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Abstract—In this big data era, knowledge becomes increasingly linked, along with the rapid growth in data volume. Connected
knowledge is naturally represented and stored as knowledge graphs, which are of more and more importance for many frontier
research areas such as machine intelligence. Effectively finding relations between entities in a large knowledge graph plays a key role
in many knowledge graph applications, as the most valuable part of a knowledge graph is its rich connectedness, which captures rich
information about the objects in the real world. However, due to the intrinsic complexity of real-world knowledge, finding semantically
close relations by navigation in a large knowledge graph is very challenging. Canonical graph exploration methods inevitably result in
combinatorial explosion especially when the paths connecting two entities are long: the search space is O(dl), where d is the average
graph node degree and l is the length of the path. In this paper, we will systematically study the semantic navigation problem for large
knowledge graphs. Inspired by AlphaGo, which was overwhelmingly successful in the game Go, we designed an efficient semantic
navigation method based on a well-tailored Monte Carlo Tree Search algorithm with the unique characteristics of knowledge graphs
considered. Extensive experiments on different real-life knowledge bases show that our method is not only effective but also very
efficient.

Index Terms—Semantic navigation, knowledge graph, path finding, neural network.
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1 INTRODUCTION

THE value of big data largely lies in its rich connect-
edness. Connected knowledge is naturally represented

as knowledge graphs to make knowledge processable by
computers. Knowledge graphs equip machines with rich
structured knowledge. Effectively making use of a massive
amount of machine processable knowledge is an indispens-
able part to machine intelligence.

A knowledge graph consists of a set of entities and the
relations between them. Finding the connections between
data is a cornerstone of building machine intelligence via
knowledge, as the most valuable part of a knowledge graph
is its rich connectedness which captures rich information
about the objects in the real world. In a lot of AI-powered
applications, finding relations between entities of knowl-
edge graph plays a key role. For example, the paths linking
a pair of entities can be used to connect the entities and
explain their relationships. Relation finding has a wide
range of real-world applications such as suspicious relation-
ship detection [4], relation prediction [17], knowledge com-
pletion [20], semantic distances estimation [9], and entity
recommendation [24].

There are usually many paths connecting a pair of
entities. Which one is of the greatest interest to us? This
is not a trivial question and there are no easy answers.
In the database field, the problem of finding the short-
est paths is extensively studied [30]. However, in real-life
applications, the most-valuable paths are those that are
short and meaningful rather than just being the shortest.
Short paths do reveal strong correlations, but the mean-
ing or semantics of a path is of more importance. Con-
sider the following two paths connecting entities x and y:
x − [brother] → a − [married] → b − [sister] → y and
x− [is a]→ person− [instance]→ y. The first one is obvi-

ously more meaningful than the second one. Moreover, the
lengths of the paths representing the same relation vary a
lot under different data schemas. For instance, the marriage
relation between entities x and y can be represented as either
x− [married]→ y or x− [marriage]→ m− [spouse]→ y.
Obviously, the length alone cannot well measure the impor-
tance of a path.

It makes more sense to find the paths that are short
and meaningful. Here the distance constraint is relaxed
to include longer but meaningful paths. As a result, the
search space is greatly enlarged accordingly. Canonical
graph exploration methods, including breadth-first search,
depth-first search and A*, inevitably result in combinatorial
explosion [12], [36].

Source

Targetx

Fig. 1: Semantic Navigation with the Guide of Knowledge
Graph Embeddings. For the Source node, navigation to
Target by choosing the closest neighbor according to their
Euclidean distance in the embedding space in each step
leads to a dead end x. A “smarter” navigation is required
to get around the dead end via the node marked by two
concentric circles.

Motivated by the fact that humans usually leverage the
semantics of concepts in memory associations for relation



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2805363, IEEE
Transactions on Big Data

TRANSACTION ON BIG DATA 2

E
m

b
e

d
d

in
g

H
id

d
e

n
 L

a
y

e
r

O
u

tp
u

t

Value Net

Source

Target

Current

Monto Carlo Tree SearchKnowledge Graph with Embeddings

v1, x1, u1   f(v1, x1, u1)

v2, x2, u2   f(v2, x2, u2)

...

vn, xn, un   f(vn, xn, un)

?

Source
Current

Target

Training Data

LSTM

v ux

...

Fig. 2: Overview of Neurally-Guided Semantic Navigation

finding, we propose to leverage the entity semantics to aid
relation finding. The semantics can not only provide explicit
guidance for finding meaningful connections but also help
on finding more explainable results. In this paper, we call
the process navigating from one entity to another guided by
entity semantics semantic navigation.

For knowledge graph, a widely adopted approach of
encoding semantics is via knowledge graph embedding [7],
[14], [32]. In spite of the great progress in this area, how to
use the knowledge embeddings to find meaningful paths
remains a challenging task. First of all, there are no agreed
criteria for determining the meaningfulness of a path. It
is hard to explicitly measure the meaningfulness using a
well-defined metric. Furthermore, the navigation might lead
to a dead end as shown in Figure 1 because knowledge
graph embeddings themselves model semantics instead of
topology connections, i.e. there is no guarantee that the
navigation can reach the destination node by following the
guide of graph embedding solely.

To tackle these challenges, inspired by AlphaGo [26]
which was overwhelmingly successful in game Go, we
designed an efficient semantic navigation method based on
a neural value net and a well-tailored Monte Carlo tree
search (MCTS) algorithm with the unique characteristics of
knowledge graph considered. Despite the fact that playing
Go game and navigating in a knowledge graph are very
different, the core problem solved by AlphaGo is analogous
to the task of graph navigation: from a board state AlphaGo
needs to find where to put next stone, similarly semantic
navigation needs to select a node through which to further
traverse the graph. If we unroll the whole search space from
the source node to the destination node, the search space
is then very similar to the tree search space of AlphaGo.
Intuitively, applying the design philosophy of AlphaGo
can greatly boost the performance of semantic navigation.
Considering the characteristics of navigation in knowledge
graph, we tailored a Monte Carlo tree search algorithm [26]
with a pre-trained value net to guide semantic navigation
in knowledge graph. Figure 2 provides an overview of the
proposed approach: Each trial of the tree search selects the
candidate according to the score given by a pre-trained
value net. A higher score indicates higher likelihood to reach
the destination node through the current node.

The contributions of this paper are summarized as fol-
lows:

• We propose a novel neurally-guided semantic nav-
igation method as an effective relation finding ap-
proach to searching for short and meaningful paths.
A well-tailored Monte Carlo tree search algorithm
with a value net is devised to guide the navigation.

• We conducted extensive experiments to evaluate the
performance and costs of the proposed approach on
real-life knowledge graph datasets. The experimental
results show that the proposed method is not only
effective but also very efficient for finding short and
meaning paths in real-life knowledge graphs.

2 RELATED WORK

Knowledge Graphs and Embedding Models. Knowledge
graphs become more and more important components for
many machine intelligence applications such as web search,
question answering, e-Education, ChatBot. Recent years
have witnessed the emergence of many knowledge graphs
either built by human experts such as CYC [16] and Free-
base [6] or built by the automatic extraction from text corpus
such as WordNet [19], and DBpedia [1], [5].

Many knowledge graph embedding models are pro-
posed for a variety of applications, such as knowledge-base
completion, question answering, and knowledge reasoning.
In these models, entities and relations are embedded into
vector spaces according to their scoring functions. In this
paper, we leverage knowledge graph embeddings as the
guidance for solving the navigation problem in knowl-
edge graph. There are many knowledge graph embedding
models. Among them, translation-based models are the
most prevalent ones including TransE [7], TransH [32], and
TransR [18]. These models use relation r as translation from
a head entity h to a tail entity t for calculating their embed-
ding vectors of (h, r, t). They follow a similar assumption
that h + r ≈ t. TransE represents a relation by a translation
vector r so that the total error of ||h+r−t|| for each (h, r, t)
is minimized. There are many other models proposed for
knowledge graph embedding, such as Distant Model [8],
Bilinear Model [14], [31], and NTN [29].

Empirical Analysis for Human Navigation. Many efforts
are devoted to studying the patterns of human navigation
behavior. Prior empirical analyses are driven by game log
data, including Wikispeedia [25], [27], [34], and WordNet [2].
In general, humans can easily find intuitive but not neces-
sarily the shortest paths [34]. Examples presented in [34]
illustrated the striking difference between the paths found
by human and the results of a shortest-path algorithm: the
shortest paths are far less semantically meaningful than the
paths found by the human. These human navigation paths
are also used for calculating semantic similarities, such as
constrained navigation paths [9], [28] and unconstrained
navigation paths [11], [21], [22]. Inspired by these studies,
we propose to tackle the knowledge graph navigation prob-
lem with the guidance of semantic embeddings.
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Navigation in Information Networks. [10] introduced a
random walk based navigation method for information
networks. [3] also uses random walks for building graph
embeddings and use the embeddings for finding shortest
paths. [33] proposes heuristic-based agents based on node
degrees and contents as well as machine learning agents for
navigation. [15] uses ontologies as background knowledge
and applies a navigation simulation method for information
network navigation. [23] proposes to train an agent navigat-
ing through a web graph to find a web page in which a
query appears.

In this paper, we are concerned about both short and
meaningful paths instead of just shortest paths as we have
argued above. Intuitively speaking, with the help of a neural
value net and the guidance of semantic knowledge graph
embeddings, our proposed method is essentially an intelli-
gent knowledge-guided graph walk method.

3 SEMANTIC NAVIGATION

We leverage semantic knowledge graph embeddings to de-
rive the guidance for navigation. TransE model [7] is chosen
for this task due to its simplicity and good performance for
predictive tasks. Based on the embeddings, we estimate the
similarity distance between a pair of nodes in a knowledge
graph. We use this distance metric as the guidance for choos-
ing adjacent graph nodes in the navigation. In the following,
we first introduce a straightforward navigation strategy as
a baseline approach. We then present our neurally-guided
navigation method, i.e. navigation with neural value net and
Monte Carlo tree search.

3.1 SIMNAV: Navigation with Semantic Similarity

We start with a straightforward strategy that chooses the
semantically closest entity to the destination at each step. With
this strategy, we use L2-norm for a pair of entities (v, u) as
the distance measure:

d(v, u) = ||v − u||2, (1)
where v,u ∈ Rk are the k-dimensional semantic embed-
dings of v and u. As shown by Algorithm 1, the navigation
starts from the source entity and in each step the procedure
chooses one unvisited neighbor that is semantically closest
to the destination entity until it reaches a dead end (line 4)
or the destination entity (line 5).

Algorithm 1 Navigation with Semantic Similarity
1: procedure SIMNAV(v, u)
2: P ← P ◦ {v} . P is the current path, initialized as Ø
3: N ← unvisited neighbors of v
4: If N is empty, return failed
5: If u ∈ N , return P ◦ {u} . ◦ stands for concatenation
6: SIMNAV(v′, u) s.t. v′ = arg minx∈N d(x, u)
7: end procedure

There is one obvious drawback of this approach. It is
easy to see that SIMNAV algorithm might lead to a dead
end. If the navigation reaches a dead end, the navigation
fails to find a path for the given pair of entities. We tackle
the problem by leveraging a neural value net and a tailored
Monte Carlo tree search algorithm for navigation.

3.2 NEURALNAV: Navigation with Value Net
A possible improvement of SIMNAV is to leverage a better
navigation metric in each navigation step. We propose using
a neural value net for this purpose. We refer to the strategy
as NEURALNAV which follows the same procedure as the
SIMNAV except for an additional value net, that is, we
replace d(x, u) with the output of the value net. Formally,
the value net for navigation is f : V × V × V → R, where
V stands for the entity set of the knowledge graph.

The value net is a neural network with a (3 × d)-
dimensional input layer and a single-neuron output layer,
where d is the embedding dimension. The output neuron
gives a score for guiding the navigation. Long short-term
memory (LSTM) is widely reported for the good perfor-
mance on modeling sequence data [13]. Thus we use it as
the first layer to model the path of [v, u, x], followed by
several fully connected layers. The input layer consists of
the embeddings of nodes (v, u, x), and its target value is
calculated as follows:

f(v, x, u) = λ · l(v, x, u)
l(v, u)

+ (1− λ) · d(x, u) (2)

where x is a neighbor of v, l(v, x, u) is the length of the
shortest path from v to u through x, l(v, u) is the length of
the shortest path from v to u, d(x, u) is the semantic distance
between x and u, and λ ∈ [0, 1] is a hyper parameter which
can be chosen by performing grid search in the interval at a
step size 0.1. More details about the value net are given in
Section 4.1.

Compared with the semantic distance metric, this value
benefits the navigation from three aspects:

• It considers the information of the source node v;
• A lower value of l(v,x,u)

l(v,u) indicates that x is on some
shorter paths connecting v and u;

• It can not only help pick semantically closer nodes at
each step but also guide the navigation to get more
reachable and shorter paths.

Each individual part of Equation 2 is not the best
guidance for the navigation as will be illustrated in the
experiments later. Thus we use a neural network to learn
a better model.

3.3 MCTSNAV: Navigation with Tailored Monte Carlo
Tree Search
Given a pre-trained value net for NEURALNAV, it is still
possible to reach a dead end. We designed a Monte Carlo
tree search based algorithm to tackle this problem. We
refer to this approach as MCTSNAV. During navigation, the
probability of selecting x is calculated using the following
formula base on the value net:

p(x) ∝ 1

f(v, x, u) · (1 + n(x))
, (3)

where n(x) is the total visit count of the nodes in the subtree
rooted at x.

Similar to a typical Monte Carlo tree search algorithm,
each round of MCTSNAV consists of four steps: selection,
expansion, simulation, and backpropagation, as shown in
Algorithm 2. In the selection step (line 5), a node is se-
lected according to Equation 3. Once a node is selected, say
x, the unexpanded neighbor of x which is closest to the
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Algorithm 2 Navigation via Monte Carlo Tree Search
1: procedure MCTSNAV(v, u)
2: Initialize V ← {v} . Candidates for selection
3: while visited node number less than a threshold do
4: If V is empty, return failed
5: Choose v′ in V with probability p(v′) (Eq. 3)
6: N ← the neighbors of v′ that are not expanded
7: Add x to V s.t. x = arg minz∈N f(v′, z, u)
8: NEURALNAV(x, u)
9: If u is reached, return path {v  v′} ◦ {x u}

10: Update n(z) for each z routing v to v′

11: Remove v′ from V if all neighbors of v′ are expanded
12: end while
13: Return failed
14: end procedure

target node u is chosen for expansion (line 7) and simula-
tion/unrolling (line 8). The simulation step is to perform
NEURALNAV which unrolls to the target node from the
expanded node. If the simulation fails, the backpropagation
step is performed (line 10). In this step, the visit count of
each node on the path from v to x increases by 1. Different
from the typical Monte Carlo tree search, Algorithm 2 will
stop once the target node is found.

3.4 Post-Processing
The path found using the above approach may be further
improved. To derive an even better path, we devised an
optimization method as a post-processing step. Let P be
the nodes visited in the previous navigation procedure. Let
G[P ] be the vertex-induced subgraph by the vertices on P .
We run a post-processing step on G[P ] starting from v to u.
The post-processing step enumerates all paths from v to u
in G[P ] to get the best one. We then return this best path as
the final result of the navigation.

This post-processing step can always find a path that
is not worse than the path found in the previous step. As
will be shown in our experiments, the post-processing can
greatly reduce the path length. Because G[P ] is in general
quite small, the costs of the post-processing is usually negli-
gible. In practice, post-processing is a practical optimization
method for deriving a better path.

4 EXPERIMENTAL EVALUATIONS

We have conducted extensive experiments to answer the
following questions: 1) Can the neurally-guided semantic
navigation produce short enough paths? 2) Are the paths
found by semantic navigation meaningful? 3) Is semantic
navigation efficient?

4.1 Datasets and Experiment Settings
We use five datasets for our experiments: FB15K, WN18,
WikiGraph, Wikispeedia1, and Clickstream [35]. These
datasets are widely used in the studies of knowledge graph
embedding [7]. FB15K is a relatively dense subgraph of
Freebase [6], while WN18 is a subset of WordNet [19]. We
use the extracted wiki graph from the dump file of the
English Wikipedia [23] and the prepared TF-IDF values of
the words as semantics representation for the Wikipedia
articles. Wikispeedia consists of a small Wiki graph and

1. http://snap.stanford.edu/data/wikispeedia.html

human navigation paths on it. Each path is a clicked page
sequence navigating from a start page to an explicitly given
target by following only the hyperlinks provided on the
current page. While the Wikispeedia dataset is used for
constrained navigations, the behaviors of humans may be
affected by the environments [22], we also study an un-
constrained navigation dataset named Clickstream2, which
consists of (referer, resource) pairs and their counts extracted
from the request logs of Wikipedia. For the Clickstream,
we link it to the WikiGraph. The details of these datasets
are listed in Table 1. We use TransE to train the graph
embedding for FB15K and WN18 and set the dimension of
the embedding as 50. All the experiments are conducted
on a server with eight 3.00 GHz Intel(R) Core(TM) i7-5960X
CPUs, each of which has two threads, and a Titan X GPU
card.

TABLE 1: Dataset Overview
Datasets #Nodes #Edges #Relations
FB15K 14,951 483,143 1,345
WN18 40,943 141,443 18

Wikispeedia 4,604 119,882 1
WikiGraph 5,946,517 99,812,932 1

4.1.1 Details of the Value Net
The value net for NEURALNAV and MCTSNAV is a neural
network that consists of a recurrent layer (LSTM, 3 × d)
followed by five fully connected layers, where d is the
dimension of the embedding. The neuron counts of each
layer are (3 × d), 3d, 3d, d, d, and 1 respectively, where
(3 × d) is the input shape of the LSTM layer. For example,
the neuron counts of each layer are (3 × 50), 150, 150, 50,
50, and 1 for FB15K. The activation functions are all set to
Tanh. The target values of the output layer are calculated
using Equation 2.

The value nets are trained using the datasets FB15K
and WN18. The training data are sampled from the graph
datasets. For each dataset, we sample n nodes from its entity
set. For each node v, we use {x1, x2, . . . , xp} to denote its
neighbors. We then sample another p nodes {u1, u2, . . . , up}
that are different to v or xi. All the (v, xi, uj) combinations,
where 1 ≤ i, j ≤ p, are chosen as the training data and
their target values f(v, xi, uj) are calculated according to
Equation 2. The target value for an unreachable (v, x, u)
triple is set to a large positive number 100. For FB15K and
WN18, we use about 265K and 3.5M of 〈v,x,u, f(v, x, u)〉
samples for training respectively.

In the experiments, λ of Equation 2 varies from 0.0 to
1.0 with step size 0.1, an individual model is trained for
each λ value. The value nets are trained using mini-batches
with batch size 128. The loss function is mean absolute error
and Adam is used as the optimizer with learning rate 0.001
with decay 0.0001. In the training, 10% data is used as the
validation data set. The max training epoch is 100.

4.1.2 Compared Methods
For comparison, we also implemented a RANDOMNAV algo-
rithm, which is similar to SIMNAV but randomly selects an
unvisited neighbor in each step. Different regression based
navigation methods are compared since they are also able

2. https://figshare.com/articles/Wikipedia Clickstream/1305770
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Fig. 3: Probability of Finding Short Reachable Paths. SIMNAV@p denotes a navigation procedure
with probability p to choose the closest unvisited neighbor to the target node in each step.
Obviously, the higher p is, more likely a short path can be found.

to predict the value for given (v, x, u). The embeddings of
the same sampled (v, x, u) data set are used to train these
regression models. In detail, we built LINEARNAV, LAS-
SONAV, RIDGENAV, ELASTICNETNAV, and SGDREGNAV
using linear, lasso, ridge, Elastic Net, and SGD regression al-
gorithms. In addition, we take degree-based navigation into
consideration, especially, we implemented DEGREENAV and
DEGSIMNAV. DEGREENAV chooses an unvisited neighbor
with largest degree in each step, while DEGSIMNAV selects
the neighbor x with largest d(x, u)−deg(x) value, where
deg(x) is the out-degree of x.

4.1.3 Evaluation Metrics
In our experiments, we randomly select 10, 000 entity pairs
that are reachable from each other. Here we define a few
evaluation metrics which will be used in our experimental
evaluation, specifically, RPR, SPR, and RPLR.

RPR (reachable path ratio) is the ratio of reachable paths
our navigation can find to the total sampled pairs. SPR
(shortest path ratio) is the ratio of shortest paths our nav-
igation can find to the total sampled pairs. Besides RPR
and SPR, we are also interested in the ratio between the
lengths of the paths found by our navigation to the lengths
of the shortest paths. For this purpose, we define RPLR
(reachable path length ratio) as

∑
i q

−1
i∑

i p
−1
i

, where 1 ≤ i ≤ 10000.
Specifically, for the i-th entity pair, let pi be the length of the
path discovered by our navigation and qi be the length of its
corresponding shortest path which can be calculated via a
BFS (breadth-first search) procedure. When our navigation
cannot find a path, we set pi as∞.

Instead of proposing an explicit metric to measure the
meaningfulness of the found paths, we use three different
ways to evaluate their meaningfulness. We first analyze how
our human beings behave in the freely clicked navigation
logs. Then, we study two cases of the navigated paths and
compare them with the paths found by other navigation
methods. Lastly, we statistically compare different naviga-
tion methods.

To evaluate the efficiency, we are interested in the num-
ber of entities that the navigation visited before it find a
path. For this purpose, we define a metric called VER (visited
entity ratio). For each pair of the sampled 10,000 entity pairs,
we count the number of entities that are visited in our
navigation procedure. The number is denoted by ni. For
comparison, we also calculate the number of the visited

entities in a BFS procedure. The number is denoted by mi.
VER then can be calculated using equation VER =

∑
i ni∑
i mi

.

4.2 Can Semantic Navigation Produce Short Enough
Paths?
Whether our navigation can produce short paths depends
on how likely the guidance for navigation can choose the
closest nodes to the destination. Since all navigation algo-
rithms share the same guidance, namely semantic distance,
we only need to verify this in the most basic version. Let
p ∈ [0, 1] be the probability that the navigation algorithm
selects the closest unvisited neighbor in each step. We plot
the evaluation metrics introduced in section 4.1 against p for
the FB15K data set. The results are shown in Figure 3. For
comparison, we also give the results of random navigation
as the baseline. The random navigation randomly selects
an unvisited neighbor with a uniform distribution. It is
clear that all three metrics have a strong correlation with p,
that is, selecting closest neighbors with a larger probability
certainly leads to a greater chance to find a short path or
even the shortest path.

We run SIMNAV, NEURALNAV, MTCSNAV, and MTC-
SNAV with post-processing (denoted as MTCSNAV+) on the
FB15K and WN18 datasets. We measure SPR, RPR, RPLR,
and VER for each algorithm. The results for the first three
metrics are shown in Figure 4.

In general, SIMNAV is much better than RANDOMNAV.
For the WN18 data set, RANDOMNAV almost cannot find
reachable paths. NEURALNAV behaves almost the same as
SIMNAV when λ is 0. The performance of NEURALNAV
becomes much better than SIMNAV while λ is between
[0.2, 0.6], but becomes close to or even worse than SIMNAV
when λ approaches 1. Take λ = 0.4 as an example, the
number of shortest paths found by NEURALNAV is twice
the number of the ones found by SIMNAV for FB15K. For
reachable paths, NEURALNAV outperforms SIMNAV by 10%
in FB15K and 25% in WN18. Nevertheless, the results of
NEURALNAV are much better than those of RANDOMNAV.

When λ is 1, the value net is trained solely by the
topology structure. But interestingly, it is not the best for
finding short paths. The conclusion is that the best naviga-
tion guidance is not derived from one single factor but a
mixture of semantics and topology distances.

Compared with NEURALNAV, MTCSNAV gets almost
the same results for SPR and RPLR (Figure 4). However,
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Fig. 4: Navigation Performance on FB15K and WN18. The first row shows the results for FB15K and the second row
shows that for WN18. Larger values of SPR and RPR are better, indicating more shortest and reachable paths are found;
while smaller values of RPLR are better, indicating the found paths are shorter. MCTSNAV+ denotes for MCTSNAV with
post-processing. For RANDOM, the RPLR values are not plotted since they are very large, which are 11 and 145 respectively.

TABLE 2: Comparison between Different Navigation Methods (λ = 0.5)

Methods
[v,x,u] u− x

FB15K WN18 FB15K WN18
SPR RPR RPLR SPR RPR RPLR SPR RPR RPLR SPR RPR RPLR

LINEARNAV 1.5% 46.4% 14.3 0.3% 3.2% 65.0 2.0% 9.7% 19.4 0.3% 0.5% 97.0
LASSONAV 2.7% 40.6% 10.4 0.2% 0.5% 117.8 2.7% 40.6% 10.4 0.2% 0.5% 117.8
RIDGENAV 1.5% 46.4% 14.3 0.3% 3.2% 65.0 2.0% 9.7% 19.4 0.3% 0.5% 97.0

ELASTICNETNAV 2.7% 40.6% 10.4 0.2% 0.5% 117.8 2.7% 40.6% 10.4 0.2% 0.5% 117.8
SGDREGNAV 2.7% 40.6% 10.4 0.2% 0.5% 117.8 2.7% 40.6% 10.4 0.2% 0.5% 117.8
RANDOMNAV 2.0% 39.4% 11.1 0.2% 0.5% 144.9 2.0% 39.4% 11.1 0.2% 0.5% 144.9
DEGREENAV 17.4% 90.4% 2.7 0.5% 13.1% 30.8 17.4% 90.4% 2.7 0.5% 13.1% 30.8
DEGSIMNAV 3.3% 24.3% 9.0 1.7% 9.6% 13.0 3.3% 24.3% 9.0 1.7% 9.6% 13.0

SIMNAV 15.5% 84.7% 2.3 7.0% 40.9% 3.4 15.5% 84.7% 2.3 7.0% 40.9% 3.4
NEURALNAV 38.3% 93.7% 1.5 8.5% 54.8% 2.7 38.3% 93.7% 1.5 8.5% 54.8% 2.7

TABLE 3: Comparison on WikiGraph
SPR RPR RPLR

RANDOMNAV 0.0% 0.3% 7064.6
LASSONAV 0.0% 0.0% -

DEGREENAV 0.0% 41.7% 259.6
SIMNAV 0.0% 26.8% 24.8

MCTSNAV+ 1.8% 65.5% 2.5

MTCSNAV can discover more reachable paths as expected,
especially when λ is small. Meanwhile, Figure 4 shows that
MTCSNAV+ can greatly improve SPR and RPLR compared
with MTCSNAV.

In summary, the pre-trained value net is a much better
guidance for navigation than just using semantic similarity
for most hyper parameter values. Based on it, MTCSNAV
is able to find more reachable paths. For a small λ value
for both datasets, it can find reachable paths for almost all
node pairs. After applying post-processing for MTCSNAV,
the SPR and RPLR metrics are greatly boosted further.

We also compared these navigation methods with re-
gression based and degree based approaches as shown in
Table 2. Two sets of inputs are considered, namely, [v,x,u]
and x − u. As we can see, the regression based results are

slightly better than RANDOMNAV, however, much worse
than SIMNAV and NEURALNAV. The degree based meth-
ods are good at finding paths compared to the regression
based ones, but result in much longer paths indicated by
their RPLR values. Similar results can be observed in the
experiments on WikiGraph, which is a larger dataset, and
the results are presented in Table 3.

4.3 Are the Paths Found Meaningful?
To study human navigation with the semantics under un-
constrained scenarios, we link the Clickstream dataset to
the WikiGraph, where the Clickstream dataset is collected
from real-life browsing log. We plot the semantic similarity
of the (referer, resource) pairs against their click counts as
shown in Figure 5. An obvious trend is that people click
semantically closer links more frequently, which confirms
that it is reasonable to choose a semantically closer neighbor
in each step during navigation.

Because there are no metrics that can strictly measure
the meaningfulness of a path, here we first use several real
cases to study the explainability of the paths discovered
by semantic navigation. Then, we compare the statistical
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metrics for the paths found by human and the ones found
by semantic navigation.
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Fig. 5: Click Count vs. Semantic Similarity in Clickstream. Semanti-
cally closer pairs are clicked much more frequently.
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Fig. 6: Semantic Distance to Source and Destination. The gray points
are entities that are not on the selected paths.

A few representative paths found by human and the se-
mantic navigation algorithm are given in Figure 6. For each
intermediate node on a path, we plot its semantic distance
to the source node and the distance to the destination node.
In general, the paths found by human and our navigation
algorithm can both be easily explained. However, the paths
found by the algorithm is generally shorter than the ones
found by human.

Let us look at a concrete example on the Wikispeedia
data set, from ElephantBird to TheLordOfTheRings, BFS finds
a shortest path {ElephantBird → Ostrich → Mythology → Th-
eLordOfTheRings}. Despite of the short length, there is a clear
semantic gap between the two intermediate entities (i.e.
Ostrich →Mythology). Humans can hardly associate these two
entities in an intuitive meaningful way. In contrast, the path
found by humans is longer but can be easily understood:
{ElephantBird → UnitedKingdom → BritishEmpire → NewZealand
→ TheLordOfTheRingsFilmTrilogy → TheLordOfTheRings}. Com-
pared with the path found by humans, the path found
by our semantic navigation algorithm is not only shorter
but also easily explainable: {ElephantBird → UnitedKingdom
→ J.R.R.Tolkien → TheLordOfTheRings}. It is interesting that
the same entity (UnitedKingdom) is chosen by both semantic
navigation and humans as the first entity; the second one
(J.R.R.Tolkien) chosen by the algorithm is even semantically
closer to the destination entity (TheLordOfTheRings) than the
one chosen by humans.

To quantitatively study the characteristics of the paths
found by semantic navigation, let us compare some sta-

tistical metrics for the paths found by human and the
ones found by semantic navigation. Specifically, we studied
three statistical metrics: Shortest, AvgLen and AvgVisited.
Metric Shortest measures the shortest path percentage of the
found paths. Metric AvgLen measures the average length
of the found paths. Metric AvgVisited measures the average
number of nodes visited for finding a path. To calculate
these metrics, we conducted a set of experiments on the
Wikispeedia data set which contains paths navigated by hu-
mans. We collected the source and destination node pairs for
these paths. For these pairs, we run SIMNAV, DEGREENAV,
DEGSIMNAV, BFS, and random search.

The results of the experiments are listed in Table 4. The
AvgLen metric of the paths found by SIMNAV is close to
the ones found by humans. Similar results can be observed
for the AvgVisited metric. In contrast, the random search as
well as degree based searches find much longer paths with
much more nodes visited. As expected, BFS can 100% finds
the shortest paths but with significantly more nodes visited.
The results suggest that the semantics navigation algorithm
is the closest navigation method to human navigation in
terms of the statistical metrics considered here.
TABLE 4: Statistical Comparison between Different Navi-
gation Methods

Shortest AvgLen AvgVisited
Human(Avg) 22% 4.9 6.4
Human(Best) 34% 4.2 5.5

SIMNAV 42% 5.9 5.9
RANDOMNAV 6% 75.6 75.6
DEGREENAV 9% 156.0 156.0
DEGSIMNAV 22% 14.5 14.5

BFS 100% 2.8 293.7

4.4 Is Semantic Navigation Efficient?

The above experimental evaluation shows that the semantic
navigation method can very likely find not only short but
also meaningful paths. Now let us investigate how much
cost is spent to find such paths.

We first examine the costs spent by the value nets,
including those for training and inference. For the FB15K
and WN18 datasets, the training procedures take about 200
and 3000 seconds respectively. The inference costs and the
total costs are listed in Table 5. As we can see, the inference
cost dominates the whole navigation cost for NEURALNAV
since it just requires a few graph node visits besides the
value prediction. While for MCTSNAV+, the inference cost
becomes comparable to the remaining part. Each of them
takes less than a second during navigation.

TABLE 5: Time Cost of the Value Net during Navigation.
The values in each cell are ‘value net cost/total cost (ratio)’.

[unit: sec] FB15K WN18
NEURALNAV 0.487/0.503 (96.8%) 0.064/0.065 (98.4%)
MCTSNAV+ 0.551/1.311 (42.0%) 0.623/1.818 (34.2%)

To evaluate how efficient the navigation is, we recorded
the VER values for all navigation methods we studied. The
results are shown in Table 6. semantic navigation methods
visit a very small portion of nodes compared to BFS, most
of which are even less than 1%. The results suggest that
these semantic navigations are very efficient for path finding
compared with BFS.



2332-7790 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2018.2805363, IEEE
Transactions on Big Data

TRANSACTION ON BIG DATA 8

TABLE 6: Ratios of Visited Nodes to BFS for FB15K and
WN18. Compared with BFS, semantic navigation methods
visit much less nodes for path finding.

Algorithm FB15K WN18
SIMNAV 0.10% 0.03%

NEURALNAV 0.09%− 0.25% 0.01%− 0.04%
MCTSNAV 0.30%− 1.69% 0.38%− 3.41%

Discussion. As many knowledge graph applications could
tolerate some data update latency, the proposed approach
could also work in the scenarios where model rebuilding
on data snapshots are permitted. In practice, to minimize
the model offline time, a two-model approach is usually
adopted: when one model is used for online serving, the
other one will be rebuilt.

5 CONCLUSION

In this paper, we proposed a neurally-guided semantic
navigation method for navigating knowledge graphs.
The basic idea is to leverage the semantic knowledge
graph embeddings to guide the navigation. Keeping the
unique characteristics of knowledge graph in mind and
inspired by AlphaGo, we designed an efficient semantic
navigation method based on a tailored Monte Carlo tree
search algorithm with a neural value net as the navigation
guidance. Experimental results show that the proposed
method is not only effective but also efficient for finding
short and meaningful paths in real-life knowledge graphs.
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