and subjective problems, re-
spectively, and they can be defined according to Equations (5) and (6) as follows:

Lo (s, g,θ , a, b) =
M∏
j

No∏
i

(X ji )
Rji (1 − X ji )

1−Rji , (10)

Ls (s, g,σ
2,θ , a, b) =

M∏
j

Ns∏
i

N (R ji |X ji ,σ
2), (11)

whereX ji = (1 − si )ηji + дi (1 − ηji ). Note that ηji , i.e., the problemmastery of examinee j on prob-
lem i , can be calculated given the Q-matrix by using Equations (1), (2), (3), and (4). Then, the full
conditional distributions of the parameters given the observed score matrix R and the rest of the
parameters are as follows:

P (a, b|R,θ , s, g,σ 2) ∝ L(s, g,σ 2,θ , a, b)P (a)P (b), (12)

P (θ |R, a, b, s, g,σ 2) ∝ L(s, g,σ 2,θ , a, b)P (θ ), (13)

P (s, g|R,θ , a, b,σ 2) ∝ L(s, g,σ 2,θ , a, b)P (s)P (g), (14)

P (σ 2 |R,θ , a, b, s, g) ∝ Ls (s, g,σ
2,θ , a, b)P (σ 2). (15)

Finally, we propose a Metropolis-Hastings– (M-H) based MCMC algorithm (Hastings 1970) for
parameter estimation by Algorithm 1. Specifically, we first randomize all the parameters as the
initial values. For each iteration, we draw a uniformly random sample of each parameter within a
predefined interval (specified by δa , δb , δθ , δs , δд , and δσ ). Then, given the observable R and the
experts’ knowledgeQ-matrix, we compute the full conditional probability of skill discrimination a,
skill difficulty b, examinee latent trait θ , problem slip factor s, and guess factor g and the variance
of normalized scores of subjective problems σ 2 by using Equations (9), (10), (11), (12), (13), (14),
and (15). Next, the acceptance probability of samples can also be calculated based on the M-H
algorithm. In this way, we could estimate the parameters after T iterations of sampling.

5 COGNITIVE ASSESSMENT

With the trained FuzzyCDF, we can easily discover the knowledge state and cognitive level of
each examinee, e.g., the latent trait or skill proficiency. To better illustrate the effectiveness and
interpretation of our cognitive modelling, in this section, we first briefly introduce three classical
cognitive assessment tasks and then apply our FuzzyCDF model into these three tasks.

5.1 Cognitive Assessment Tasks

Traditional tests or examinations are designed for grading examinees based on their performance,
namely scores, while cognitive assessment tasks are proposed for deeper and more interpretative
understanding of examinees’ actual ability (according to the cognitive diagnosis results). As shown
in Figure 7, we introduce three classical tasks:

—Predicting Examinee Performance addresses the probability of an examinee correctly
answering a problem she has never encountered before (Cen et al. 2006; Toscher and Jahrer
2010; Thai-Nghe et al. 2010; De La Torre 2011; Hartley and Mitrovic 2002; Corbett and
Anderson 1994). Low prediction error on unseen data implies that the cognitive diagno-
sis model has accurately discovered what makes the problem easier/harder for examinees.
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Fig. 7. Cognitive assessment tasks.

ALGORITHM 1: Sampling Algorithm for FuzzyCDF.

Input: score matrix R, experts’ knowledge Q-matrix
Output: samples of each parameter
1: Initialize each parameter with random values
2: for each iteration t = 1, 2, . . . ,T do

3: For skill discrimination a and skill difficulty b, draw at ∼ Uni f orm(at−1 − δa , at−1 + δa ),
bt ∼ Uni f orm(bt−1 − δb , bt−1 + δb ), and accept at , bt with the probability:

min{1, L(st−1,gt−1,σ 2
t−1,θt−1,at ,bt )P (at )P (bt )

L(st−1,gt−1,σ 2
t−1,θt−1,at−1,bt−1 )P (at−1 )P (bt−1 )

}.
4: For examinee latent trait θ , draw θt ∼ Uni f orm(θt−1 − δθ ,θt−1 + δθ ), and accept θt with the

probability:

min{1, L(st−1,gt−1,σ 2
t−1,θt ,at ,bt )P (θt )

L(st−1,gt−1,σ 2
t−1,θt−1,at ,bt )P (θt−1 )

}.
5: For problem slip factor s and guess factor g, draw st ∼ Uni f orm(st−1 − δs , st−1 + δs ),

gt ∼ Uni f orm(gt−1 − δд , gt−1 + δд ), and accept st , gt with the probability:

min{1, L(st ,gt ,σ
2
t−1,θt ,at ,bt )P (st )P (gt )

L(st−1,gt−1,σ 2
t−1,θt ,at ,bt )P (st−1 )P (gt−1 )

}.
6: For the variance of normalized scores of subjective problems σ2, Draw

σ 2
t ∼ Uni f rom(σ 2

t−1 − δσ ,σ 2
t−1 + δσ ), and accept σ 2

t with the probability:

min{1, L(st ,gt ,σ
2
t ,θt ,at ,bt )P (σ

2
t )

L(st ,gt ,σ
2
t−1,θt ,at ,bt )P (σ

2
t−1 )
}.

7: if convergence criterion meets then
8: return

9: end if

10: end for

11: return

In a further step, the analysis of examinees’ performance can be used for personalized
remedy/problem recommendation.

—Slip and Guess Detection addresses the probability that an examinee will answer a prob-
lem correctly (wrongly) as a result of a guess (slip) (Baker et al. 2008; Gu et al. 2014). It
is of significant importance to mine actual learning level of examinees by eliminating slip
and guess factors. Detecting slip and guess can be useful for self-evaluation and targeted
remedies for examinees, learning attitude and motivation analysis for instructors, and ex-
amination design and revision for educators.

—Cognitive Diagnosis Visualization means specifying the strengths and shortcomings of
each examinee in an interpretative way (Ben-Naim et al. 2008; Leony et al. 2012). Visualized
methods or diagnosis reports are usually adopted for depicting examinees in the dimension
of specific required skills as well as slip and guess factors more than examination scores. The
descriptive tasks can lead to personalized learning, remedy planning, and course design.
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Fig. 8. The Bayesian network of slip and guess.

5.2 Predicting Examinee Performance

With learning history or examination records, it is of great value to discover the current knowledge
state of the examinee and predict howwell she will perform in the future. Usually, the effectiveness
of cognitive modelling can be validated by predicting examinee performance. Here we give our
solution for prediction as follows.
After the training stage mentioned in Section 4, we can easily obtain the generalized proficiency

of examinees on each skill based on the estimated latent trait, skill discrimination, and skill dif-
ficulty (Equation (1)). Then, we can further compute the mastery of examinees on each problem
according to the Q-matrix and problem type (objective or subjective) based on Equations (2) and
(3). Combining the estimated slip and guess factors of each problem, we can now predict exami-
nees’ performance (i.e., score) on each problem based on Equations (5) and (6) as follows:

R̂ ji = (1 − si )ηji + дi (1 − ηji ). (16)

Here, R̂ ji denotes the predicted score of examinee j on problem i . Note that the output of Equa-
tion (16) is continuous, and we can discretize them for prediction on objective problems by the
following equation.

R�
ji =

{
1 if R̂ ji ≥ ThR ;
0 otherwise,

(17)

where R�
ji represents the discretized score if problem i is objective, and ThR is the predefined

threshold (usually set to be 0.5).

5.3 Slip and Guess Detection

In addition to providing an accurate prediction of unseen examinations, researchers are also cu-
rious about the real causes that lead to the performance of examinees. Usually, slip and guess are
considered as two forms of noise in the examinations (Baker et al. 2008; Gu et al. 2014). In Sec-
tion 4.3, our FuzzyCDF models the slip and guess factor of each problem by Equations (5) and (6).
In this subsection, we propose an effective method for slip and guess detection of each specific
response.
Cognitively, we revisit the generation of examinees’ scores. As portrayed in Figure 8, a Bayesian

network of slip and guess is built. Here, we divide the examinees’ knowledge state on each
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problem into two categories, i.e., master and nonmaster, while the responses to each problem can
be classified into two scenarios, i.e., correct and wrong. An examinee mastering the problem can
either respond correctly (without exceptions) or give a wrong answer (with a slip). Meanwhile,
those who have not mastered the problem usually cannot get correct response unless they can
score by guessing. In this way, we can summarize four types of response patterns,3 i.e., wrong
with a slip, wrong without a slip (which means nonmastery), correct with a guess and correct
without a guess (which means mastery).
For detecting slip and guess with these four response patterns, we adopt a Bayesian posterior

based solution. To be specific, the detection can be figured out by computing the posterior proba-
bility of slip or guess given the observed scores by the following Bayesian posterior equations:

P (sji |R ji ) = P (R ji |sji )P (sji )
P (R ji |sji )P (sji ) + P (R ji |¬sji )P (¬sji ) , (18)

P (дji |R ji ) = P (R ji |дji )P (дji )
P (R ji |дji )P (дji ) + P (R ji |¬дji )P (¬дji ) . (19)

Here, R ji denotes the score of examinee j on problem i , and sji and дji denote the slip and guess
of examinee j on problem i . Note that the tag ¬ here means no slip or guess. With the formulated
posterior, we next consider how to calculate the prior, the likelihood, and the evidence. In our
cognitive framework, i.e., FuzzyCDF, we can simplify the prior computation by exploiting the
estimated slip and guess parameters on each problem:

P (sji ) = si , P (¬sji ) = 1 − si , (20)

P (дji ) = дi , P (¬дji ) = 1 − дi , (21)

where si andдi are the estimated slip and guess factors of problem i , that is, the probability that any
examinee has a slip/guess on problem i . Then, considering two distributions of score generation
of two types of problem, i.e., objective vs. subjective, we put forward two schemas of calculation
for the likelihood and the evidence.
Specifically, examinees’ scores on objective problems follow a Bernoulli distribution (as men-

tioned in Section 4.3) with either correct or wrong responses. Therefore, the likelihoods of the
four types of response patterns can be defined by

P (R ji |sji ) = ηjisi I (R ji = 0), (22)

P (R ji |¬sji ) = (1 − ηji ) (1 − дi )I (R ji = 0), (23)

P (R ji |дji ) = (1 − ηji )дi I (R ji = 1), (24)

P (R ji |¬дji ) = ηji (1 − si )I (R ji = 1), (25)

where ηji denotes the mastery of examinee j on problem i , that is, the probability that examinee j
masters problem i . Therefore, ηjisi is the probability that examinee j masters problem i and gives
a wrong response with a slip. Similarly, (1 − ηji ) (1 − дi ) denotes the probability that examinee j is
unable to solve problem i and can only give a wrong answer without any exceptions (e.g., guess).
In contrast, (1 − ηji )дi and ηji (1 − si ) represent two possible paths toward a correct response. I (·)
is the indicator function.

3Note that the correct answers with a slip can be viewed as another kind of “guess,” and wrong responses caused by
guessing are also a symbol of nonmastery. Therefore, these two responses are categorized into the patterns of “correct
with a guess” and “wrong without a slip,” respectively.
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Fig. 9. Slip and guess detection.

Unlike the objective problems discussed above, each subjective problem is usually made up of
several solution steps, and examinees’ normalized score on subjective problems follows a Gauss-
ian distribution with a value in [0, 1]. Additionally, it is much harder for an examinee to guess a
response to a subjective problem (also demonstrated by the distribution of the guess parameter
shown in the experimental parts) compared with objective problems. Nevertheless, considering
the partially correct responses to subjective problems, we still adopt a solution of calculating the
slip and guess posterior probability simultaneously. Formally, we define the likelihoods of the four
types of responses by the following equations:

P (R ji |sji ) = N (R ji |ηjisi ,σ 2)I (R ji < 1), (26)

P (R ji |¬sji ) = N (R ji |(1 − ηji ) (1 − дi ),σ 2)I (R ji < 1), (27)

P (R ji |дji ) = N (R ji |(1 − ηji )дi ,σ 2)I (R ji > 0), (28)

P (R ji |¬дji ) = N (R ji |ηji (1 − si ),σ 2)I (R ji > 0), (29)

where σ 2 is the variance of the normalized score of an examinee on a subjective problem. I (·) is
the indicator function.
Eventually, we can complete the slip and guess detection task as depicted in Figure 9. With

the observed score matrix R and the given Q-matrix, our FuzzyCDF model can be easily trained
using Algorithm 1. In the meantime, model parameters including examinees’ skill proficiency, the
problems’ slip and guess factors and the variance of the normalized scores of subjective problems
can also be estimated. Then, we can obtain the mastery of each examinee over each problem by
Equations (2) and (3). Next, Equations (18) to (29) are employed to compute the prior, the likelihood,
and the evidence for calculation of the Bayesian posterior of the slip and guess of each examinee
on each problem.

5.4 Cognitive Diagnosis Visualization

In addition to the effectiveness of a cognitive model, e.g., prediction and detection accuracy, the
interpretation of cognitive models is also of great significance across research and application in
the educational field (Ben-Naim et al. 2008; Leony et al. 2012). In this subsection, we focus on the
interpretation of FuzzyCDF by visualizing the cognitive diagnosis results.
Unlike traditional data-mining models (e.g., matrix factorization) with latent parameters, which

usually cannot describe definite meanings, cognitive diagnosis models like DINA are based on
some interpretable parameters derived from psychology or pedagogy. Similarly, our FuzzyCDF is
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Fig. 10. An example of a score report.

Table 4. Datasets Summary

# Problem
Dataset # Examinee # Skill Obj. Subj.
FrcSub 536 8 20 0
Math1 4,209 11 15 5
Math2 3,911 16 16 4

guided by a Q-matrix labelled by education experts and can obtain meaningful examinee param-
eters (e.g., proficiency of a specific skill) and problem parameters (e.g., slip and guess factors). For
instance,4 as shown in Figure 10, FuzzyCDF can give a similar readable score diagnosis report for
each examinee, which can point out the best and the worst learned skills. To analyze the cogni-
tive diagnosis results, we compare and visualize the obtained skill proficiency and slip and guess
factors from DINA and FuzzyCDF on some real-world examinees that are randomly sampled. The
detailed comparison results are shown in the experimental part.

6 EXPERIMENTS

In this section, to verify the effectiveness and interpretation of cognitive modelling, we compare
the performance of our FuzzyCDF against baseline approaches on three cognitive assessment tasks.

6.1 Experimental Setup

The experiments are conducted on three real-world datasets. The first dataset is composed of
the scores of middle school students on fraction subtraction objective problems (Tatsuoka 1984;
DeCarlo 2011). The other two datasets5 are collected from two final mathematical exams from
high school students, including both objective and subjective problems. We denote these three
datasets as FrcSub, Math1, and Math2, respectively. Each of the datasets is represented by a score
matrix and a given Q-matrix by education experts. A brief summary of these datasets is shown in
Table 4. Further, Figure 11 shows a preview of these three datasets, where each column for each
subfigure stands for a problem and each row above and below represents an examinee and a skill,
respectively. Specifically, the three subfigures in the above show FrcSub’s score matrix with only
dichotomous scores, Math1’s and Math2’s normalized score matrix with both dichotomous and
polytomous scores; the three subfigures are actually the three Q-matrices. We can observe that

4http://collegereadiness.collegeboard.org/psat-nmsqt-psat-10/scores/student-score-reports.
5Available at http://staff.ustc.edu.cn/%7Eqiliuql/data/math2015.rar.
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Fig. 11. The preview of the datasets.

Fig. 12. Tradeoff between sampling time and convergency.

the initial problems are generally easier than the final ones and each problem is related to at least
two skills.
For the prior distributions of parameters in FuzzyCDF, we follow the settings in HO-DINA (De

La Torre and Douglas 2004) and tune the hyperparameters for the best performance with grid
search as follows:

μθ = 0,σθ = 1; μa = 0,σa = 1; μb = 0,σb = 1;

vs = 1,ws = 2,mins = 0,maxs = 0.6;

vд = 1,wд = 2,minд = 0,maxд = 0.6;

xσ = 4,yσ = 6.

To handle the tradeoff between sampling time and convergence of the MCMC algorithm, we
check Gelman-Rubin’s Rule (Brooks and Gelman 1998) based on five parallel Markov chains, and
each of the chains is run for 10,000 iterations. As shown in Figure 12, the Gelman-Runbin Index of
σ 2 (the variance of normalized scores of subjective problems) is less than 1.1 and close to 1 after
5,000 iterations, and the sampling time is linear to the number of iterations. This criterion (less
than 1.2 after 5,000 iterations) is also satisfied for other structural parameters. Thus, we set the
number of iterations of Algorithm 1 to 5,000 and estimate the parameters based on the last 2,500
samples to guarantee the convergence of theMarkov chain. Both our FuzzyCDF and other baseline
approaches are implemented by using Matlab6 on a Core i5 3.1GHz machine.

6Due to the specific cognitive assessment tasks such as predicting examinee performance and slip and guess detection, we
decided to implement the MCMC sampling procedure on our own. The implementation with standard Bayesian sampling
software (e.g., STAN, Church) is out of scope of this work and will be addressed in the future.
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Fig. 13. Prediction task performance.

6.2 Cognitive Assessment Task

In this subsection, we compare the performance on three classical cognitive assessment tasks to
demonstrate the effectiveness and interpretation of our proposed cognitive modelling framework.

6.2.1 Predicting Examinee Performance (PEP) Task. To demonstrate the effectiveness of Fuzzy-
CDF, we conduct experiments on the PEP task, i.e., predicting the scores of the examinees over
each subjective or objective problem. To observe how the methods behave at different sparsity
levels, we construct different sizes of training sets, with 20%, 40%, 60%, and 80% of the score data
of each examinee and the rest for testing, respectively. We use root mean square error (RMSE) and
mean absolute error (MAE) as the evaluation metrics. Then, we consider baseline approaches as
follows:

— IRT: a cognitive diagnosis method modelling examinees’ latent traits and the parameters of
problems like difficulty and discrimination (Rasch 1961; Birnbaum 1968).

—DINA: a cognitive diagnosis method modelling examinees’ skill proficiency and the slip and
guess factors of problems with a Q-matrix (Junker and Sijtsma 2001).

—PMF: probabilistic matrix factorization is a latent factor model projecting examinees and
problems into a low-dimensional space (Mnih and Salakhutdinov 2007).

—NMF: non-negative matrix factorization is a latent non-negative factor model and can be
viewed as a topic model (Lee and Seung 2001).

For the purpose of comparison, we record the best performance of each algorithm by tuning
their parameters. Note that we treat partially correct responses as wrong for IRT and DINA due
to the inapplicability of subjective problems. Figure 13 shows the PEP results of our FuzzyCDF
and baseline approaches on three datasets. Here, we consider two implementations of the matrix
factorization methods, PMF and NMF. That is, PMF-5D and PMF-10D (NMF-5D and NMF-10D)
represent the PMF (NMF) with 5 and 10 latent factors, respectively. Thus, there are a total of seven
results in each split.
From Figure 13, we observe that, over all the datasets, FuzzyCDF performs the best and the

improvements are statistically significant (p-value is less than 0.001 on FuzzyCDF against other
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Fig. 14. Prediction performance for each problem.

Table 5. Runtime Results (Seconds)

Datasets FuzzyCDF PMF DINA IRT NMF
FrcSub 111.26 0.14 11.19 1.77 0.07
Math1 885.63 1.27 239.56 78.87 0.344
Math2 1096.00 1.13 6184.21 68.14 0.256

baseline by using a paired t-test). Specifically, by combining educational hypotheses it beats PMF
and NMF, and by quantitatively analysing examinees from a fuzzy viewpoint, it beats IRT and
DINA. More importantly, with the increasing of the sparsity of the training data (training data
ratio declines from 80% to 20%), the superiority of our FuzzyCDF method becomes more and more
significant. For instance, when the training data is 20% (TestRatio = 80%), as shown in the sub-
graphs of Figure 13(a), (b), and (c), the improvement (reducing MAE) of FuzzyCDF compared to
the best baseline method IRT could reach 19%, 10%, and 8% on each datum, respectively.
In summary, FuzzyCDF captures the characteristics of examinees more precisely and it is also

more suitable for the real-world scenarios, where the data are sparse and the examinees/problems
are cold-start.
Fixing the training data ratio equal to 80%, Figure 14 shows the prediction performance for each

specific problem in these three datasets. For simplicity, we only give the results of FuzzyCDF, and
four baselines that have better performance: PMF-5D, DINA, IRT, and NMF-5D. From each sub-
figure, we can observe that FuzzyCDF outperforms almost all the baselines on all the problems
significantly (p-value is also less than 0.001 by using a paired t-test). Specifically, in the Math1 and
Math2 datasets (the last five and four problems are subjective problems, respectively), the Fuzzy-
CDF method can obtain the best performance for both objective and subjective problems, which in
turn proves the reasonability of Assumption 2 about skill interaction on objective and subjective
problems. However, matrix factorization methods (PMF and NMF) cannot fit the scores of objec-
tive problems very well, and the normal psychometric methods (IRT and DINA) are unsuitable for
subjective problems. Moreover, Table 5 shows the runtime for training each method under this
setting.

6.2.2 Slip and Guess Detection. To verify the performance of our method on the slip and guess
detection task, we compare with two baseline approaches:

—Random: Randomly give a posterior probability, i.e., a random number in [0,1], of slip and
guess for each examinee on each problem and then obtain the top-K probable slip and guess
responses by sorting the posteriors.
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—DINA: A cognitive diagnosis method modelling examinees’ skill proficiency and the slip
and guess factors of problems with a Q-matrix. We take the detection strategy similar to
our FuzzyCDF, i.e., compute the Bayesian posterior probability with the estimated cognitive
parameters (Junker and Sijtsma 2001).

With the two baselines, we adopt two prevailing evaluation metrics, i.e., the internal validity
and detection accuracy.
Internal Validity. In cognitive assessment, the internal validity measures the differences in ob-

served behavior between examinees who are classified differently (Jang 2005; Roussos et al. 2006).
Here, “internal” means using the training data to help verify the authenticity of the model. In this
case, we assume there are four types of response patterns, i.e., wrong with or without a slip and
correct with or without a guess. As discussed in Section 5.3, it is the problem mastery/nonmastery
that determines the solving path toward different responses. Therefore, obvious differences exist
in the observed cognitive level, say scores between examinees who have correct (wrong) responses
with or without a guess (slip). Cognitively speaking, the average cognitive level or examination
performance of examinees mastering the problems should manifestly differ from examinees who
are nonmastering. Thus, for each wrong (correct) response, an examinee with a higher cognitive
level is assumed to have a higher slip (¬guess) posterior probability. Formally, the internal validity
measure adopted in this article for slip and guess detection is referred to as the Average Corre-
lation (AC) of each problem, including both objective and subjective problems, by the following
equations:

ACs =
1

N

N∑
i=1

ρ (r′, Pslip,i ), (30)

ACд =
1

N

N∑
i=1

ρ (r′, P¬guess,i ), (31)

where r′ = ( ¯R1, :, ¯R2, :, . . . , ¯RM, :) is a vector and the jth element is the average score of examinee j
on each problem. Pslip,i (or P¬guess,i ) is also a vector, i.e., (P (s1i |R1i ), P (s2i |R2i ), . . . , P (sNi |RNi )

(or (P (¬д1i |R1i ), P (¬д2i |R2i ), . . . , P (¬дNi |RNi )), and the jth element is the slip (or ¬guess) poste-
rior probability of examinee j on problem i . ρ is the correlation function, and in this work we
adopt the Pearson correlation. Please also note that the calculation of ACs in Equation (30) (ACд in
Equation (31)) does not cover correct (wrong) responses, since we assume there is no “correct with
a slip” (no “wrong with a guess”). A larger ACs (or ACд) means a more significant positive corre-
lation between the cognitive level and the slip (¬guess) posterior probability. Thus, the larger the
ACs (ACд), the better the internal validity.
After the training stage of each algorithm (FuzzyCDF and the baseline methods) with tuned

parameters, the average internal validity (namely Average Correlation) results are shown in Fig-
ure 15. From each subfigure, we can observe that the proposed FuzzyCDF-based slip and guess
detector significantly outperforms the other baseline methods, and the DINA-based method is
much better than Random.
Furthermore, for better visualizing and comparing the internal validity, we rank the wrong re-

sponses of each item ordered by the related correct rate of the examinees in dataset Math1, and
then, we color these responses with the detected slip posterior probability. The results are shown
in Figure 16, where the higher points stand for the examinees with a bigger correct rate, while
the redder and the bluer points indicate the higher and lower slip posterior probability, respec-
tively. From the comparison, it is obvious that the FuzzyCDF-based detector actually identifies the
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Fig. 15. Slip and guess internal validity.

Fig. 16. Slip internal validity visualization.

Fig. 17. A snapshot of an answer sheet.

examinees with different slip posterior probabilities better than the baselines (i.e., the DINA-based
and the Random methods).
Accuracy of Slip Detection.Apart from internal validity, we also employ an evaluation metric

with ground truth, i.e., detection accuracy. In this experiment, we randomly sample 100 examinees
and scan their answer sheets for the exams from Dataset Math1.7 A snapshot of an answer sheet
is shown in Figure 17. Then, we ask their experienced teachers to scrutinize the sheets with the
responses of subjective problems (with detailed solution steps). Note that the slip and guess of ob-
jective problems are nearly unobservable without enough evidence as the subjective ones; i.e., the
ground truth of slip and guess in objective problems is basically unavailable. Finally, the teachers

7Due to the manual and time cost, we asked teachers to label only 100 examinees, and Math1 is preferred with less related
skills for more convenient and precise judgement.
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Fig. 18. Slip detection accuracy.

Fig. 19. Diagnosis results of an exami-

nee on each skill.

Fig. 20. Slip and guess parameters of

each problem in Math1.

label the obvious slip responses8 of subjective problems based on their knowledge of math, the
problems, and the examinees. In total, we collect 500 labelled response data with 24 slip and 476
non-slip responses.
We adopt three widely used metrics, namely, Precision@K, Recall@K, and F@K as measures of

accuracy evaluation of the top-K (K = 1, 2, . . . , 50) most probable slip responses (obtained by our
method and the baseline approaches, respectively) in these 500 labelled responses. The results are
shown in Figure 18. In terms of each metric, our FuzzyCDF-based detector is still significantly
superior to the baseline methods, and the DINA-based method is slightly better than Random.

6.2.3 Cognitive Diagnosis Visualization. Here, we present an example of the visualized diagno-
sis results of an examinee on each skill in Dataset FrcSub using DINA and FuzzyCDF, respectively.
The visualization results are shown in Figure 19. We can observe that both FuzzyCDF and DINA
can obtain interpretatively meaningful diagnosis results with the well-designed Q-matrix. How-
ever, DINA can only distinguish whether an examinee masters a skill (1 or 0), while our FuzzyCDF
can tell the extent to which the examinee masters a skill. Thus, based on our diagnosis results,
an examinee can determine the true strength and shortcomings of hers. Furthermore, educators
or tutoring systems can give her personalized remedy plans for improvement. Comparatively, we
should note that traditional IRT andmatrix factorizationmethods describe an examineewith latent
variables, which cannot provide intuitive and interpretative results for each examinee.
We also present the slip and guess parameters of each problem in Math1, as shown in Figure 20.

We can observe the obvious differences between objective and subjective problems: Generally, slip
parameters of subjective problems are larger than that of objective ones, while guess parameters

8It is almost impossible to respond correctly to a subjective problem by guessing, and, meanwhile, it is also very difficult
to judge whether there exists a guess only from the response.
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of subjective problems are smaller than that of objective ones. The visualized results are consistent
with the intuitive fact that it is much harder to guess the correct answers of subjective problems.

6.3 Discussion

From the experimental results of the PEP task, we can observe that FuzzyCDF outperforms the
baselines on both objective and subjective problems. Slip and guess detection and cognitive diagno-
sis visualization demonstrated that FuzzyCDF could obtain interpretative cognitive analysis results
for examinees, which can be used for composing a detailed and human-readable diagnosis report.
Nevertheless, there is still some room for improvement. First, FuzzyCDF currently suffers from

the problem of high computational complexity, and we will try to design an efficient sampling
algorithm in the future. Second, we can test more fuzzy set operation functions. Third, there may
be some other problem types beyond objective and subjective problems, like half-open problems
(Hargreaves 1984), that should be considered for cognitive modelling. In addition, we implement
the MCMC sampling on our own in the current work rather than adopt a standard procedure by
using existing sampling software.

7 CONCLUSION

In this article, we designed a fuzzy cognitive diagnosis framework, FuzzyCDF, to explore the scores
of both objective and subjective problems for cognitive modelling. Specifically, we first fuzzified
the skill proficiency of examinees based on a fuzzy set assumption, then fuzzified the problem
mastery by mapping conjunctive and compensatory interactions into the fuzzy set operations, and
next modelled the generation of the two kinds of problems with different distributions by consid-
ering slip and guess factors. Furthermore, we accomplished three cognitive assessment tasks, i.e.,
predicting examinee performance, slip and guess detection, and cognitive diagnosis visualization,
based on our FuzzyCDF. Finally, extensive experimental results demonstrated that FuzzyCDF could
quantitatively and interpretatively analyze the characteristics of each examinee and thus obtained
better performance. We hope this work will lead to more studies in the future.
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