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Mixed-Bandwidth Cross-Channel Speech
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Abstract—Automatic speech recognition (ASR) systems are of-
ten built using scene related speech data due to large variations of
transmission channels and sampling rates in different scenarios.
In this study, we propose a general framework that establishes a
unified model for diversified speech data with different sampling
rates and channels. The framework is a joint optimization of deep
neural network (DNN)-based bandwidth expansion and acoustic
modeling to exploit a large amount of diversified training data.
First, we design two novel DNN architectures to map the acous-
tic features from narrowband to wideband speech through direct
mapping and progressive mapping. The learning targets of the di-
rect mapping DNN (DNN-DM) are the acoustic features extracted
from speech with the largest bandwidth, while the acoustic features
from speech with all the other bandwidths are used as input. A pro-
gressive stacking network (PSN) gradually maps the features from
the low sampling rates to the highest sampling rate through the
design of intermediate target layers via multitask training. Then,
in addition to these bandwidth expansion networks, we investigate
several joint training strategies for DNN-based acoustic models.
Our experiments conducted on three diversified large-scale Man-
darin speech datasets with different recording channels and sam-
pling rates (6, 8, and 16 kHz) show that the proposed unified model
using PSN for bandwidth expansion not only is a more flexible and
compact design than conventional multiple acoustic models with
each bandwidth for a specific sampling rate, but also yields con-
sistent and significant improvements over bandwidth-dependent
models with an average relative word error rate reduction of 6.2%,
indicating that the proposed model can fully utilize the diversified
cross-channel speech data with multiple bandwidths. Moreover,
the proposed methods are verified to be robust on different real-
istic scenes and can be effectively extended to a long short-term
memory framework.
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I. INTRODUCTION

AUTOMATIC speech recognition (ASR) as a core tech-
nique has been widely used in many speech-enabled

fields, e.g., call centers, medical services, and mobile application
[1]–[3]. Large variabilities across different transmission chan-
nels and sampling rates are challenging problems in acous-
tic modeling [4]. Accordingly, most off-the-shelf ASR systems
are channel or bandwidth dependent. For example, narrowband
speech (e.g., with 6 kHz or 8 kHz sampling rates) is often used
in telephone speech recognition [5], while wideband speech
(e.g., with 16 kHz or 44 kHz sampling rates) is adopted in mo-
bile phone speech recognition [6]. However, rebuilding an ASR
system to recognize the speech well from unseen transmission
channels and bandwidths is obviously not flexible and often re-
quires expensive data collecting and labeling. Therefore, how
to build a unified acoustic model to exploit diversified mixed-
bandwidth data is an important research topic.

Historically, there have been two heuristic methods for mixed-
bandwidth acoustic modeling. The first method [7] downsam-
ples all the speech to the lowest sampling rate and combines
them to train a unified model. The recognition performance of
speech with a low sampling rate might be slightly increased due
to the additional downsampled data. However, the performance
of speech with a high sampling rate is likely to be decreased
because speech with a high sampling rate drops some useful
information during the downsampling process [8], [9]. The sec-
ond method [7] upsamples all the speech to the highest sampling
rate and trains a hybrid model, which cannot improve the per-
formance over the bandwidth-specific ASR system because no
useful information is gained by upsampling.

In the past few years, several approaches have been proposed
to construct mixed-bandwidth acoustic models with the aim to
train a hybrid acoustic model with a large amount of narrow-
band data and a small amount of wideband data. In [10], a
feature bandwidth extension (FBE)-based approach was pro-
posed to transform narrowband features into wideband features.
Then, the original features extracted from the wideband speech
were combined with the generated wideband features using
FBE and were utilized to train the mixed-bandwidth Gaussian
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mixture model-based hidden Markov models (GMM-HMMs)
by using the modified expectation maximization (EM) algo-
rithm. Recently, deep learning techniques have been widely
adopted for acoustic modeling in ASR systems [11]–[14]. Con-
sequently, many researchers have also investigated the mixed-
bandwidth speech recognition in the framework of deep neural
network-based hidden Markov models (DNN-HMMs). In [15],
mixed-bandwidth speech modeling was formulated as a missing
feature problem where several feature dimensions correspond-
ing to high-frequency bands were set to zero when the narrow-
band speech was presented. The DNN-based approach in [9]
treated mixed-bandwidth speech modeling as a domain adapta-
tion problem where the DNN-HMMs trained with a very large
amount of narrowband speech could be adapted effectively to
the targeted wideband acoustic models with a small amount of
wideband speech.

Another type of approach adopts the strategy of bandwidth ex-
pansion (BWE), which extends narrowband signals to wideband
signals and then combines the extended and original wideband
speech to train the acoustic models. Early work employed sta-
tistical models [16], such as GMM [17], [18], to learn the map-
ping between low-frequency bands and high-frequency bands
[19]–[23]. Recently, DNN has been used to learn the nonlin-
ear mapping between low-frequency signals and high-frequency
signals, which can obviously improve the subjective listening
quality of narrowband speech [16], [24]–[26]. This latest ap-
proach [27], which causes the expanded narrowband speech to
follow the same distribution as wideband speech by using a gen-
erative adversarial network (GAN), shows a sharp increase in
the quality of narrowband speech. However, the improvement
to the listening quality of speech does not necessarily improve
the ASR performance [28]. Accordingly, we proposed a mixed-
bandwidth acoustic modeling method based on BWE and the
strategy of joint training [29]. A DNN-BWE model was applied
to learn the mapping of narrowband mel-filterbank features and
wideband mel-filterbank features while jointly training a DNN-
BWE network and the acoustic model was used to improve the
ASR performance. A unified model could be used by speech
with different bandwidths, which could yield average relative
performance gains of 4.1% on the narrowband and wideband
data.

In this study, we extend our previous work [29] with the fol-
lowing new contributions. First, a general framework of mixed-
bandwidth cross-channel speech recognition is presented by
considering the input speech signals with arbitrary bandwidths
rather than only two bandwidths (K = 2) as in most previous
research such as [29]. As for the practical values of our proposed
framework, it is common that there are many speech-enabled
applications requiring a speech recognizer fed by speech with
different sampling rates (K > 2). It is a repetitive and time-
consuming work to rebuild the acoustic model for each appli-
cation, and the amount of training speech data with a certain
sampling rate is very limited. Our proposed framework pro-
vides a solution to train a unified acoustic model for different
applications and fully utilize the diversified training speech data
with different sampling rates. For example, in our experiments,
based on three (K = 3) realistic ASR tasks, we demonstrate the

effectiveness of our approach. Second, we design two novel
DNN architectures for multiple bandwidth expansion (MBE),
namely, direct mapping and progressive mapping. The learning
targets of the direct-mapping DNN (DNN-DM) are the acoustic
features extracted from speech with the largest bandwidth, while
the acoustic features from speech with all the other bandwidths
are used as input. The progressive stacking network (PSN) ar-
ranges time-synchronized speech features from the lowest band-
width to the highest bandwidth and then progressively learns
the relationship between the features extracted from speech of
each pair of ordered bandwidths using one hidden layer by
multitasking. Then, in addition to these bandwidth expansion
networks, we investigate several joint modeling strategies with
DNN-based acoustic models. Third, our experiments conducted
on three diversified large-scale Mandarin speech datasets with
different recording channels and sampling rates (6 kHz, 8 kHz,
and 16 kHz) show that the proposed unified model using PSN for
the bandwidth expansion not only is a more flexible and compact
design than conventional multiple acoustic models with each
bandwidth for a specific sampling rate but also yields consistent
and significant improvements over bandwidth-dependent mod-
els with an average relative word error rate reduction of 6.2%, in-
dicating that the proposed model can fully utilize the diversified
cross-channel speech data with multiple bandwidths. Moreover,
as a unified model, the proposed approach with a more compact
design also outperforms the conventional approaches including
downsampling, upsampling, and zero-padding.

II. DNN-BASED MULTIPLE BANDWIDTH EXPANSION

In recent years, DNN-based regression networks as nonlinear
mapping functions have been widely used in speech areas, e.g.,
speech enhancement [30] and noise-robust speech recognition
[31], [32]. Therefore, it is natural to adopt the regression DNN
model to learn the mapping between low-frequency signals
(0∼4 kHz) and high-frequency signals (4∼8 kHz). In [28], DNN
was used to extend narrowband speech into wideband speech
by mapping low-frequency spectra to high-frequency spectra,
yielding better subjective listening quality. However, only the
ASR performance for narrowband speech was improved; the
performance of wideband speech was not improved. In our re-
cent work [29], DNN was used to map the log-mel filter bank
(LMFB) features from narrowband speech to wideband speech
so that the extended features could be fed into the acoustic
model directly, and joint training of a DNN-based BWE model
and acoustic model could be conveniently conducted. However,
the unified model could only be shared by two types of band-
width data in the previous work. In this study, we investigate a
general framework to solve the problem of mixed modeling for
multiple bandwidth data.

A. The Direct-Mapping DNN for MBE

The strategy of MBE used in this paper aims to extend the
speech features of various bandwidths to the highest bandwidth.
Suppose we have K speech datasets {D1 ,D2 , . . . , DK } with
different sampling rates (B1 < B2 < · · · < BK ). The MBE net-
work should extend all speech data to the highest sampling
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Fig. 1. The illustration of the DNN-DM-MBE.

rate of BK . Accordingly, we first design a feedforward neural
network shown in Fig. 1 for bandwidth expansion, including
several sigmoidal hidden layers and a linear output layer. We
denote this MBE network as DNN-DM-MBE. Considering the
direct connection with the DNN-based acoustic model for ASR,
the input of the DNN-DM-MBE should be the LMFB features
of multiband speech (B1 , B2 , . . . , BK−1), and the output of the
DNN-DM-MBE should be the corresponding LMFB features
of speech with the highest sampling rate BK . The DNN-DM-
MBE performs the direct mapping between the narrowband
LMFB features and the wideband LMFB features with the same
dimension, which means that the bandwidth expansion strat-
egy is designed to predict the entire wideband features instead
of the missing high-frequency band. Training the DNN-DM-
MBE requires multiband parallel data, which are very difficult
and expensive to collect. Therefore, we artificially generate a
parallel dataset with a variety of bandwidth data by down-
sampling the dataset DK . We define the speech datasets as
{Dj

K |j = 1, 2, . . . ,K − 1} where Dj
K denotes the downsam-

pled dataset with the sampling rate Bj generated from DK with
the sampling rate BK .

With the dataset pairs {(Dj
K ,DK )|j = 1, 2, . . . ,K − 1}, we

optimize the parameters of the DNN-DM-MBE using the mini-
mum mean square error (MMSE) criterion as follows:

E =
1

N(K − 1)

N∑

n=1

K−1∑

j=1

(
||x̂j,K

n±r − xK
n±r ||22 + α||W ||22

)

(1)

x̂j,K
n±r = F(xj

n±r ,W , b) (2)

where xK
n±r are the nth D(2r + 1)-dimensional vectors of the

reference wideband LMFB features (extracted from DK with
BK ) with the neighboring left and right r frames, as the acous-
tic context. x̂j,K

n±r is a vector estimated by the DNN-DM-MBE,
where the input of the DNN-DM-MBE is xj

n±r , a vector of
input LMFB features with the acoustic context extracted from
the downsampled speech dataset Dj

K (j = 1, 2, . . . ,K − 1). N

Fig. 2. The illustration of the PSN-MBE.

denotes the number of training samples. F is the neural network
function, and (W , b) represent all the weight and bias parame-
ters. α is the regularization weighting coefficient to avoid over-
fitting. We minimize this loss function with the asynchronous
stochastic gradient descent (ASGD) [33]. The output of the
DNN-DM-MBE network, namely, the wideband features, can
be fed to the acoustic network of the ASR system.

B. The Progressive Stacking Network for MBE

The DNN-DM-MBE network directly expands the features of
multiple sampling rates to the highest sampling rate. However,
the training of the DNN-DM-MBE network might be difficult
when the inputs with multiple sampling rates are diverse. It
is challenging to expand the bandwidth effectively, especially
for the data with lower sampling rates. Progressive learning
based on the idea of curriculum learning [34] is used for speech
enhancement [35], where each hidden layer of the DNN is de-
signed to learn an intermediate target with an increased SNR.
Besides, a work in [36] retains a pool of pre-trained models
throughout training and learns lateral connections from these to
extract useful features for new tasks. In this paper, we propose
a progressive stacking network for MBE (PSN-MBE) similar to
[35], which gradually maps the features from the low sampling
rate to the highest sampling rate through the design of interme-
diate target layers. It has the potential to make the bandwidth
expansion network easier to train by learning progressively. The
PSN-MBE is illustrated in Fig. 2. For example, if there are four
types of speech data with the sampling rates 4 kHz, 6 kHz,
8 kHz, and 16 kHz, then two intermediate layers are designed
to represent the 6 kHz and 8 kHz sampling rates in addition to
the input layer with 4 kHz and output the layer with 16 kHz. As
shown in Fig. 2, all target layers, including the intermediate tar-
gets and the final output targets, use a linear activation function,
while the hidden layers adopt the sigmoid activation function.
This stacking style network can learn multiple targets progres-
sively. In the forward process of the PSN-MBE, the features
of each intermediate target layer are expanded as the input for
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learning the next target layer with a higher sampling rate. Then,
backpropagation of the PSN-MBE is adopted with a weighted
MMSE criterion in terms of multitask learning to update the
randomly initialized parameters as follows:

EPL =
K∑

j=2

αjE
PL
j + α||W PL||22 (3)

EPL
j =

1
N

N∑

n=1

‖FPL
j

(
x̂j−1

n±r ,W
PL
j , bPL

j

)
− xj

n±r‖2
2 (4)

where x̂j
n±r and xj

n±r are the nth D(2r + 1)-dimensional vec-
tors of the estimated and reference target, respectively, of
the LMFB feature vectors for the target layer representing
Bj (j > 1). αj is the weighting factor of an objective function
for the jth target layer. x̂1

n is equivalent to x1
n , denoting the

nth D(2r + 1)-dimensional vector of input LMFB features ex-
tracted from D1

K with B1 . FPL
j (x̂j−1

n±r ,W
PL
j , bPL

j ) is the neural
network function for the jth target using the previously learned
intermediate target x̂j−1

n±r , and (WPL
j , bPL

j ) represents the weight
matrices and bias vectors of the hidden layer j − 1, which are
optimized using backpropagation with ASGD. Obviously, the
gradients of EPL

j only affect the parameter update of its previous
layers.

The PSN-MBE has three advantages compared with the
DNN-DM-MBE. First, the PSN-MBE explicitly realizes what is
learned from each hidden layer, while the DNN-DM-MBE acts
similar to “a black box”. Only the final goal of the network is
designed, but not the learning goal of the middle layer. Second,
we can clearly decompose the mapping among multiple band-
widths into a series of mappings between pairs of bandwidths
progressively. Furthermore, the training process is simpler via
multitask learning, that is, mappings between different pairs of
bandwidths can be trained at the same time. Finally, different
from the DNN-DM-MBE mixing all the network parameters
together to learn multiple mappings between the lower band-
widths and the highest bandwidth, a more compact model can
be designed through the PSN-MBE.

III. MULTIBANDWIDTH MIXED ACOUSTIC MODELING

The DNN-DM-MBE or PSN-MBE can extend the speech
data of a low sampling rate to a high sampling rate, but the
bandwidth expansion network trained by the MMSE criterion
does not necessarily play a positive role in the performance im-
provement of the ASR system. Therefore, we investigate jointly
training the MBE model and the acoustic model for multiband-
width mixed speech recognition. First, the last layer of the MBE
network uses a linear activation function so that the output of
the MBE network can be directly fed into the ASR acoustic
network. Second, the LMFB features with context frame expan-
sion are adopted as the output of the MBE network. Finally,
the joint training of the MBE network and the acoustic network
can be performed under the cross-entropy (CE) criterion for im-
proving the recognition performance. In this study, three strate-
gies of multibandwidth joint training (MBJT) are presented by

Fig. 3. Same entry using DNN-DM-MBE (MBJT-1).

exploiting different MBE models and data usages to fully utilize
the multibandwidth mixed speech data.

A. Same Entry Using the DNN-DM-MBE (MBJT-1)

As shown in Fig. 3, after joint training, speech features of all
bandwidths share the same entry, namely, the input of the DNN-
DM-MBE. The detailed procedure of MBJT-1 is demonstrated
in Algorithm 1. First, the DNN-DM-MBE is built with the
LMFB features extracted from DK and D1

K ,D2
K , . . . ,DK−1

K

using the algorithm depicted in Section II-A. Second, the DNN-
based acoustic model (DNN-AM) is initialized by a restricted
Boltzmann machine (RBM)-based pretraining [37], which is
followed by a fine-tuning stage with the output features of the
DNN-DM-MBE using the LMFB features from both datasets
{D1 ,D2 , . . . , DK−1} and {D1

K ,D2
K , . . . ,DK−1

K }. Finally, by
connecting the DNN-DM-MBE and DNN-AM, joint training
with the CE criterion is performed for updating all the parame-
ters of the hybrid DNN.

By using the above algorithm, speech data with arbitrary
K-bandwidth data can be used to establish a unified acous-
tic model. In the decoding stage, the LMFB features of the
speech data with {B1 , B2 , . . . , BK−1} are directly fed into
the hybrid DNN model. For the speech data with the highest
sampling rate BK , we downsample from BK to BK−1 , and
then, the corresponding LMFB features with BK−1 are used for
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Algorithm 1: Training Procedure of the MBJT-1 Strategy.
Step 1: DNN-DM-MBE training
Train the DNN-DM-MBE with the LMFB features
extracted from the dataset pairs
{(Dj

K ,DK )|j = 1, 2, . . . ,K − 1} under the MMSE
criterion as in Eq. (1).
Step 2: DNN-AM training
Combine the LMFB features from both datasets
{D1 ,D2 , . . . , DK−1} and {D1

K ,D2
K , . . . ,DK−1

K }
randomly in the mini-batch level. Then, feed the combined
LMFB features into the DNN-DM-MBE; the output
features are used to train DNN-AM.
Step 3: Joint training
Concatenate the DNN-DM-MBE and DNN-AM. Jointly
optimize the DNN-DM-MBE and DNN-AM under the CE
criterion with the combined LMFB features in Step2.

decoding. This strategy has the following advantages. First, the
sharing of multibandwidth data is efficiently implemented, and
the amounts of training data are effectively increased compared
to the single-bandwidth modeling case. Therefore, the recogni-
tion performance of the speech data with lower sampling rates
{B1 , B2 , . . . , BK−1} should be improved. Second, if the DNN-
DM-MBE can well learn the feature mapping between the lower
bandwidths and the highest bandwidth, the recognition perfor-
mance of the speech data with the highest sampling rate BK

should also be potentially improved. Finally, the DNN-DM-
MBE can also learn channel information during the joint train-
ing stage and alleviate the performance loss due to the channel
mismatch of different bandwidth data.

B. Different Entries Using the DNN-DM-MBE (MBJT-2)

Though the MBJT-1 mentioned above is an effective strat-
egy for mixed-bandwidth modeling, it is worth noting that this
strategy tends to improve the performance for the low sampling
rate speech. For the high sampling rate speech, the performance
improvement mainly depends on the recovery capability of the
high-frequency band using the DNN-DM-MBE. Therefore, we
propose another strategy aimed at improving the recognition
performance of the speech with the highest sampling rate BK ,
as shown in Fig. 4.

Unlike MBJT-1, there are two different entries for the input
features with different sampling rates in the MBJT-2. The LMFB
features with lower sampling rates {B1 , B2 , . . . , BK−1} are still
fed into the DNN-DM-MBE, while the LMFB features with the
highest sampling rate BK are directly sent to the DNN-AM for
acoustic modeling. The training procedure is demonstrated in
Algorithm 2. First, the DNN-DM-MBE is built similar to MBJT-
1. Second, DNN-AM is trained using two datasets, namely,
one set of DK with the highest sampling rate BK , and the
other set of {D1 ,D2 , . . . , DK−1} with the lower sampling rates
{B1 , B2 , . . . , BK−1}, which should be passed to the DNN-DM-
MBE for the bandwidth expansion. Then, by concatenating the
DNN-DM-MBE and DNN-AM, the two networks are updated
with the CE criterion in which DK is only used to update the

Fig. 4. Different entries using the DNN-DM-MBE (MBJT-2).

DNN-AM and {D1 ,D2 , . . . , DK−1} is adopted to update both
the DNN-AM and DNN-DM-MBE. In addition, after the joint
training of the DNN-DM-MBE and DNN-AM, we perform a
fine-tuning of the DNN-DM-MBE using {D1 ,D2 , . . . , DK−1}
and correct the DNN-AM to further improve the recognition
performance of speech data with lower sampling rates.

The main difference between MBJT-2 and MBJT-1 is that the
DK with the highest sampling rate BK in the MBJT-2 strategy
can be used directly to train the DNN-AM; thus, unlike MBJT-1,
the downsampling and bandwidth expansion operations do not
result in the loss of information for the speech data with the
highest sampling rate at the decoding. In the DNN-AM training
and joint training stages, since the speech data for the highest
sampling rate and the lower sampling rates are handled differ-
ently, the training data are randomized at the mini-batch level,
namely, containing the speech features with the same sampling
rate in a mini-batch. In the decoding stage, the features with the
lower sampling rates are expanded by DNN-DM-MBE and then
decoded by DNN-AM, while the features with the highest sam-
pling rate are directly decoded by the DNN-AM. We expect bet-
ter data sharing can be achieved between lower sampling rates
and the highest sample rate without information loss, which will
potentially yield better performance for all bandwidths.

C. Different Entries Using the PSN-MBE (MBJT-3)

The MBJT-2 ensures that there is no information loss for
speech data with the highest sampling rate, and the speech data
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Algorithm 2: Training Procedure of the MBJT-2 Strategy.
Step 1: DNN-DM-MBE training
Train the DNN-DM-MBE with the LMFB features
extracted from the dataset pairs
{(Dj

K ,DK )|j = 1, 2, . . . ,K − 1} under the MMSE
criterion as described in Algorithm 1.
Step 2: DNN-AM training
Combine the LMFB features from datasets
{D1 ,D2 , . . . , DK−1 ,DK } randomly in the mini-batch
level. Then, feed the combined LMFB features of
{D1 ,D2 , . . . , DK−1} into the DNN-DM-MBE and the
LMFB features of DK into the DNN-AM, and then update
the DNN-AM with the CE criterion while fixing the
DNN-DM-MBE.
Step 3: Joint training
Jointly optimize the DNN-DM-MBE and DNN-AM under
the CE criterion, using the LMFB features of
{D1 ,D2 , . . . , DK−1} to update both the DNN-DM-MBE
and the DNN-AM, while using the LMFB features of DK

to update the DNN-AM only.
Step 4: Fine-tuning of the DNN-DM-MBE
Further optimize the DNN-DM-MBE with the LMFB
features of {D1 ,D2 , . . . , DK−1} under the CE criterion
while fixing the DNN-AM.

with lower sampling rates can be expanded by the DNN-DM-
MBE. However, the DNN-DM-MBE might not be well-trained
with multiple bandwidth data since the features of the multiple
sampling rates data need to be directly extended to the highest
sampling rate. Therefore, we propose a mixed-band modeling
approach based on the PSN-MBE, namely, MBJT-3, as shown in
Fig. 5. The MBJT-3 improves the MBJT-2 in two aspects. First,
unlike MBJT-2 where different speech features with lower sam-
pling rates are fed to the DNN-DM-MBE via the same entry and
only speech features with the highest sampling rate are directly
sent to the DNN-AM, speech features with K bandwidths are
located in different entries of the PSN-MBE (the input layer,
intermediate target layers and the output layer) in the MBJT-3.
Second, the PSN-MBE in MBJT-3 is trained progressively using
the speech features with increased bandwidths as in Section II-B,
which can potentially achieve a better convergence property. The
detailed training procedure is depicted in Algorithm 3.

The MBJT-3 strategy is quite appealing. During the decoding
stage, the speech features with different sampling rates are fed
into the hybrid network through different entries so that the de-
coding time can be reduced for the higher sampling rate. More
importantly, the novel design of the progressive network archi-
tecture makes the training of the network easier. Furthermore,
the high-frequency information expansion can be achieved more
effectively, potentially yielding better recognition performance.

D. Initialization of the Mixed-Bandwidth Model

For the above three strategies, the mixed-bandwidth speech
data are shared to train a unified acoustic model. One important
issue is initializing the unified model, namely, the generation of

Fig. 5. Progressive stacking network based mixed-band modeling (MBT-3
strategy).

the state-level labels for different bandwidth data and the param-
eter initialization of the DNN-AM. In this study, we first use DK

with the highest sampling rate BK to train a GMM-HMM acous-
tic model to generate the state-level labels of DK for the DNN-
AM training. Then, the DNN-AM can be initialized using the
LMFB features of DK and the output features of the well-trained
DNN-DM-MBE/PSN-MBE with the input LMFB features of
the datasets {D1

K ,D2
K , . . . ,DK−1

K }. Here, we assume that the
output features of the DNN-DM-MBE/PSN-MBE use the same
labels as DK because all datasets {D1

K ,D2
K , . . . ,DK−1

K } are
downsampled and frame-synchronized versions of DK . Finally,
with both initialized DNN-DM-MBE/PSN-MBE and DNN-
AM, the forced-alignment step is performed to generate the
labels for {D1 ,D2 , . . . , DK−1} using the unified model.

IV. EXPERIMENTS AND RESULT ANALYSIS

To verify the effectiveness of the proposed approach, we de-
fined three Mandarin large vocabulary continuous speech recog-
nition (LVCSR) tasks based on collected realistic cross-channel
speech data with different sampling rates (6 kHz, 8 kHz and
16 kHz), as illustrated in Table I. For the purpose of data bal-
ance, all the training sets of different bandwidths consisted of
300 hours of speech data, which was comparable to the train-
ing set size of the widely used Switchboard task for English
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TABLE I
THE DETAILS OF THREE MANDARIN SPEECH RECOGNITION TASKS

Algorithm 3: Training Procedure of the MBJT-3 Strategy.
Step 1: PSN-MBE training
Train the PSN-MBE under the MMSE criterion as in
Eq. (3) by feeding the input layer with the LMFB features
of D1

K with the lowest sampling rate B1 , the intermediate
target layers with the LMFB features of {D2

K , . . . ,DK−1
K }

with the sampling rates {B2 , . . . , BK−1}, and the output
layer with the LMFB features of DK with the highest
sampling rate BK .
Step 2: DNN-AM training
Combine the LMFB features from datasets
{D1 ,D2 , . . . , DK−1 ,DK } randomly in the mini-batch
level. Then, feed the LMFB features of
{D1 ,D2 , . . . , DK−1} into the PSN-MBE via different
entries and the LMFB features of DK into the DNN-AM,
and then update the DNN-AM with the CE criterion while
fixing PSN-MBE.
Step 3: Joint training
Jointly optimize the PSN-MBE and the DNN-AM under
the CE criterion, using the LMFB features of
{D1 ,D2 , . . . , DK−1 ,DK } to update both the DNN-AM
and PSN-MBE. Please note that only the succeeding
parameters after each entry for one sampling rate are
updated.
Step 4: Fine-tuning of the PSN-MBE
Further optimize the PSN-MBE with the LMFB features of
{D1 ,D2 , . . . , DK−1} under the CE criterion while fixing
the DNN-AM.

LVCSR [38]. The amount of data in each test set for the differ-
ent bandwidths was listed in Table I. The frame length was 25
ms, while the frameshift was 10 ms. The utterance-level mean
normalization was applied to the LMFB features.

For the 6 kHz task, the data were recorded from the call center
over the telephone channel with a special VOX compression
format. The utterances were the conversations between the client
and customer service. Part of the data included serious accents.
For ASR setup, the vocabulary size was approximately 68,000
words, and the language model was a 3-gram.

For the 8 kHz task, the data were also recorded over the
telephone channel. The speaking style of the speech data was
more spontaneous than the Switchboard task [39] because the
subject of the conversation was completely open. For the ASR
setup, the vocabulary size was approximately 86,000 words, and
the language model was a 3-gram.

For the 16 kHz task, the data were recorded over various un-
known channels. The speaking style of the data was also sponta-
neous. Part of the data was collected with far-field microphones

in noisy environments. For the ASR setup, the vocabulary size
was approximately 100,000 words, and the language model was
a 3-gram.

To build the acoustic models for both the single-bandwidth
and multiple-bandwidth tasks, we adopted the tied-state tri-
phones as the HMM units for Mandarin speech. To generate
the aligned state labels, the GMM-HMM system with 9004
tied states and 40 Gaussian mixtures for each state was trained
using the mel-frequency cepstral coefficient (MFCC) features.
For the single-bandwidth systems, we adopted three separate
GMM-HMMs for data of different sampling rates; each system
had a different decision tree, but the numbers of states of the
three systems were the same. For the mixed-bandwidth system,
we used the procedure described in the Section III-D to ob-
tain unified tied states with 16 kHz model. The architecture of
the DNN-AM was 825-2048*6-9004, namely, 11 frames of 72-
dimensional LMFB features and 3-dimensional pitch features
for the input layer, 6 hidden layers with 2048 nodes for each
layer, and 9004 tied states for the output layer. Unsupervised
RBM pretraining was used for the DNN-AM initialization. The
learning rate was 0.004, and 10 iterations were performed under
the CE criterion for the DNN-AM fine-tuning.

For the bandwidth expansion network, the architecture of
the DNN-DM-MBE was 825-2048*3-825. The input and out-
put layers of the DNN-DM-MBE were 825-dimensional LMFB
features with 11-frame expansion, while 3 hidden layers were
adopted with 2048 nodes for each layer. For the PSN-MBE
(K = 3), the architecture was 825-2048-825-2048-825, α3 and
α2 in Eq. (3) were set to 0.5 and 0.5, respectively. For both the
DNN-DM-MBE and the PSN-MBE, the learning rate was set
to 0.001, and 30 iterations were performed with the random ini-
tialization for training. For the joint training, the learning rates
for the DNN-DM-MBE&DNN-AM and the PSN-MBE&DNN-
AM were 0.002 and 0.0015 respectively. In the final step of the
MBJT-2 and the MBJT-3, the learning rate was set to 0.0015 for
the fine-tuning of the DNN-DM-MBE/PSN-MBE. All of the
experiments were performed by using our own tools for better
parallel computing by multiple machines and multiple GPUs.

Based on the description in Table I, the ASR task seemed
more challenging with a higher sampling rate in terms of more
spontaneous speaking styles, more adverse environments and a
larger vocabulary. Specifically, due to quite limited domain data
of the call center in the 6 kHz task, the number of 3-gram models
for the 6 kHz task was much smaller than for the 8 kHz and the
16 kHz tasks, the recognition performance of the 6 kHz task
was always significantly better than the 8 kHz and the 16 kHz
tasks in the subsequent experiments.

In the following subsections, we first examined the effective-
ness of the bandwidth expansion network. Then, the recogni-
tion performance of mixed-band speech modeling was analyzed.
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Fig. 6. An example comparison of the LMFB features using the DNN-DM-
MBE with sampling rates from 8 kHz to 16 kHz (K = 2).

Moreover, the robustness issues of the proposed approach, in-
cluding accents, speaking styles, microphone settings, and mul-
tiple speakers, were comprehensively discussed. Finally, the
expansive experiments based on LSTM were performed.

A. Effectiveness of the Bandwidth Expansion Network

In this section, we examined the effectiveness of the band-
width expansion networks using the visualization of the LMFB
features from three aspects. First, the experiment on the sim-
ulation data was conducted for the proof of concept. Second,
the experiment on the realistic data was designed to show the
differences of the bandwidth expansion network output before
and after the joint training described in Section III. Third, we
compared the DNN-DM-MBE and the PSN-MBE.

1) Proof of Concept on the Simulation Data: As shown in
Fig. 6, we listed an utterance example from the 16 kHz test
set. We first downsampled the 16 kHz waveform to an 8 kHz
waveform and then compared the corresponding LMFB features
among the 16 kHz, downsampled 8 kHz and recovered 16 kHz
waveforms using the DNN-DM-MBE. The horizontal axis was
the frame index, while the vertical axis was the mel-frequency
index (also applied for Figs. 7 and 8). The DNN-DM-MBE was
trained only with the 16 kHz training set and its downsampled
8 kHz version (K = 2). From Fig. 6, we observed that the high-
frequency bands between 4 kHz and 8 kHz of the recovered
LMFB features were similar to those of the reference 16 kHz
case, which demonstrated the effectiveness of the DNN-DM-
MBE.

2) The DNN-DM-MBE Outputs Before/After Joint Training:
In Fig. 7, we showed a realistic example of the bandwidth ex-
pansion from 8 kHz to 16 kHz using the utterance from the
8 kHz test set as the input, different from the downsampled
8 kHz version in Fig. 6. Both the outputs of the DNN-DM-
MBE before/after the joint training in MBJT-1 were compared.
The DNN-DM-MBE before joint training created high bands

Fig. 7. An example comparison of the DNN-DM-MBE outputs before/after
joint training with the sampling rate extended from 8 kHz to 16 kHz (K = 2).

Fig. 8. An example comparison between the DNN-DM-MBE and the PSN-
MBE with the sampling rate extended from 6 kHz to 16 kHz (K = 3).

of the LMFB features between 4 kHz and 8 kHz. After joint
training, the DNN-DM-MBE output generated quite different
results from those before training because the optimizing of the
DNN-DM-MBE was guided by the CE criterion for the ASR
rather than the MMSE criterion. We discussed the recognition
performance in Section IV-B.

3) DNN-DM-MBE vs. PSN-MBE: Finally, we maked a com-
parison between the DNN-DM-MBE and the PSN-MBE for
multiple bandwidth expansion including 6 kHz, 8 kHz and
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TABLE II
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-1 STRATEGY AND

OTHER METHODS ON 8 KHZ AND 16 KHZ TEST SETS

16 kHz (K = 3), as illustrated in Fig. 8. Here, we only showed
the expansion results from 6 kHz to 16 kHz. We also used the
same 16 kHz waveform as in Fig. 6 to generate the downsam-
pled 6 kHz waveform. As the downsampled 6 kHz waveform
lost more details of the high-frequency bands compared with
the downsampled 8 kHz waveform, it was more challenging to
recover the contents of the high-frequency bands as shown in
the comparison between Fig. 8(c) and Fig. 6(c). However, by us-
ing the PSN-MBE, the recovered feature in Fig. 8(d) was more
similar to the reference 16 kHz feature than that in Fig. 8(c),
especially in the high-frequency bands. We calculated the mean
squared error between the recovered features and the reference
features for this utterance. The mean squared error of 55.9 shown
in Fig. 8(d) was smaller than the mean squared error of 59 shown
in Fig. 8(c). For the entire 16 kHz testing set, the mean squared
error of 78.1 with PSN-MBE was also smaller than the mean
squared error of 93.6 with DNN-DM-MBE.

B. Comparison of Mixed-Bandwidth Speech Recognition

In this section, we validated the effectiveness of several pro-
posed mixed-bandwidth modeling approaches, namely, MBJT-
1, MBJT-2, and MBJT-3. First, the experiments with MBJT-1
and MBJT-2 were conducted for mixed-bandwidth modeling
cases with K = 2 including (6 kHz, 16 kHz) and (8 kHz,
16 kHz). Second, MBJT-2 and MBJT-3 were compared for
the mixed-bandwidth modeling case with K = 3 including
all three bandwidths. The baseline single-bandwidth models
were always trained on 300 hours of speech, and all other
mixed-bandwidth models were trained on 600 hours (K = 2)
or 900 hours (K = 3).

1) K = 2: Table II lists the character error rate (CER) com-
parison of the MBJT-1 strategy and several conventional ap-
proaches for mixed-bandwidth modeling of 8 kHz and 16 kHz
data. “Baseline” refers to the single-bandwidth acoustic models
built using 8 kHz and 16 kHz data. “DS” denotes the unified
acoustic model trained using both 8 kHz data and downsampled
8 kHz data from 16 kHz data, which is one heuristic mixed-
bandwidth modeling strategy. “MBJT-1” represents the MBJT-1
approach in Algorithm 1, and “MBJT-1-Init” is the version with-
out Step 3 in Algorithm 1, which means that joint training of the
DNN-DM-MBE and DNN-AM is not performed. In Table II,
the strategy of downsampling (DS) improved the performance
of the 8 kHz test set. However, the performance degraded for
the 16 kHz test set because the high-frequency band of the
16 kHz data was lost after downsampling. The “MBJT-1-Init”
without joint training even led to worse results than the “Base-
line”, which might be explained because the data for training

TABLE III
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-1 STRATEGY AND

OTHER METHODS ON THE 6 KHZ AND 16 KHZ TEST SETS

TABLE IV
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-2 STRATEGY AND

OTHER METHODS ON 8 KHZ AND 16 KHZ TEST SETS

the DNN-DM-MBE did not match the training data used for
the DNN-AM. Therefore, the joint training in “MBJT-1” could
alleviate the mismatch, yielding consistent improvements on
both the 8 kHz and 16 kHz test sets. For example, the CER of
“MBJT-1” decreased from 31.8% to 30% compared with the
“Baseline” for the 8 kHz case, demonstrating the effectiveness
of the MBJT-1 strategy for mixed-bandwidth modeling.

We also performed another set of experiments on the mixed-
bandwidth modeling of 6 kHz and 16 kHz data as shown in
Table III. “MBJT-1” still outperformed “DS” and “MBJT-1-
Init”. One main difference observed was that in Table II, “MBJT-
1” could not improve the performance over the “Baseline.” One
reason was the bandwidth expansion from 6 kHz to 16 kHz
was obviously more difficult than the expansion from 8 kHz to
16 kHz. Another reason was that the speaker styles of the 6 kHz
and 16 kHz data were quite different.

In both Tables II and III, the performance gain of “MBJT-
1” over “Baseline” for speech with the highest sampling rates
(16 kHz) was less significant than that for speech with lower
sampling rates (8 kHz or 6 kHz). To further improve the per-
formance of speech with the highest sampling rate, the MBJT-2
strategy proposed to directly feed the features of the highest
sampling rate into the DNN-AM during the training and testing
stages.

Table IV lists the CER comparison of the MBJT-2 strategy
and several conventional approaches for mixed-bandwidth mod-
eling of 8 kHz and 16 kHz data. “US” denotes the unified acous-
tic model built using both the 16 kHz data and the upsampled
16 kHz data from the original 8 kHz data, which is another
heuristic mixed-bandwidth modeling strategy. “MBJT-2” repre-
sents the MBJT-2 approach in Algorithm 2 while “MBJT-2-Init”
is the version without Step 3 and Step 4 in Algorithm 2. Based
on Table IV, the “US” strategy improved the performance of
the 16 kHz test set. Nevertheless, the performance was slightly
degraded for the 8 kHz test set. Obviously, this was an oppo-
site observation compared with “DS” in Table II. Similar to
“MBJT-1-Init” in Table II, “MBJT-2-Init” did not perform well
on both the 8 kHz and 16 kHz tasks without joint training of
the bandwidth expansion model and the acoustic model. Mean-
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TABLE V
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-2 STRATEGY AND

OTHER METHODS ON THE 6 KHZ AND 16 KHZ TEST SETS

TABLE VI
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-2/MBJT-3

STRATEGIES AND OTHER METHODS ON THE TEST SETS OF ALL THREE

BANDWIDTHS. NM AND NT ARE THE MODEL SIZE AND RUN-TIME LATENCY,
RESPECTIVELY, NORMALIZED BY THE BASELINE SYSTEM

while, “MBJT-2” consistently and remarkably improved the
performance on the two types of data. One main difference from
“MBJT-1” was that the performance gain on the 16 kHz data
was more significant due to the preservation of high-frequency
information of the 16 kHz data. In addition, the average result
on the two sets was better than that of “MBJT-1”.

The corresponding experimental results on the 6 kHz and
16 kHz tasks are shown in Table V. The observation was similar
to that in Table IV. Although the improvements were less sig-
nificant than those on the 8 kHz and 16 kHz tasks due to more
information loss from the 16 kHz to 6 kHz data and more data
diversity between the 16 kHz and 6 kHz tasks, “MBJT-2” still
significantly outperformed “MBJT-1” in Table III.

2) K = 3: The above experiments proved that the strategy
of MBJT-2 could build a unified acoustic model and achieve per-
formance gains for mixed-bandwidth modeling with two types
of sampling rates. In this section, we increased the modeling
difficulty and designed the experiments on all three bandwidths
to verify the scalability of the proposed strategy for mixed-
bandwidth acoustic modeling. Since the average performance
of the MBJT-2 strategy was better than that of the MBJT-1 strat-
egy on two types of data, we only compared the MBJT-2 and
MBJT-3 strategies.

Table VI lists the results of the MBJT-2/MBJT-3 strategies
and other approaches on the test sets of all three bandwidths
for mixed-bandwidth speech recognition. “Baseline” refers to
the independent acoustic models built using the 6 kHz, 8 kHz
and 16 kHz data. “DS” and “US” represent the unified acoustic
models using the simple downsampling and upsampling strat-
egy, respectively, where all data are downsampled to 6 kHz or
upsampled to 16 kHz. For “zero-padding” proposed in [16],
the high-frequency parts of the LMFB features were padded to
zero for the data with lower sampling rates. “MBJT-2-Init” and
“MBJT-2” are similar to those in Tables IV and V. “MBJT-

3” represents the MBJT-3 approach in Algorithm 3, while
“MBJT-3-Init” is the version without Step 3 and Step 4 in
Algorithm 3.

From Table VI, “DS” and “US” achieved the goal of unified
modeling, but the recognition performance was not stable for
the data with different sampling rates. Specifically, compared
with the “Baseline” systems, the performance of “DS” was sig-
nificantly degraded on the 16 kHz data due to the loss of the
high-frequency information while the CER of “US” slightly
increased on the 6 kHz data. “Zero-padding”, as one mixed-
bandwidth modeling approach, slightly outperformed “US” on
average. None of the above mentioned approaches could gen-
erate consistent gains over “Baseline” for all types of sam-
pling rates. However, our proposed “MBJT-2” and “MBJT-3”
yielded consistent and remarkable improvements, demonstrat-
ing the powerful modeling capability of diversified data with
different speaker styles and channel variations. For example, the
CER reductions of ‘MBJT-2” over “Baseline” were 0.6%, 1.7%,
and 1.9% for 6 kHz, 8 kHz, and 16 kHz, respectively. Moreover,
“MBJT-3” with a compact design of the bandwidth expansion
network via the progressive mapping among the LMFB fea-
tures with different sampling rates achieved a slight gain over
“MBJT-2”, indicating the reasonableness of the progressive ar-
chitecture. Based on the comparison between Table IV and
Table VI, “MBJT-2” was still quite effective with the increase
of K implying the good generalization capability to multiple
bandwidths.

We also compared the model size and run-time latency in
Table VI. It was clear that the proposed “MBJT-2” and “MBJT-
3” required additional memory and computational costs com-
pared to “Baseline” (for one bandwidth), “DS”, “US”, and
“zero-padding” due to the use of the bandwidth expansion net-
work. Therefore, one concern might be the performance when
using more parameters in the DNN-AM for those systems not
using the bandwidth expansion model. The experiments con-
firmed that increasing the hidden layers of the DNN-AM did
not obtain the performance gains. For example, the average CER
of the “Baseline” system using 10 hidden layers was 26.11%,
which was almost the same as that using 6 hidden layers (26.1%)
as shown in Table VI. This finding implied that the DNN-AM
could not implicitly model the diversified data well by simply
using more parameters, while the DNN-DM-MBE or the PSN-
MBE can explicitly learn the bandwidth expansion relationship
to improve the performance of ASR.

In Table VI, compared with “MBJT-2”, the model size and
run-time latency of “MBJT-3” were both smaller. Accordingly,
we showed the learning curves of the DNN-DM-MBE and the
PSN-MBE on the cross-validation set in Fig. 9. We used only
6 kHz and 16 kHz data pairs to train the DNN-DM-MBE and the
PSN-MBE, and compared the 6 kHz to 16 kHz part of the PSN-
MBE loss with DNN-DM-MBE loss to ensure comparability.
Obviously, the PSN-MBE achieved a faster convergence than
the DNN-DM-MBE, indicating that the progressive architecture
in the PSN-MBE was easier to train. This result was because
the design of feeding the features with different sampling rates
to the PSN-MBE via different entries aimed to progressively
recover the lost information of the high-frequency bands, which



GAO et al.: MIXED-BANDWIDTH CROSS-CHANNEL SPEECH RECOGNITION VIA JOINT OPTIMIZATION 569

Fig. 9. The learning curves of the DNN-DM-MBE and the PSN-MBE on the
cross-validation set (K = 3).

potentially decomposed a challenging bandwidth expansion
problem into several easier subproblems.

C. Robustness Analysis

In previous experiments, we only discussed the overall per-
formance of each test set with one sampling rate. In this section,
we conducted a deep analysis of the robustness issues of the pro-
posed MBJT-3 approach (K = 3) in realistic scenes, including
the accents, speaking styles, microphone settings, and multiple
speakers.

Table VII shows the performance comparison of the “MBJT-
3” (K = 3) and “Baseline” systems on well-designed test sub-
sets of all three tasks to examine the robustness issues. For the
6 kHz task, we designed two test subsets with 2-hour data from
the whole test set to verify the impact of the accent. It is well
known that there are many types of dialects in China. Although
we included the accented speech data in the training stage, the
CER of the “Baseline” system on accented speech data was
still much worse than that on the Mandarin speech data (17.5%
vs. 13.9%). Our proposed “MBJT-3” was quite effective on the
Mandarin speech, yielding a relative CER reduction (CERR) of
10%. However, the performance gain of the “MBJT-3” over the
“Baseline” on the accented speech was halved compared with
that on the Mandarin speech.

For the 8 kHz task, one subset with 2-hour data consisted
of the formal speech in business calls, while the other subset
with 1.6-hour data was composed of the conversational speech
in family calls. Different from the accented case in the 6 kHz
task, “MBJT-3” was more robust for both the formal and con-
versational speaking styles, with relative CERRs of 7.8% and
7.5%, respectively.

Finally, we examined the environmental issues on the 16 kHz
task using three test subsets. The test subset with 9-hour data
recorded by a close-talking microphone was referred to as the
press interview scenario. The 2-hour far-field data were the
speech of teachers with the background noises in the classroom.
The third subset with 3-hour data was collected in a meet-
ing scenario with multiple speakers. Obviously, the “Baseline”
performance sharply declined for the low SNR speech in the
far-field and the overlapping speech of multiple speakers, gen-

erating double or triple CERs compared with the close-talking
case. However, for all three environments, “MBJT-3” achieved
consistent performance gains. In addition, for those adverse
acoustic environments, the relative CERRs were slightly better
than that in the close-talking case. In Table VII, we examined
almost all possible issues in realistic scenes, and the proposed
“MBJT-3” demonstrated its high robustness and stability. This
result implied that the proposed “MBJT-3” without using ad-
ditional training data, compared to the “Baseline” system, may
be deployed as a practical solution for mixed-bandwidth speech
recognition.

D. LSTM Acoustic Model Experiments

All of the above experiments were conducted on the DNN
model, but it is well-known that the LSTM model is a stronger
acoustic model structure for ASR since the long-term correla-
tion of speech can be modeled well by the LSTM model [40].
Therefore, in this section, some mixed-bandwidth modeling ex-
periments were conducted based on the LSTM model to verify
the scalability of our proposed strategies.

We experimented on all three bandwidths data (K = 3) and
used the LSTM for both the acoustic models and the two band-
width extension networks, denoted as LSTM-AM, LSTM-DM-
MBE, and LSTM-PSN-MBE. The architecture of LSTM-AM
was 75-2048(512)*3-9004, namely, 72-dimensional LMFB fea-
tures and 3-dimensional pitch features for the input layer, 3
hidden layers with 2048 nodes for each layer and 512 nodes
for each project layer, and 9004 tied states for the output layer.
LSTM-AM was trained under the CE criterion with random ini-
tialization, the learning rate was 0.08, and 10 iterations were
performed.

For the bandwidth expansion network based on LSTM, the
architecture of LSTM-DM-MBE was 75-1024(512)*3-75. The
input and output layers of the LSTM-DM-MBE were 75-
dimensional LMFB and pitch features, while 3 hidden layers
were adopted with 1024 nodes for each layer and 512 nodes
for each project layer. For LSTM-PSN-MBE (K = 3), the ar-
chitecture was 75-1024(512)-75-1024(512)-825, and α3 and α2
were set to 0.5 and 0.5, respectively. For both the LSTM-DM-
MBE and the LSTM-PSN-MBE, the learning rate was set to
0.02, and 15 iterations were performed with the random initial-
ization for training. For the joint training, the learning rates
for the LSTM-DM-MBE&LSTM-AM and the LSTM-PSN-
MBE&LSTM-AM were 0.04. In the final step of MBJT-2 and
MBJT-3, the learning rate was set to 0.02 for the fine-tuning of
the LSTM-DM-MBE/LSTM-PSN-MBE.

Table VIII lists the results of the MBJT-2/MBJT-3 strate-
gies based on the LSTM on test sets of all three bandwidths.
“DNN” refers to the independent DNN acoustic models built
using the 6 kHz, 8 kHz and 16 kHz data. “LSTM” refers to
the independent LSTM acoustic models. ‘MBJT-2-LSTM” and
“MBJT-3-LSTM” represent the MBJT-2 and MBTJ-3 approach
similar to Table VI, while the LSTM is used for the bandwidth
extension network and the acoustic network.

From Table VIII, the LSTM-based acoustic model achieved
significant performance improvements over the DNN-based
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TABLE VII
PERFORMANCE (CER IN %) COMPARISON OF THE “MBJT-3” (K = 3) AND “BASELINE” SYSTEMS ON WELL-DESIGNED TEST SUBSETS

OF ALL THREE TASKS TO EXAMINE THE ROBUSTNESS ISSUES

TABLE VIII
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-2/MBJT-3

STRATEGIES ON THE TEST SETS OF ALL THREE BANDWIDTHS. NM AND NT
ARE THE MODEL SIZE AND RUN-TIME LATENCY, RESPECTIVELY, NORMALIZED

BY THE BASELINE LSTM SYSTEM

TABLE IX
PERFORMANCE (CER IN %) COMPARISON OF THE MBJT-2/MBJT-3

STRATEGIES ON THE TEST SETS OF ALL THREE BANDWIDTHS UNDER

THE SDT CRITERION

model, with relative CERR of 11.8%. Our proposed “MBJT-
2-LSTM” and “MBJT-3-LSTM” yielded consistent improve-
ments, although the baseline LSTM system had better perfor-
mance. The experimental results further verified the scalability
of the proposed mixed-bandwidth strategies. Moreover, “MBJT-
3-LSTM” achieved a slight performance gain over “MBJT-2-
LSTM” with the smaller model size and run-time latency simi-
lar to Table VI (relative CERRs of 4.4% and 3.9%), indicating
the rationality of the progressive mapping.

Furthermore, we verified the performance after sequence dis-
criminative training (SDT), and the state-level minimum Bayes
risk (sMBR) criterion was adopted [41]. For the baseline LSTM
system, LSTM-AM was trained under the sMBR criterion, the
learning rate was 0.002 and 1 iteration was performed. For the
mixed-bandwidth system, only the joint model of the LSTM-
DM-MBE/LSTM-PSN-MBE and LSTM-AM was trained under
the sMBR criterion, and the learning rates for the LSTM-DM-
MBE&LSTM-AM and LSTM-PSN-MBE&LSTM-AM were
0.002 and 0.001 respectively.

Table IX listed the results of the MBJT-2/MBJT-3 strategies
based on the LSTM on the test sets, the configuration was the
same as in Table VI, except that the SDT criterion was used.
From Table IX, the SDT criterion achieved consistent perfor-
mance improvements in various configurations. Moreover, the
SDT criterion also worked for our proposed mixed-bandwidth
modeling strategies. Finally, the MBJT-3 achieved a CERR of
4% over the baseline LSTM under the SDT criterion. These
experimental results indicated that the proposed approaches can
be extended to more complicated acoustic modeling structures
and stronger training criteria.

V. CONCLUSION

In this study, we first designed two DNN architectures,
namely, direct mapping and progressive mapping, for bandwidth
expansion among speech data with multiple sampling rates. Ac-
cordingly, three strategies of mixed-bandwidth speech recogni-
tion by jointly optimizing the DNN-based bandwidth expansion
and acoustic model were proposed. We showed that the band-
width expansion network can be better trained by using progres-
sive mapping for multiple bandwidth data. The joint modeling
approach with the progressive mapping network for bandwidth
expansion can fully utilize the diversified cross-channel data
with different sampling rates. The proposed strategies are quite
effective and robust to many realistic issues and can be extended
to LSTM framework, which can potentially become a practical
solution for mixed-bandwidth speech recognition.
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