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Abstract

The masked language model has received re-
markable attention due to its effectiveness
on various natural language processing tasks.
However, few works have adopted this tech-
nique in the sequence-to-sequence models. In
this work, we introduce a jointly masked
sequence-to-sequence model and explore its
application on non-autoregressive neural ma-
chine translation (NAT). Specifically, we first
empirically study the functionalities of the en-
coder and the decoder in NAT models, and
find that the encoder takes a more important
role than the decoder regarding the translation
quality. Therefore, we propose to train the
encoder more rigorously by masking the en-
coder input while training. As for the decoder,
we propose to train it based on the consecu-
tive masking of the decoder input with an n-
gram loss function to alleviate the problem of
translating duplicate words. The two types of
masks are applied to the model jointly at the
training stage. We conduct experiments on five
benchmark machine translation tasks, and our
model can achieve 27.69/32.24 BLEU scores
on WMT14 English-German/German-English
tasks with 5+ times speed up compared with
an autoregressive model.

1 Introduction

The encoder-decoder based sequence-to-sequence
framework (Sutskever et al., 2014; Bahdanau et al.,
2014) has achieved great success on the task of
Neural Machine Translation (NMT) (Wu et al.,
2016; Gehring et al., 2017; Vaswani et al., 2017;
Hassan et al., 2018; Sheng et al., 2020). In this
framework, the encoder takes the source sentence
as input and extracts its hidden representation,
based on which the decoder generates the target
sentence word by word and from left to right, i.e.,
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in an autoregressive manner, which is a natural bot-
tleneck for the inference speed due to the sequential
conditional dependence.

As the performance of NMT models have
been substantially promoted, the translation effi-
ciency is becoming a new research hotspot. Non-
autoregressive neural machine translation (NAT)
models are proposed to reduce the translation la-
tency while inference, by removing the conditional
dependence between target tokens and predicting
all tokens in parallel (Gu et al., 2017). As the con-
text dependency cannot be utilized while decoding,
the inference speedup of NAT models comes at the
cost of the degradation in performance. As studied
by previous works (Guo et al., 2019; Wang et al.,
2019), the inferior accuracy of NAT models mainly
occurs from two aspects: 1) the source-side infor-
mation is not adequately encoded which results
in incomplete translation; 2) the decoder cannot
handle the task well which leads to repeated trans-
lations and poor performance on long sentences.

To tackle these problems and promote the per-
formance of NAT models, in this paper, we empiri-
cally conduct a thorough study on the functional-
ities of the encoder and decoder in NAT models,
and conclude that the encoder has a more direct in-
fluence on the final translation performance, and is
harder to train than the decoder. Therefore, we pro-
pose a jointly masked sequence-to-sequence model
which is inspired by the idea of masked language
modeling (Devlin et al., 2018). Specifically, for
the encoder, we follow the masking strategy of
BERT (Devlin et al., 2018) and randomly mask a
number of tokens of the source sentence. This strat-
egy trains the encoder more rigorously by forcing
it to encode the complete information with residual
input. For the decoder, we mask the consecutive
fragment of the target sentence to make the decoder
concentrate more on predicting adjacent tokens,
and propose an n-gram based loss function to learn
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the consecutive tokens as a whole objective. In this
way, we can alleviate the problem of repeated trans-
lations of NAT models. During inference, we adopt
a mask-and-predict (Ghazvininejad et al., 2019)
strategy to iteratively generate the translation result,
which masks and predicts a subset of the current
translation candidates in each iteration.

We verify the effectiveness of our model on five
benchmark translation tasks including WMT14 En-
glish↔ German, WMT16 English↔ Romanian
and IWSLT14 German→ English. Our model out-
performs all the NAT models in comparison, and
can achieve comparative performance with its au-
toregressive counterpart while enhanced with 5+
times speedup on inference (27.69/32.24 BLEU
scores and 5.73 times speedup on the WMT14 En-
De/De-En tasks with an autoregressive teacher of
28.04/32.69 BLEU scores).

Our main contributions can be summarized as
follows:

• While previous works only concentrate on ma-
nipulating the decoder, we illustrate and em-
phasize the importance of the encoder in NAT
models and propose the encoder masking strat-
egy to improve its training.
• We propose the consecutive masking strategy

of the decoder input and the n-gram loss func-
tion to alleviate the problem of repetitive trans-
lations of NAT models.
• We integrate the two parts above in the jointly

masked sequence-to-sequence model which
shows strong performance on benchmark ma-
chine translation datasets.

2 Related Work

2.1 Non-Autoregressive Machine Translation
Neural machine translation (NMT) models have
achieved great success in recent years. Tradi-
tional NMT models are based on the sequence-
to-sequence framework (Bahdanau et al., 2014;
Sutskever et al., 2014), taking the source sentence
as input and generating the target sentence in an au-
toregressive manner. Specifically, given the source
sentence x = (x1, x2, ..., xTx), the target sentence
y = (y1, y2, ..., yTy) is generated as:

P (y|x) =

Ty∏
t=1

P (yt|y<t, x; θenc, θdec), (1)

where y<t indicates the generated target tokens
before timestep t, and θenc and θdec denote the pa-

rameters of the encoder and decoder respectively.
For a target sentence with length n, autoregressive
models have to take O(n) iterations to generate it
during inference. To break the sequential condi-
tional dependency and make the generation process
parallelizable, non-autoregressive machine trans-
lation (NAT) models are proposed to generate all
target tokens independently (Gu et al., 2017) and
reduce the time complexity from O(n) to O(k)
where k is a constant number:

P (y|x) = P (Ty|x) ·
Ty∏
t=1

P (yt|x; θenc, θdec), (2)

where P (Ty|x) is the explicit length prediction pro-
cess for NAT models. Although the inference speed
of NAT is significantly boosted, the translation ac-
curacy is sacrificed due to the lack of context infor-
mation at the target side. Therefore, lots of works
have been conducted to promote the performance
of NAT models. Specifically, Gu et al. (2017) takes
a copy of the encoder input x as the decoder input
and trains a fertility predictor to guide the copy
procedure. Lee et al. (2018) and Ghazvininejad
et al. (2019) generate the target sentence by itera-
tively refining the current translation. Other works
enhance the performance of NAT models by utiliz-
ing auxiliary information, such as extra loss func-
tions (Wang et al., 2019; Li et al., 2019; Sun et al.,
2019; Wei et al., 2019; Shao et al., 2019), SMT
components (Guo et al., 2019) and fine-tuning from
an AT model (Guo et al., 2020). Recently, some
works (Stern et al., 2019; Welleck et al., 2019; Gu
et al., 2019) propose to change the generation or-
der from the traditional left-to-right manner to a
tree-based manner, resulting in a time complexity
of O(log n). In this paper, we focus on the NAT
model with O(k) generation complexity.

2.2 Masked Language Model
The masked language model proposed by
BERT (Devlin et al., 2018) has become the essen-
tial component of the state-of-the-art pre-training
methods (Song et al., 2019; Dong et al., 2019;
Liu et al., 2019; Joshi et al., 2019; Lample and
Conneau, 2019) in natural language understanding
tasks. The standard paradigm of masked language
modeling is to substitute a subset of tokens in the
input sentence by a special symbol [MASK], and
predict the missing tokens by the residual ones. We
denote the residual tokens as xr and the masked
target tokens as xm.
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∆ Layers +5 +10 +15

∆ Enc BLEU +0.71 +1.05 +1.26

∆ Dec BLEU +0.12 +0.18 +0.20

Table 1: The comparison of gains in BLEU score on
the test set of the IWSLT14 German-English task when
adding more layers to the encoder and decoder respec-
tively of the NAT model.

As BERT is designed for language understand-
ing tasks which can be handled with a single
Transformer encoder, it is non-trivial to extend the
paradigm into NMT tasks, where a sequence-to-
sequence framework is utilized. To address that,
XLM (Lample and Conneau, 2019) concatenates
the source sentence and the target sentence as the
encoder input to let the model learn the cross-
lingual information, but still using a single Trans-
former encoder. MASS (Song et al., 2019) presents
a sequence-to-sequence pre-training framework,
which takes xr as the encoder input and takes xm as
the decoder input as well as the target, still yielding
a monolingual pre-training framework. In this pa-
per, we propose a jointly masked language model-
ing method to handle the cross-lingual challenge in
a unified sequence-to-sequence framework, based
on which the translation accuracy of AT models
and the inference speedup of NAT models can both
be preserved.

3 Preliminary Study

To explore the functionalities of the encoder and
decoder in NAT models, we conduct a thorough
empirical study. We mainly follow the settings
in (He et al., 2019). We train a basic NAT model
proposed by Gu et al. (2017), except that we re-
move the fertility predictor and keep the decoder
input as a hard copy of the source sentence in a
similar way with (Guo et al., 2019; Wang et al.,
2019). We conduct the following experiments on
the IWSLT14 German to English dataset and train
the model with the same number of training steps
for each setting.

We study the importance of the encoder and
decoder from three aspects. Firstly, we vary the
number of encoder and decoder layers respectively
to see which will bring more performance gain.
Specifically, on a basic model with a 5-layer en-
coder and a 5-layer decoder, we increase the num-
ber of layers to the encoder and decoder separately.
Results are illustrated in Table 1, from which we
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Figure 1: (a) The convergence speed of the encoder and
the decoder. (b) The performance when adding noise to
the encoder input, encoder output and decoder input in
the inference stage of a basic NAT model.

can conclude that adding the layers of the encoder
can bring more performance gain than the decoder.

Secondly, we compare the convergence speed of
the encoder and decoder by initializing the NAT
model with a pretrained decoder/encoder and fix it
during training, while randomly initialize a train-
able encoder/decoder. The convergence speed is
illustrated by the BLEU score along with the train-
ing steps, as shown in Figure 1(a). From the results,
we can observe that the decoder converges faster
than the encoder. In conclusion, we find that the
encoder is dealing with a more sophisticated task
than the decoder, and the encoder is not adequately
trained in the initial NAT model.

Thirdly, we further conduct an investigation on
the encoder input, encoder output and decoder in-
put to evaluate their importance in the inference
stage. During inference, we add random noise to
the three types of inputs respectively, by randomly
replacing the embeddings of some tokens with ran-
dom noise. This experiment is conducted on a basic
5-layer encoder and decoder NAT model, and the
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results are illustrated in Figure 1(b). Obviously,
the encoder input and encoder output both largely
influence the translation quality, which implies that
the encoder plays an important role in the inference
of NAT models, while the decoder input is the least
important due to its conditional independence in
nature. In a word, the performance of NAT models
rely more on the encoder rather than the decoder.

4 Methodology

While most existing NAT works only focus on re-
fining the decoder to obtain better performance,
we have explored and shown the significance of
the encoder in the previous section. Therefore, we
propose to improve the translation performance
by further manipulating the encoder, and we will
introduce the proposed framework to tackle the
problems discussed above in this section. We start
with the problem definition.

Problem Definition Given a pair of source and
target sentence (x, y) ∈ (X ,Y) from the paral-
lel training dataset X and Y , the negative log-
likelihood objective function of an NMT model
can be written as:

Lnll(x, y; θenc, θdec) = − logP (y|x; θenc, θdec),
(3)

where the conditional probability can be either
Equation (1) or Equation (2) for AT or NAT mod-
els, and θenc, θdec represent the parameters of the
encoder and decoder respectively.

4.1 Encoder Masking

As studied in Section 3, the encoder needs to handle
a harder task than the decoder but is not adequately
trained in previous works. To maximize the func-
tionality of the encoder, we propose to train it with
masked language modeling.

The general masking strategy is as follows.
Given a source sentence x = (x1, x2, ..., xTx), we
randomly sample a subset from x, denoted as xm

with Tm
x tokens, and substitute them with other

tokens in position. Specifically, we follow the sim-
ilar substitution strategy as BERT (Devlin et al.,
2018): we randomly select 10% of the tokens in x,
of which 80% are substituted with a special symbol
[MASK], 10% are substituted with a random token
in the vocabulary, and 10% are kept unchanged.
And we denote the substituted result of the source
sentence as xr. Then the loss function on the en-
coder of predicting the missing source tokens can

be written as:

Lenc(x
m|xr) = −

Tm
x∑

t=1

logP (xmt |xr). (4)

4.2 Decoder Masking

For the decoder, as it is shown that the repet-
itive translations mainly result from the non-
autoregressive nature of NAT, we alleviate this
problem by applying a consecutive masking strat-
egy and proposing a tailored n-gram based loss
function. During training, given a target sentence
y = (y1, y2, ..., yTy), we randomly select multi-
ple sets of consecutive tokens and mask them in a
similar strategy as masking the encoder. Each set
contains n consecutive tokens, and we denote the
masked target set as ym and the substituted result
as yr, and their corresponding lengths as Tm

y and
Ty. Note that in the decoder, the total number of
masking tokens is uniformly sampled from 1 to
Ty instead of being computed with a fixed ratio.
We provide an illustration of our framework in Fig-
ure 2, where n is set to 2. The loss function of
predicting the masked target tokens can be written
as:

Lnll(y
m|xr, yr) = −

Tm
y∑

t=1

logP (ymt |xr, yr). (5)

We propose an n-gram based loss function,
which has been applied to NMT models re-
cently (Ma et al., 2018; Shao et al., 2018, 2019), to
enhance the sentence-level information and allevi-
ate the problem of repetitive translations of NAT
models. The loss function is tied with the consecu-
tive masking where n equals to the number of the
consecutive masked tokens in each set. Specifically,
given an n-gram g = (g1, ..., gn), its occurrence
count in the target sentence y can be written as:
Cy(g) =

∑Ty−n
t=0

∏n
i=1 1{gi = yt+i}. As for the

count in the masked sequence ym, we introduce the
probabilistic variant of the n-gram count to make
the objective differentiable (Shao et al., 2018) by
representing each token with the prediction proba-
bility:

C̃ym(g) =

Tm
y −n∑
t=0

n∏
i=1

1{gi = ymt+i} · p(ymt+i|x).

(6)
Considering all possible n-grams in y, the proposed
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Figure 2: An illustration of the propose jointly masked sequence-to-sequence framework. “–” indicates that the
token at this position is substituted by other tokens following the masking strategy. M and N indicate the number
of layers of encoder and decoder respectively.

n-gram based loss function can be written as:

Lgram(y, ym|yr,xr) = (7)

K −
∑
g

min(Cy(g), C̃ym(g)),

where min(Cy(g), C̃ym(g)) represents the match-
ing count between y and ym w.r.t the n-gram g, and
K is the upper bound of the total matching count
which equals to the number of sets of consecutive
masked tokens. The n-gram loss function will en-
courage the model to treat the consecutive masked
tokens as a whole objective to match the sequential
fragments in the target sentence, thus reducing the
occurrence of repetitive translations.

4.3 Jointly Masked Model
Based on the proposed framework, the objective
function of our model contains three parts: the
traditional negative log-likelihood loss function to
predict the missing target tokens Lnll(·), the predic-
tion loss function on the encoder side Lenc(·), and
the n-gram loss function Lgram(·). By integrating
the three loss functions, given a training pair (x, y),
the complete objective function of our model is:

min
Θ
L(x, y) = Lnll(y

m|xr, yr; θenc, θdec)

+ α1Lenc(x
m|xr; θenc) (8)

+ α2Lgram(y, ym|yr, xr; θenc, θdec),

where Θ = (θenc, θdec), α1 and α2 are the hyper-
parameters that control the weights of different loss
functions.

In the proposed training framework, the impor-
tance of the encoder has been emphasized by mask-
ing the encoder input and introducing Lenc(·). The
encoder is encouraged to produce better represen-
tations of other tokens in order to predict the miss-
ing tokens. On the decoder side, the consecutive
masking strategy augmented with the n-gram based

loss function can help the model better capture the
sentence-level information and alleviate the prob-
lem of repetitive translations.

4.4 Decoding Algorithm

For inference, we propose to iteratively re-
fine the translation result in a mask-and-predict
manner mainly following the strategy proposed
in (Ghazvininejad et al., 2019), and details are in-
troduced below.

During inference, the first step for NAT models
is to determine the length of the target translation.
We follow (Ghazvininejad et al., 2019) and intro-
duce an additional prediction process to estimate
the length by the source sentence. Specifically, we
add a special token to the encoder and predict the
target length with the output hidden vector of this
token. The negative log-likelihood loss function of
this token is then added to the word prediction loss
in Equation (8) as the final loss. In experiments,
we also consider selecting the translation with high-
est probability over multiple translation candidates
with different target lengths to obtain better results.

Thereafter, based on the mask-and-predict
paradigm, we design our decoding algorithm as
follows. Given the target length Ty, we initiate the
target sentence with [MASK] at all positions, and
take it as the decoder input followed by conducting
translation. Next, for each iteration, we apply con-
secutive masking to the translation candidates as
we have done in the training stage. Specifically, we
select several tokens with the lowest probabilities
from the current translation candidates, and mask
these tokens as well as their adjacent ones. The
number of tokens to mask at each iteration follows
a linear decay function utilized in (Ghazvinine-
jad et al., 2019). As for the stop condition, the
final translation is taken either when a pre-defined
number of iterations is reached, or the translation
candidates do not change between two iterations.
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5 Experiments

5.1 Experimental Setup
5.1.1 Datasets
We evaluate our method on five widely used
benchmark tasks: IWSLT14 German→English
translation (IWSLT14 De-En)1, WMT16
English↔Romanian translation (WMT16 En-
Ro/Ro-En)2, and WMT14 English↔German
translation (WMT14 En-De/De-En)3. We strictly
follow the dataset configurations of previous works.
For the IWSLT14 De-En task, we train the model
on its training set with 157k training samples, and
evaluate on its test set. For the WMT14 En-De/De-
En task, we train the model on the training set with
4.5M training samples, where newstest2013
and newstest2014 are used as the validation
and test set respectively. As for the WMT16
En-Ro task which has 610k training pairs, we
utilize newsdev2016 and newstest2016 as
the validation and test set. For each dataset, we
tokenize the sentences by Moses (Koehn et al.,
2007) and segment each word into subwords using
Byte-Pair Encoding (BPE) (Sennrich et al., 2015),
resulting in a 32k vocabulary shared by source and
target languages.

5.1.2 Model Settings
We strictly follow the previous works to set the
configurations of models. Our model is based
on the Transformer (Vaswani et al., 2017) archi-
tecture, with multi-head positional attention pro-
posed in (Gu et al., 2017). We utilize the small
Transformer (dmodel = dhidden = 256, nhead = 4)
with 5-layer encoder and decoder for the IWSLT14
De-En task, and the base Transformer (dmodel =
dhidden = 512, nlayer = 6, nhead = 8) for the
WMT14 and WMT16 tasks. We set n = 2 for
all tasks, i.e., we consider two-gram matchings
when calculating Lgram. The hyper-parameters α1

and α2 are both set to 0.01 for all tasks.

5.1.3 Baselines
We consider seven recent works as our baselines,
including five NAT works: NAT with fertility (NAT-
FT) (Gu et al., 2017), NAT with Imitation Learn-
ing (Imitate-NAT) (Wei et al., 2019), NAT with
Regularizations (NAT-Reg) (Wang et al., 2019),

1https://wit3.fbk.eu/
2https://www.statmt.org/wmt16/

translation-task
3https://www.statmt.org/wmt14/

translation-task

NAT with Curriculum Learning (FCL-NAT) (Guo
et al., 2020), NAT with Dynamic Conditional Ran-
dom Field (NAT-DCRF) (Sun et al., 2019); and two
iterative decoding based works: NAT with Itera-
tive Refinement (NAT-IR) (Lee et al., 2018) and
Conditional Masked NAT (CM-NAT) (Ghazvinine-
jad et al., 2019). The first five models are purely
non-autoregressive, whose time complexities dur-
ing inference are all O(1). The other two models
are based on iteratively refining the translation re-
sults by k iterations, where k is a constant number,
yielding O(k) complexity. In the experiments, we
also compare with them in terms of the inference
latency on clock.

5.1.4 Sequence-Level Knowledge Distillation
We adopt sequence-level knowledge distilla-
tion (Kim and Rush, 2016) on the training set of
each task, which has been proved by previous NAT
models that it can produce less noisy and more
deterministic training data (Gu et al., 2017). As
stated by Wang et al. (2019), the performance of
the AT teacher will affect the final performance of
the NAT student model. While AT teachers used
in previous works have various performance, we
utilize the teacher model which has similar per-
formance with the one used in our main baseline
CM-NAT (Ghazvininejad et al., 2019) to construct
a fair comparison. In addition, we also provide the
performance of our model trained by a weakened
AT teacher (denoted as WT in Table 2) which has
similar performance with the one used in (Wang
et al., 2019) to compare with them.

5.1.5 Training and Inference
We train the model with 8/1 Nvidia 1080Ti GPUs
on the WMT datasets and IWSLT14 dataset respec-
tively, and we utilize the Adam optimizer while
following the same settings used in the original
Transformer. During inference, we generate mul-
tiple translation candidates by taking the top B
length predictions into consideration, and select the
translation with the highest probability as the final
result. We set B = 3 on WMT tasks and B = 4 on
IWSLT14 tasks. We also report the clock time of
inference latency on a single Nvidia 1080Ti GPU
in our experiments, where we set the batch size to
1 and calculate the average per sentence translation
time on newstest2014 for the WMT14 En-De
task to keep consistence with previous works.

As for evaluation, we use BLEU scores (Pap-
ineni et al., 2002) as the evaluation metric, and

https://wit3.fbk.eu/
https://www.statmt.org/wmt16/translation-task
https://www.statmt.org/wmt16/translation-task
https://www.statmt.org/wmt14/translation-task
https://www.statmt.org/wmt14/translation-task
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WMT14 WMT16 IWSLT14
Models En−De De−En En−Ro Ro−En De−En Latency Speedup

Transformer (Vaswani et al., 2017) 28.04∗ 32.69∗ 34.13∗ 34.46∗ 32.99∗ 607 ms 1.00×
Transformer (Weak Teacher) 27.40∗ 31.29∗ / / / – –

NAT-FT (NPD 100) (Gu et al., 2017) 19.17 23.20 29.79 31.44 24.21† 257 ms 2.36×
Imitate-NAT (Wei et al., 2019) 24.15 27.28 31.45 31.81 / / /
NAT-Reg (NPD 9) (Wang et al., 2019) 24.61 28.90 / / 28.04 40 ms 15.1×
FCL-NAT (NPD 9) (Guo et al., 2020) 25.75 29.50 / / 29.91 38 ms 16.0×
NAT-DCRF (NPD 9) (Sun et al., 2019) 26.07 29.68 / / 29.99 63 ms 9.63×

NAT-IR (k = 5) (Lee et al., 2018) 20.26 23.86 28.86 29.72 / / /
NAT-IR (k = 10) 21.61 25.48 29.32 30.19 23.94† 404† ms 1.50×
CM-NAT (k = 4) (Ghazvininejad et al., 2019) 25.94 29.90 32.53 33.23 30.42∗ 62∗ ms 9.79×
CM-NAT (k = 10) 27.03 30.53 33.08 33.31 31.71∗ 161∗ ms 3.77×

JM-NAT (k = 4) 27.05 31.51 32.97 33.21 31.27 45 ms 13.5×
JM-NAT (k = 10) 27.69 32.24 33.52 33.72 32.59 106 ms 5.73×
JM-NAT (WT) (k = 4) 26.82 30.59 / / / – –
JM-NAT (WT) (k = 10) 27.31 31.02 / / / – –

Table 2: The BLEU scores of our proposed JM-NAT and the baseline methods on the WMT14 En-De/De-En,
WMT16 En-Ro/Ro-En and IWSLT14 De-En tasks. We report the best results for the baseline methods and also
list the inference latency on clock as well as the speedup w.r.t autoregressive models. “†” indicates that the result
is provided by (Wang et al., 2019), “∗” indicates the results obtained by our implementation, “/” indicates the
corresponding result is not reported in the original paper, and “–” indicates the same numbers as above. “Weak
Teacher (WT)” indicates the NAT is trained with a weakened AT teacher through knowledge distillation. NPD
stands for Noisy Parallel Decoding utilized in previous works. “k” represents the number of iterations while
inference.

report the tokenized case-sensitive scores for the
WMT datasets, as well as the tokenized case-
insensitive scores for the IWSLT14 dataset. Our
implementation is based on fairseq (Ott et al.,
2019) and is avaliable at https://github.com/
lemmonation/jm-nat.

5.2 Results

The main results are listed in Table 2. We denote
our model as Jointly Masked NAT (JM-NAT), and
show the results when the upper bound of itera-
tions k is set to 4 and 10. As can be observed from
Table 2, our model achieves comparable perfor-
mance with its AT teacher on all datasets (only 0.5
BLEU score behind in average), while achieving
5+ times speedup on the inference latency. Com-
pared with the pure NAT models with O(1) time
complexity, with similar inference latency by set-
ting k = 4, our model outperforms all baselines
with a consistent margin on different tasks. Com-
pared with the models based on iterative refinement,
JM-NAT also shows consistent superiority with the
same time complexity. Our model outperforms
CM-NAT (Ghazvininejad et al., 2019) with margins
from 0.41 to 1.71 on different tasks, illustrating the
boosted performance brought by the jointly masked
model as well as the proposed loss functions. It is

worth noting that CM-NAT utilizes a much stronger
AT teacher on the WMT14 En-De task (using the
large configuration of Transformer and achiev-
ing 28.65 BLEU score). Our model, even with less
iterations or a weaker AT teacher, still outperforms
CM-NAT in most cases, and it is straightforward
to further improve our performance with a stronger
teacher.

5.3 Analysis

5.3.1 Encoder Performance

As there does not exist a clear metric (such as the
perplexity in language generation tasks) to eval-
uate the quality of the encoder in a sequence-to-
sequence model, we adopt a naive version of the
adversarial attack on text (Belinkov and Bisk, 2017)
to the encoder input to test the robustness of the
encoder. Specifically, during inference, we follow
the same strategy used in Section 3 to add noise
to the source sentence x. Given the noise ratio
α ∈ (0, 1), we randomly select bα · Txc (where b·c
stands for the rounding function) source tokens and
either drop or replace them with other tokens in the
vocabulary. We increase α from 0 to 10% and test
the performance of each model on the validation set
of the IWSLT14 De-En task, and show the results
in Figure 3. We compare our model with baselines

https://github.com/lemmonation/jm-nat
https://github.com/lemmonation/jm-nat
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NAT-FT NAT-Reg CM-NAT JM-NAT

2.30 0.90 0.48 0.17

Table 3: The comparison on the average number of per-
sentence repetitive tokens on the validation set of the
IWSLT14 De-En task.

including NAT-FT and CM-NAT. According to the
results, compared with CM-NAT, which is also an
iterative decoding based method, our model shows
more robust performance with regard to the noise
on the encoder input, showing the efficacy of the
proposed masking strategy and the better quality
of our encoder.

5.3.2 Repetitive Words

As studied by Wang et al. (2019), the tendency
of producing repetitive words in translation is a
major drawback of NAT models. We propose to
alleviate this problem by training the decoder with
the consecutive masking strategy as well as the
n-gram loss function. We compute the average
number of consecutive repetitive tokens per sen-
tence in the translation results on the validation set
of the IWSLT14 De-En task. Results are shown in
Table 3. Without introducing explicit regulariza-
tions (Wang et al., 2019), our method is still able
to alleviate the problem of repetitive words. Com-
pared with CM-NAT who also utilizes an iterative
decoding method, the superiority of our method
demonstrates the proposed consecutive masking
strategy better solves the problem than random
masking.

5.3.3 Ablation Study

We conduct the ablation study on the validation
set of the IWSLT14 De-En task to illustrate the
contribution of different components in our model.
Results are shown in Table 4. For the encoder, both
encoder masking and the objective function Lenc
contribute to the final performance, and encoder
masking provides the most prominent performance
promotion. On the decoder side, both of the consec-
utive masking strategy and the n-gram loss function
are indispensable to produce solid performance as
they are tied together through the hyper-parameter
n. In addition, all the proposed components are
effective in alleviating the repetitive translations,
and the n-gram loss function contributes the most.
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Figure 3: The performance of considered NAT models
when adding noise to the encoder input. The X-axis
indicates the ratio of noise, and the Y-axis indicates the
∆BLEU score compared with feeding the input without
noise.

Model Variants BLEU ∆BLEU Reps

JM-NAT 33.82 – 0.17

On the Encoder Side

w/o Lenc 33.32 −0.50 0.21
w/o Encoder Mask & Lenc 32.15 −1.67 0.23

On the Decoder Side

w/o Lgram 33.27 −0.55 0.30
w/o Consecutive Mask 32.97 −0.85 0.25

Table 4: The ablation study on different components
of the proposed model conducted on the validation set
of IWSTL14 De-En task. “Reps” indicates the average
number of repetitive translations computed same as in
Table 3.

5.4 Case Study

We further conduct case studies to intuitively
demonstrate the performance of different models
and the generation process of our model. Results
are listed in Table 5. As we discussed in Section 1,
repetitive translations and missing translations are
two stubborn problems of NAT models. In Table 5,
both NAT-FT and CM-NAT tend to generate repet-
itive words (such as “eliminate diabetes diabetes”
and “reduce cancer risk risk”) as well as incomplete
translations (both of them miss the word “eliminate”
in the second clause), while our model achieves bet-
ter results.

6 Conclusion

In this paper, we propose a jointly masked
sequence-to-sequence model for non-
autoregressive neural machine translation.
We first empirically investigate the functionalities
of the non-autoregressive translation model, and
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Source: was wäre , wenn sie die genetischen veränderungen machen könnten , um diabetes oder alzheimer
zu beseitigen oder das reduzieren des krebsrisikos oder schlaganfälle zu eliminieren ?

Target: what if you could make the genetic changes to eliminate diabetes or alzheimer &apos;s
or reduce the risk of cancer or eliminate stroke ?

NAT-FT: what if you could make the genetic changes in order to eliminate diabetes diabetes or alzheimer disease
or reduce reduce the cancer of cancer or strostroke ?

CM-NAT: what if you could make the genetic changes to eliminate diabetes or alzheimer alzheimer &apos;s ,
or reduce cancer risk risk or stro stro dents ?

JM-NAT: what if you could make the genetic changes to eliminate diabetes or alzheimer &apos;s disease
or the reduce cancer risk or eliminate stroke ?

Table 5: A case study on the translation results of different models on the IWSLT14 De-En task. We set k = 10
for our model. The bold italics represent the repetitive words in the translation results.

improve the training of the encoder by masking
its input and introducing a prediction based loss
function. For the decoder, we propose to utilize
consecutive masking and introduce an n-gram
based loss function to alleviate the problem of
repetitive translations. Our model outperforms all
compared NAT baselines and achieves comparable
performance with autoregressive models on five
benchmark tasks with 5+ times speed up on the
inference latency.

In the future, we will extend the investigation
on the functionalities of the encoder and decoder
to other sequence-to-sequence tasks such as text
summarization and text style transfer to explore
more applications of our model.
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