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Abstract

The inherent connections among aesthetic attributes and aes-
thetics are crucial for image aesthetic assessment, but have
not been thoroughly explored yet. In this paper, we pro-
pose a novel image aesthetic assessment assisted by attributes
through both representation-level and label-level. The at-
tributes are used as privileged information, which is only re-
quired during training. Specifically, we first propose a multi-
task deep convolutional rating network to learn the aesthetic
score and attributes simultaneously. The attributes are ex-
plored to construct better feature representations for aesthetic
assessment through multi-task learning. After that, we intro-
duce a discriminator to distinguish the predicted attributes
and aesthetics of the multi-task deep network from the ground
truth label distribution embedded in the training data. The
multi-task deep network wants to output aesthetic score and
attributes as close to the ground truth labels as possible. Thus
the deep network and the discriminator compete with each
other. Through adversarial learning, the attributes are ex-
plored to enforce the distribution of the predicted attributes
and aesthetics to converge to the ground truth label distri-
bution. Experimental results on two benchmark databases
demonstrate the superiority of the proposed method to state
of the art work.

Introduction
Image aesthetic assessment has attracted increasing atten-
tion in recent years due to its wide application in personal
photo album management, automatic photo editing, and im-
age retrieval. A typical flow of image aesthetic assessment
consists of feature extraction and decision phase. For fea-
ture extraction, both hand-crafted features and deep features
have been explored. Early works often use aesthetic specific
features to represent the photographic rules, such as lighting,
contrast, and global image layout. Recent works have turned
to learn deep features to represent image content. For deci-
sion phase, classifiers, such as naive Bayes classifier, sup-
port vector machine, and deep classifier, have been adopted
to distinguish high-quality from low-quality photos in the
form of binary classification, and regressors, like support
vector regressor, have been used to predict aesthetic score.
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Aesthetic score 10% Motion Blur 50%

Balancing Elements 50% Object 20%

Color Harmony 30% Repetition 0%

Content 0% Rule of Thirds 50%

Depth of Field (DoF) 40% Symmetry 0%

Light 0% Vivid Color 10%

Aesthetic score 95% Motion Blur 50%

Balancing Elements 50% Object 50%

Color Harmony 90% Repetition 0%

Content 90% Rule of Thirds 70%

Depth of Field (DoF) 100% Symmetry 0%

Light 70% Vivid Color 100%

Figure 1: Two examples of aesthetic images (upper: low aes-
thetics; lower: high aesthetics) with respect to eleven assess-
ment attributes. The ratings of the aesthetic score and at-
tributes are written as percentage for convenience.

Although notable progresses have been achieved in as-
sessing image aesthetics, it is still a big challenge to judge
image aesthetics because of the subjectivity of beauty. To
address it, several works try to leverage high level describ-
able image attributes for image aesthetic assessment, since
these attributes explicitly predict some of the possible image
cues that a human might use to evaluate an image. Figure 1
displays two examples of aesthetic images with low and high
aesthetic score, respectively. For the high aesthetic image, its
nice content with good lighting and vivid color make it fasci-
nating. While the low aesthetic image has the boring content
with poor lighting and dull color. These probabilistic depen-
dencies among aesthetics and attributes are crucial for image
aesthetic assessment. Current work typically either uses at-
tributes as low level features or middle level features, and
thus fails to thoroughly leverage probabilistic dependencies
among aesthetics and attributes for facilitating image aes-
thetic assessment.

Therefore, in this paper, we propose a novel attributes-
enhanced image aesthetic assessment, where the attributes
are used as privileged information (Vapnik and Vashist
2009). The attributes, which are only required during train-
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ing, are beneficial for aesthetic assessment from two per-
spectives. First, we propose a multi-task deep network
to learn the aesthetic score and attributes simultaneously.
Through multi-task learning, the attributes are explored to
construct better feature representations. Second, we intro-
duce a discriminator to distinct the predicted attributes and
aesthetics from the ground truth ones. Through adversarial
learning, the joint distribution inherent in the ground truth
aesthetic scores and attributes is explored to further regular-
ize the predicted attributes and aesthetics.

Related Works
A comprehensive survey on image aesthetic assessment can
be found in (Joshi et al. 2011; Deng, Loy, and Tang 2017). In
this section, we summarize several works that use attributes
for image aesthetic assessment.

Early work tries to design features that might be related to
how people judge aesthetic quality of photographs. For ex-
ample, Ke et al. (Ke, Tang, and Jing 2006) summarized three
distinguishing factors, i.e., simplicity, realism, and basic
photographic technique, between high quality professional
photos and low quality snapshots, and then designed spa-
tial distribution of edges, color distribution, hue count, blur,
contrast and brightness. Datta et al. (Datta et al. 2006) de-
fined several quality specific features, including a low depth-
of-field indicator, a colorfulness measure, a shape convex-
ity score and a familiarity measure. Luo and Tang (Luo and
Tang 2008) proposed several features based on the subject
and background division. They first summarized several im-
portant criteria, i.e., composition, lighting, focus control-
ling, and color, which are used by professional photogra-
phers to improve photo quality through different treatment
of the subject and the background. Then, they formulated
clarity contrast feature, lighting feature, simplicity feature,
composition geometry feature, and color harmony feature.
Although their defined features are relevant to photography
techniques, they can not totally capture high-level semantic
attributes. This is an unavoidable weakness of engineering
feature approaches.

Later work utilizes predicted attributes as middle-level
representations. For example, Dhar et al. (Dhar, Ordonez,
and Berg 2011) first predicted high level attributes from
lower level features, and then predicted interestingness given
high level attribute predictions. Kong et al. (Kong et al.
2016) proposed deep network to jointly learn photographic
attributes and image content for photo aesthetics rating.
The attribute predictor branch is fused with the aesthetic
branch to produce a final attribute-adapted rating. Wang et
al. (Wang et al. 2017) designed brain-inspired deep networks
to learn attributes from features through the parallel super-
vised pathways, and then a high-level synthesis network is
trained to transform those attributes into the overall aesthet-
ics rating. Lu et al. (Lu et al. 2014) proposed to use at-
tributes to regularize the feature learning and classier train-
ing for aesthetic quality categorization. Through employing
attributes as middle-level representations, these works lever-
age attributes to learn features and train classifiers simul-
taneously. For middle-level representation approaches, at-
tributes are usually manually annotated for the training data.

During testing, the attributes are typically first predicted, and
then the predicted attributes are used to measure aesthetics.
Thus, the predicted errors of attributes can be propagated to
the assessed aesthetics.

More recently, multi-task learning is adopted to train at-
tributes and aesthetic score simultaneously. For example,
Malu et al. (Malu, Bapi, and Indurkhya 2017) proposed to
learn the aesthetic score and attributes jointly by using a
deep convolution network with a merge-layer. The merge-
layer collects pooled features of the convolution maps, and
the aesthetic score and attributes are learned based on the
merge-layer. Unlike middle-level representation approaches,
a multi-task approach can avoid the predicted errors of at-
tributes propagating to aesthetics. It can also exploit at-
tributes for aesthetics assessment through the learned rep-
resentations. However, it fails to model the distributions
among attributes and aesthetics, which is crucial for image
aesthetic assessment.

Therefore, in this paper, we propose a novel adversarial
learning framework to model the joint distributions of aes-
thetic scores and attributes. Specifically, we use the aesthet-
ics attributes as privileged information to train a deep convo-
lutional rating network, which learns the aesthetic score and
attributes simultaneously. Through multi-task learning, the
attributes are beneficial for fine-tuning the feature represen-
tations. In order to further capture the correlation between
the aesthetic score and attributes, a discriminator is intro-
duced to distinguish the predictions from the ground truth
and enforce the rating network to generate the predictions
which are closer to the distribution of the ground truth.

Unlike engineering feature approaches, which fail to fully
capture image content and attributes, the proposed method
predicts attributes and aesthetic jointly from images using
deep network. Therefore, the learned features can success-
fully represent image content due to the power of deep learn-
ing. Instead of using attributes as middle level representa-
tion, we predict attributes and aesthetic simultaneously. It
avoids error propagation from attributes to aesthetic. Fur-
thermore, we model the distribution among attributes to aes-
thetic through adversarial learning, and leverage such distri-
bution to regularize aesthetic assessment.

Problem Statement

Let D =
{(

x(i), y(i),y
(i)
a

)}N
i=1

denotes a training set of
N training samples. Each training sample consists of a color
image x(i) ∈ Rd, an aesthetic score y(i) ∈ R and K aes-
thetic attributes y

(i)
a ∈ RK . Each aesthetic attribute can be

either numerical (yk ∈ R) or binary (yk ∈ {0, 1}). Due to
the correlation between the aesthetic score and attributes, we
want to build an attributes assisted model and further cap-
ture this correlation through both multi-task and adversar-
ial learning. Given the training set D, our goal is to learn
a network f : Rd → RK+1, which outputs predictions
of the aesthetic score and attributes simultaneously from
color images. For convenience, we reformulate the dataset
as D =

{(
x(i),y(i)

)}N
i=1

, where y(i) ∈ RK+1 is the con-
catenated vector of the aesthetic score andK attributes. This
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K + 1 dimensional vector space will be the space where we
apply the adversarial learning as we will discuss later.

Proposed Method
The framework of the proposed method is summarized in
Figure 2. As shown in Figure 2, there are two components
in the proposed method: the rating network and the discrim-
inator. The rating network outputs the prediction of the aes-
thetic score and attributes simultaneously and tries to use its
prediction to fool the discriminator at the same time. The
discriminator tries to distinguish the predictions from the
real labels. During training, the aesthetic attributes are used
as privileged information to construct better feature repre-
sentations for aesthetic assessment. The correlation between
the aesthetic score and attributes is learned through adver-
sarial learning at the same time. During testing, the aesthetic
score of an unknown image is predicted by the rating net-
work. The predictions of the aesthetic attributes can be given
if necessary.

Attributes Assisted Multi-task Rating Network
To take advantage of the assist of the aesthetic attributes, we
use the aesthetic attributes as privileged information. Specif-
ically, extra units are added upon the output layer to learn the
aesthetic attributes, leading to a multi-task neural network.
During back propagation, the gradient of the branch of aes-
thetic attributes will be used to adjust the feature represen-
tations below, which are shared with the aesthetic predictor.
Therefore, the aesthetic attributes play the role of an assis-
tant during training phase.

Formally, we build a multi-task deep convolutional rating
network ŷ = R(x; θR) with K +1 output units correspond-
ing to the aesthetic score and K aesthetic attributes. The ob-
jective function of the rating network is defined as follows:

J(θR) =
1

N

N∑
i=1

K+1∑
k=1

L
(
ŷ
(i)
k ,y

(i)
k

)
(1)

where the loss function L can be either squared error or bi-
nary cross entropy depending on the target variable is nu-
merical or binary. The formulations of squared error and bi-
nary cross entropy are given in Eq. (2) and (3) respectively.

Lse (ŷ, y) =
1

2
(y − ŷ)2 (2)

Lbce (ŷ, y) = −y log ŷ − (1− y) log (1− ŷ) (3)
During training, both aesthetic score and attributes are

learned with the supervised loss. The extra learning of the
aesthetic attributes serves to regularize the learned represen-
tations of the rating network. During testing, the aesthetic
attributes of the test images are not required.

Capturing Distributions of Attributes and
Aesthetic for Aesthetic Assessment
Aesthetic score and attributes describe the same aspect of
the color images and exhibit strong correlation. Although
the rating network jointly predicts the aesthetic score and
attributes through exploring shared representations, it does

not explore label dependencies directly from ground truth
labels. Therefore, there may exist a deviation between the
distribution of the prediction and the ground truth label.

Inspired by the framework of Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2014), we address this
problem by modeling the correlation between the aesthetic
score and attributes through adversarial learning. Specifi-
cally, we introduce a discriminator yD = D(y; θD) to dis-
tinguish the predictions from the real labels. For the rat-
ing network, we keep the supervised learning objective, i.e.,
minimize the error between the prediction and the ground
truth label. In addition, we want the rating network to make
predictions which fool the discriminator, leading to a new
adversarial learning objective. Under these two learning ob-
jectives, the rating network will be expected to output re-
liable predictions which minimize the supervised loss and
subject to real distribution of the aesthetic score and at-
tributes at the same time.

Mathematically, the learning objective of the framework
can be written as follows:

min
θR

max
θD

C

N

N∑
i=1

[
logD

(
y(i)

)
+ log

(
1−D

(
R
(
x(i)
)))]

+
1

N

N∑
i=1

K+1∑
k=1

L
(
R
(
x(i)
)
k
,y

(i)
k

)
(4)

In the above learning objective, a weight coefficient C is
added in order to control the proportion of the supervised
objective and adversarial objective. Theoretically, if C = 0,
the learning objective is equivalent to that of the multi-task
network without the assist of discriminator. On the contrary,
if C → +∞, the learning objective is the same as that of the
original GAN.

Similar to the optimization procedure of GAN, the learn-
ing objective in Eq. (4) can not be optimized directly. The
discriminator and the rating network are optimized alter-
nately by fixing their opponents. According to the sugges-
tion in (Goodfellow 2016), it is better for the rating net-
work to minimize − logD(R(x)) instead of minimizing
log(1 − D(R(x))) in order to avoid the flat gradient. The
learning objectives of the discriminator and the rating net-
work are given in Eq. (5) and (6) respectively.

max
θD

1

N

N∑
i=1

[
logD

(
y(i)
)
+ log

(
1−D

(
R
(
x(i)
)))]

(5)

min
θR

1

N

N∑
i=1

K+1∑
k=1

L
(
R
(
x(i)
)
k
,y

(i)
k

)
− C

N

N∑
i=1

logD
(
R
(
x(i)
)) (6)

Using the definition of binary cross entropy in Eq. (3),
the learning objectives of the discriminator and the rating
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Figure 2: The framework of the proposed method.

network can be rewritten as follows:

JD (θD) =
1

N

N∑
i=1

[
Lbce

(
D
(
y(i)
)
, 1
)
+

Lbce

(
D
(
R
(
x(i)
))

, 0
)] (7)

JR (θR) =
1

N

N∑
i=1

K+1∑
k=1

L
(
R
(
x(i)
)
k
,y

(i)
k

)
+
C

N

N∑
i=1

Lbce

(
D
(
R
(
x(i)
))

, 1
) (8)

Optimization
The rating network plays the role of “generator” in the pro-
posed framework. Therefore, we can apply the alternate
optimization steps which are similar to the original GAN
framework. Algorithm 1 outlines the learning procedure of
the proposed method.

Experiment
Experimental Conditions
To the best of our knowledge, there are only two image aes-
thetic assessment databases containing aesthetic attributes:
the Aesthetics and Attributes database (AADB) (Kong et al.

Algorithm 1 The learning algorithm of the attributes as-
sisted image aesthetic assessment framework.

Require: The image aesthetic assessment dataset D ={(
x(i),y(i)

)}N
i=1

, the number of steps of updating dis-
criminator K1, the number of steps of updating rating
network K2, batch size m, learning rate of the discrim-
inator η1, learning rate of the rating network η2.

Ensure: The rating network R.
1: Initialize parameters of the rating network θR and the

discriminator θD.
2: for number of training iterations do
3: for K1 steps do
4: Sample a mini-batch of m training images

{x(i)}mi=1 from D.
5: Sample a mini-batch of m real labels {y(i)}mi=1

from D.
6: Update the discriminator D by gradient descent

θD := θD − η1 ∂JD(θD)
∂θD

.
7: end for
8: for K2 steps do
9: Sample a mini-batch of m training samples

{x(i),y(i)}mi=1 from D.
10: Update the rating network R by gradient descent

θR := θR − η2 ∂JR(θR)
∂θR

.
11: end for
12: end for
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(a) AADB (b) AVA

Figure 3: The distributions of the aesthetic scores on the
AADB and AVA databases.

2016) and the Aesthetics Visual Analysis database (AVA)
(Murray, Marchesotti, and Perronnin 2012).

The AADB database contains a varied set of 10,000 pho-
tographic images downloaded from the Flickr website. Aes-
thetic quality score and eleven attributes are provided by five
different individual raters using Amazon Mechanical Turk.
The eleven attributes, including balancing elements, color
harmony, content, depth of field (DoF), light, motion blur,
object, repetition, rule of thirds, symmetry and vivid color,
are selected according to the professional photographers’
suggestions, which are closely related to image aesthetic
judgements. The official partition for the AADB database
are 8,500 images for training, 500 images for validation and
1,000 images for testing.

The AVA database contains about 250,000 images col-
lected from the social network www.dpchallenge.com. Each
image has about 200 aesthetic ratings ranging on a one-to-
ten scale. A small portion of the images (about 14,000 im-
ages) are tagged with fourteen style attributes, i.e., comple-
mentary colors, duotones, HDR, image grain, light on white,
long exposure, macro, motion blur, negative image, rule of
thirds, shallow DoF, silhouettes, soft focus and vanishing
point, and each style attribute is a binary variable. The of-
ficial partition for the AVA database are 230,000 images for
training, 20,000 images for testing.

The distributions of the aesthetic scores on two databases
are shown in Figure 3. From Figure 3, we find that the dis-
tributions of the aesthetic scores are approximately Gaussian
on both databases.

Given a color image, we first rescale the image so that
the shorter side is of length 256. Then, a 224× 224 patch is
cropped randomly from the rescaled image on the training
set for the purpose of data augmentation while the central
224 × 224 patch is cropped on the validation/test set. The
aesthetic score and numerical aesthetic attributes are nor-
malized to the interval of [0, 1]. Binary aesthetic attributes
are converted to discrete values of 0 or 1. On the AADB
database, the official train/validation/test split is adopted. On
the AVA database, since there is only official train/test split,
20,000 images are selected randomly from the training set as
the validation set so that the validation and test set have the
same size. The ranking correlation measured by Spearman’s
ρ between the estimated aesthetic scores and the ground-
truth scores is employed as performance metrics as in (Kong
et al. 2016).

Table 1: Experimental results of image aesthetic assessment.

AADB database
Methods ρ

(Kong et al. 2016) 0.6782
(Hou, Yu, and Samaras 2017) 0.6889

(Malu, Bapi, and Indurkhya 2017) 0.689
Single-task Network 0.6833
Multi-task Network 0.6927

Ours 0.7041

AVA database
Methods ρ

(Kong et al. 2016) 0.5581
Single-task Network 0.6062
Multi-task Network 0.6187

Ours 0.6313

We conduct the experiments of image aesthetic assess-
ment using three methods. The first one is the single-task
network, which learns the mapping from the image to the
aesthetic score. The second one is the multi-task network,
which learns the mapping from the image to the aesthetic
score and attributes simultaneously. The last one is our pro-
posed method, in which multi-task learning for the aesthetic
score and attributes is adopted and the correlation between
them is learned in an adversarial manner.

We implement the proposed method and all of the related
methods by PyTorch deep learning framework. Since all of
the images in our experiment come from the natural scenes
in daily life, it is beneficial to extract the feature representa-
tions by the deep models trained on the ImageNet database
(Deng et al. 2009). Among all of the pre-trained models,
the deep residual network (He et al. 2016) achieves the best
performance due to its well-designed structure of residual
blocks. For the rating network, we first extract feature rep-
resentations from the pre-trained ResNet-50 and the size of
the feature representations is 2048D. Upon the 2048D fea-
ture representations, we build two hidden full connected lay-
ers with ReLU activations. The sizes of these two layers are
512 and 128, respectively. The last layer is the output layer
with sigmoid activation since all of the aesthetic score and
aesthetic attributes are in [0, 1]. The size of the output layer
is determined by the specific method and database. For the
discriminator, a neural network with two hidden layers is
used. The size of the hidden layer is eight.

We train the model using Adam algorithm (Kingma and
Ba 2015) with a mini-batch size of 64. On the AVA database,
a small portion of the images are tagged with aesthetic at-
tributes. Therefore, we create each mini-batch containing
images with and without aesthetic attributes for the proposed
method and multi-task rating network. The loss of images
with aesthetic attributes is computed by Eq. (1). The loss of
images without aesthetic attributes is computed by the mean
squared error of the aesthetic scores. The learning rate starts
from 0.001 and is divided by 10 when the performance on
the validation set plateaus.
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(a) Multi-task network

(b) Ours

Figure 4: The absolute difference of correlation matrix on
the AADB database.

Experimental Results and Analysis
Table 1 displays the experimental results of image aes-
thetic assessment on the AADB and AVA databases. As can
be seen, our proposed method outperforms the single-task
and multi-task networks. Specifically, the ranking Spearman
coefficient achieved by our method is 0.0208 and 0.0114
higher those of the single-task and multi-task networks on
the AADB database, respectively. On the AVA database,
the ranking Spearman coefficient achieved by our method
is 0.0251 and 0.0126 higher those of the single-task and
multi-task networks, respectively. For the multi-task net-
work, the aesthetic score and attributes are learned simul-
taneously and the additional task of learning aesthetic at-
tributes assists the network in regularizing the learned rep-
resentations below. The multi-task network achieves better
performance than single-task network, indicating that using
aesthetic attributes as privileged information is beneficial in
image aesthetic assessment. However, the distribution of the
predictions may be far away from that of the ground truth
due to the lack of modeling the correlation between the aes-
thetic and attributes. For our proposed method, since we in-
troduce a discriminator to distinguish the predictions from
the ground truth, the rating network tries to fool the discrim-
inator, which force the distributions of the prediction and

ground truth to be closer. Therefore, our method achieves
the best performance.

Evaluation of Adversarial Learning
In order to evaluate the effectiveness of adversarial learning,
we analyse the joint distributions of the estimated aesthetic
score and attributes versus the ground-truth quantitatively.
We compute correlation matrix Mtrue ∈ R(K+1)×(K+1) of
the ground truth of the samples in the test set on the AADB
database. The correlation matrix Mpred of the prediction
from a specific model is computed in the similar manner.
Thus, the absolute difference between Mtrue and Mpred is a
good measurement to evaluate the learning of the correlation
between the aesthetic score and attributes.

Figure 4 displays the the absolute difference of correlation
matrix with respect to the multi-task network and our pro-
posed method, respectively. From Figure 4, we find that the
average of the difference matrix in Figure 4a is 0.280 while
the average of the difference matrix in Figure 4b is 0.250.
It demonstrates that the distribution learned by our method
is closer to the distribution of the ground truth. It is worth
noting that it is easy to learning the correlation between aes-
thetic attributes like repetition, symmetry and vivid color,
which describe the low-level aspect of the image. On the
contrary, for those high-level aesthetic attributes like balanc-
ing elements, motion blur and rule of thirds, it is challenging
to learn the correlation between them, resulting in large val-
ues in the difference matrix.

Analysis of Hyper Parameter
As can be seen in Eq. (8), the hyper parameterC controls the
proportion of the supervised objective and adversarial objec-
tive. Theoretically, there exist an optimal value of C corre-
sponding to the best trade-off between the supervised learn-
ing and adversarial learning. To explore the impact of hyper
parameter C, we conduct experiments with different values
of C. Take the AADB database for example, the experimen-
tal performance with respect to C is shown in Figure 5. As
can be seen, when hyper parameter C gradually increases,
the performance goes up at an early stage. After C is larger

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

ρ

Values of C

Figure 5: The experimental performance with respect to hy-
per parameter C on the AADB database.
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(a) Multi-task network with random
initialization

(b) Well-trained multi-task network (c) Ours

Figure 6: Visualization of the output space on the AADB database.

than the optimal value, the performance degenerates quickly.
This observation is consistent with the theoretical analysis.

Visualization of Adversarial Learning
To further evaluate the effect of the adversarial learning
introduced in our model, we visualize the joint distribu-
tions of the estimated aesthetic score and attributes versus
the ground-truth by t-SNE embedding (Maaten and Hinton
2008). The joint distributions of estimated aesthetic score
and attributes which comes from three models are consid-
ered. The first one is the multi-task network with random
initialization. The second one is the well-trained multi-task
network. The last one is our proposed model. Only the vi-
sualization on the AADB database is plotted because the
aesthetic score and attributes on the AADB database are all
numerical.

Figure 6 displays all of the related visualization. The
distribution of estimated aesthetic score and attributes is
tagged “fake” in blue while the distribution of ground truth
is tagged “real” in orange. From Figure 6a, we can obverse
that the clusters of “real” and “fake” points are naturally sep-
arated when the multi-task network is initialized with ran-
dom weights. When the multi-task network is trained with
the loss function in Eq. (1), the cluster of “fake” points be-
gins to overlap the cluster of “real” points as shown in Figure
6b. However, there still exist some areas where the “fake”
points can not overlap. In Figure 6c, the “fake” points come
from the rating network, which competes with the discrimi-
nator through adversarial learning. The areas of the overlap
between the two clusters are larger compared with Figure
6c. Such visualization demonstrates that our proposed model
can capture the correlation between the aesthetic score and
attributes effectively. Thus the performance of the aesthetic
score prediction can be further enhanced.

Comparison with related works
Three related works which achieve the state of the art perfor-
mance on the benchmark databases, i.e., (Kong et al. 2016;
Hou, Yu, and Samaras 2017; Malu, Bapi, and Indurkhya
2017), are compared with our method in Table 1. As can
be seen, our method achieves the best performance on both
AADB and AVA databases. Specifically, the ranking Spear-
man coefficient of our method is 0.0259, 0.0152 and 0.0151
higher than those of Kong et al., Hou et al. and Malu et

al.’s methods on the AADB database. On the AVA database,
the ranking Spearman coefficient of our method is 0.0732
higher than that of Kong et al.’s method. In Kong et al.’s
method, a branch is added to predict the aesthetic attributes
upon the penultimate layer of the original network and the
final aesthetic score is given based on the features of the aes-
thetic attributes and content. However, the correlation be-
tween the aesthetic score and attributes is totally ignored.
While in our method the correlation is considered and cap-
tured by multi-task and adversarial learning. The joint learn-
ing of the aesthetic score and attributes ensures more robust
feature representations and the adversarial learning closes
the distributions between the predictions and ground truth
labels. In (Hou, Yu, and Samaras 2017), Hou et al. proposed
a new squared earth mover’s distance-based (EMD2) loss
which addresses the inter-class relationships. Although they
demonstrated the superiority of the proposed EMD2 loss,
their network is intrinsically a single-task one without using
the information of aesthetic attributes. We see that the multi-
task network is able to outperform Hou et al.’s method,
demonstrating the assistant role of the aesthetic attributes. In
Malu et al.’s method, a merge-layer is introduced to collect
pooled features of the convolution maps and the aesthetic
score and attributes are learned based on the merge-layer.
However, the network in Malu et al.’s method fails to capture
the correlation between the aesthetic score and attributes.
Our method addresses it through adversarial learning and
achieves better performance than Malu et al.’s method.

Conclusions
In this paper, we propose an adversarial learning framework
assisted by attributes for aesthetic assessment, which lever-
ages aesthetic attributes as privileged information to con-
struct a better predictor. A deep convolutional neural net-
work with multiple outputs is adopted to learn the mapping
from images to the aesthetic scores and attributes simultane-
ously during training phase. Adversarial learning is further
introduced in order to capture the correlation between the
aesthetic score and attributes, forcing the distributions of the
prediction and the ground truth to be closer. Experimental
results on the AADB and AVA databases demonstrate that
our proposed method can capture the correlation between
the aesthetic score and attributes effectively and then en-
hance the performance of the aesthetic assessment.
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