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Abstract Recent years have witnessed the rapid development of online social platforms, which effectively support the

business intelligence and provide services for massive users. Along this line, large efforts have been made on the social-

aware recommendation task, i.e., leveraging social contextual information to improve recommendation performance. Most

existing methods have treated social relations in a static way, but the dynamic influence of social contextual information on

users’ consumption choices has been largely unexploited. To that end, in this paper, we conduct a comprehensive study to

reveal the dynamic social influence on users’ preferences, and then we propose a deep model called Dynamic Social-Aware

Recommender System (DSRS) to integrate the users’ structural and temporal social contexts to address the dynamic social-

aware recommendation task. DSRS consists of two main components, i.e., the social influence learning (SIL) and dynamic

preference learning (DPL). Specifically, in the SIL module, we arrange social graphs in a sequential order and borrow the

power of graph convolution networks (GCNs) to learn social context. Moreover, we design a structural-temporal attention

mechanism to discriminatively model the structural social influence and the temporal social influence. Then, in the DPL

part, users’ individual preferences are learned dynamically by recurrent neural networks (RNNs). Finally, with a prediction

layer, we combine the users’ social context and dynamic preferences to generate recommendations. We conduct extensive

experiments on two real-world datasets, and the experimental results demonstrate the superiority and effectiveness of our

proposed model compared with the state-of-the-art methods.
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1 Introduction

In the digital and informational era, people are over-

whelmed by the glut of information. To deal with

this problem, the recommender system has become an

important application. Usually, recommender system

techniques focus on modeling user behaviors, item at-

tributes, and contexts to capture user preference, thus

accomplishing personalized recommendation services.

Along this line, large efforts have been made in both

industry and academia to enhance the performance of

recommender systems.

For a long time, collaborative filtering (CF) is

one of the most popular techniques for building rec-

ommender systems. Among the CF-based algorit-

hms, latent factor models have achieved significant suc-

cess in many recommendation tasks [1–3]. In recent

years, with the rapid development of online social plat-

forms, many researchers have exploited the use of so-

cial contextual information to alleviate the sparsity is-

sue and improve recommendation performance. Ini-

tially, social information is integrated into latent fac-

tor models for social-aware recommendation [4–9]. How-

ever, interactions between users and items are com-

plex, which could be hardly captured by the lin-

ear operation in most latent factor methods. For-

tunately, the deep learning technique has shown its

capability in solving these problems and enhanc-
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ing the performance of recommendation task, such

as CTR prediction [10, 11], top-k recommendation [12, 13]

and session-based recommendation [14–16]. Existing

studies have leveraged rich contextual information in

deep learning based models, such as visual [17, 18] and

textual [19, 20] contents of items. But the dynamic so-

cial influence, as an important information that reflects

the evolving of the user profiles, has been largely unex-

ploited.

Actually, there are still some unique challenges in-

herent in introducing dynamic social influence into the

process of user preference modeling. Firstly, different

from common auxiliary information such as pictures

and texts, which are associated with users or items,

social context refers to the correlation among users.

Thereby most existing context-aware recommendation

methods cannot be directly applied to model social

contextual information. Secondly, interactions between

users and items change over time, so do the social re-

lations. It could be a difficult task to bridge dynamic

information from these two domains. Thirdly, the so-

cial influence is complex and evolving over time. For

example, Fig.1 shows a case that a user’s preference

is affected by his/her social relations. As illustrated

in Fig.1, among all current social relations, different

friends have impacts on the center user in different lev-

els. Meanwhile, when the user builds a new social rela-

tion, he/she may show more interest in the items that

his/her new friend likes. Therefore, the dynamic social

context could help us to better understand the evolving

user preference. However, how to capture dynamic in-

fluence from evolving social relations effectively is still

an under-explored question.

(b)(a)

Fig.1. Illustration of a case that users’ preferences are dynami-
cally affected by their social relations.

Based on these intuitions, in this paper, we conduct

a comprehensive study to exploit the dynamic social

influence to enhance the performance of the sequen-

tial recommendations. We propose a hybrid model

called Dynamic Social-Aware Recommender System

(DSRS) to deeply explore the dynamic social influ-

ence and integrate social context to address the se-

quential recommendation task. DSRS is composed of

two components, i.e., the social influence learning (SIL)

and dynamic preference learning (DPL). Specifically,

in the SIL module, we arrange social graphs in a se-

quential order and develop graph convolution networks

(GCNs) to learn social context. Moreover, we design

a structural-temporal attention mechanism to discrim-

inatively model the social influence on structural and

temporal aspects. Then, in the DPL part, we use recur-

rent neural networks (RNNs) to capture users’ dynamic

preferences. Finally, with a prediction layer, we inte-

grate users’ social context and dynamic preferences to

generate recommendations. We conduct experiments

on two real-world datasets, and the experimental re-

sults have clearly demonstrated the superiority of our

proposed model. The contributions of this paper could

be summarized as follows.

•We introduce the problem of dynamic social-aware

recommendation, which focuses on revealing the im-

pacts of dynamic social influence on user profiles.

•We propose a novel model DSRS to jointly capture

dynamic social context and user preference. Moreover,

we design a structural-temporal attention mechanism

to discriminatively model social effects for the target

users on structural and temporal aspects.

• We conduct comprehensive experiments on two

real-world datasets, and the results demonstrate the ef-

fectiveness and superiority of our proposed model com-

pared with several state-of-the-art methods.

2 Related Work

In this section, we will briefly review the studies that

are related to our work. As we focus on exploring dy-

namic property and leveraging social contextual infor-

mation in the recommendation task, the related studies

mainly fall into two parts, i.e., social recommendation

and sequential recommendation.

2.1 Social Recommendation

In social media platforms, users’ behaviors can be

divided into two types, i.e., consumption behaviors and

social behaviors. With the knowledge of social influ-

ence theory that users’ consumption behaviors are af-

fected by their social relations [21], a large amount of

efforts have been made to exploit social information

for recommendation tasks. Traditionally, latent fac-

tor models have been widely used to model social con-

textual information [4–8]. For example, Jamali and Es-
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ter proposed SocialMF, a social influence propagation

mechanism that enables user latent representation to

depend on possibly the entire social network [6]. Ma

et al. designed SocialReg which adopts regularization

method to force similar users to have similar latent

representations [5]. Guo et al. proposed a trust-based

matrix factorization model, which incorporates both

rating and trust information [7]. With the advance of

online social networks, latent factor based methods

show its insufficiency in handling large-scale complex

data. Lately, researchers have adopted neural networks,

which have particular advantage in processing com-

plex data with their deep non-linear operation, to im-

plement social-aware recommendation [22–28]. Among

those methods, Sun et al. attempted to incorporate

social information into RNNs architecture [22], and Wu

et al. devised an autoencoder-based approach for so-

cial embedding learning [23]. Considering that social re-

lations are more suitable to be expressed as a graph,

some studies take advantage of GCNs to extract social

contextual information [24–26]. For example, Wu et al.

proposed SocialGCN to model the diffusion process of

social influence [24]. Qiu et al. proposed DeepInf [26],

a graph-based learning framework for predicting social

influence. Most previous studies process social rela-

tions with a static treatment, while we differ from these

studies by considering sequential social behaviors and

dynamic social influence.

2.2 Sequential Recommendation

In realistic scenarios, various user behaviors are

recorded with timestamps, which results in the se-

quence form that may reflect dynamic user preference.

The importance of sequential information has gradu-

ally attracted researchers’ attention. Initially, Markov-

based methods are widely used in modeling temporal

data, such as FPMC [29] and HRM [30]. These methods

expose their deficiency in capturing complex long-term

sequence dependency. To overcome the limitation of

Markov-based methods and provide more effective so-

lution to time series data mining, researchers have ap-

plied RNNs to sequential recommendation in various

application scenarios [13, 14, 31–33]. For example, Hidasi

et al. attempted to make gated recurrent unit (GRU) fit

session-based recommendation by introducing session-

parallel mini-batches [14]. Yu et al. proposed a recurrent

neural model (DREAM) for next basket prediction [13].

Wu et al. provided RRN, a method based on recur-

rent neural networks that can model the user and the

item dynamics synchronously [31]. Some scholars also

attempted to alleviate the data sparsity problem and

improve prediction accuracy by integrating rich contex-

tual information, such as visual and textual content of

items and external situations [34–36]. Under the back-

ground of dynamic modeling, social contextual infor-

mation, as an important driven force of the evolving

of user preference, is rarely used compared with other

context. To fill this gap, in our work we dynamically

model not only user preference but also social context.

3 Methodology

In this section, we will firstly give a problem def-

inition of the dynamic social-aware recommendation

task. Then, we will describe the technical details of the

proposed Dynamic Social-Aware Recommender System

(DSRS) model, which consists of two main components:

an attentive GCNs part named Social Influence Learn-

ing (SIL) to acquire dynamic influence in social do-

main, and a Dynamic Preference Learning (DPL) mod-

ule to capture dynamic preference of the target user in

the consumption domain. Finally, we will analyze the

model complexity of DSRS. The overview of our model

architecture is presented in Fig.2, where Fig.2(a) is the

SIL module and Fig.2(b) is the DPL module. The finial

predictions come from the two modules.

3.1 Preliminaries

3.1.1 Problem Definition

In our recommendation scenario, there are a set

of users U = {u1, u2, . . . , u|U|} and a set of items

V = {v1, v2, . . . , v|V |}. Without confusion, we use in-

dexes u, u′ to denote users and v, v′ to denote items.

Users can interact with items and build relationship

with each other. As we focus on sequential behavior

and implicit feedback, the transactions are recorded

with timestamps and the rating values are transformed

to binary. For user-item interactions, we use Bu
t to

represent the set of items that u consumed at time t.

For user-user relationships, let Nu
t be the set of neigh-

bors that is established at time t. Our problem can be

formulated as follows.

Definition 1 (Dynamic Social-Aware Recommen-

dation). Given a user u, the corresponding temporal

consumption set Bu = {Bu
1 , B

u
2 , . . . , B

u
T } , and the

temporal social records Nu = {Nu
1 , N

u
2 , . . . , N

u
T }, our

task is to predict the user’s future choices (Bu
T+1) by

leveraging both consumption and social information.
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Fig.2. Overview of the proposed DSRS architecture. (a) Social Information Learning (SIL) module. (b) Dynamic Preference Learning
(DPL).

3.1.2 Dynamic Social Context

In a social media platform, users can build relation-

ships with each other. Social relations can be expressed

as a directed graph, in which users act as nodes and so-

cial links act as edges. For a specific node, the nodes

that it points to are regarded as its neighbors. As users

can remove and add their social relations, the edges in

the social graph are not static, but change over time.

Therefore, for each specific user, the corresponding so-

cial context information is dynamic.

In our scenario, we consider the dynamic character-

istics of social context information from two aspects:

structural context and temporal context. As shown

in Fig.3(a), links among users are changing over time,

which evolves into a sequence of graphs (structural con-

text). And Fig.3(b) illustrates the difference among all

current neighbor nodes, which refers to that the dura-

tions of current social relations are different (temporal

context). The evolving structure of social graph re-

flects that the contextual information in the social do-

main is dynamic. And the reason why we pay attention

to temporal context is that time factor can reflect the

peculiarity of social relations to a certain extent. In-

tuitively, newly-added social links affect users’ current

tastes more than the pre-existing ones. We take the two

kinds of dynamic context into consideration and model

them respectively in our Social Influence Learning (SIL)

module. Next, we will discuss the design details of the

SIL module.

...

...

... ...

... ...

...

...

(a)

(b)

t֓ t֓ t

t֓ t֓ t

Fig. 3. Illustration of dynamic social context. (a) Structural
context. Social structure changes over time, which formulates a
sequence of social graphs. (b) Temporal context. Current social
links come from different time steps. Links within a same small
circle are established at the same time step.
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3.2 Social Influence Learning

For learning social context, it is naturally to treat

users’ social networks as a graph. Indeed, there has

been a surge of research into GCNs [37], which adapts

neural networks to graph-structured data. The core

idea of GCNs is to learn node embeddings by consi-

dering both node contents and the topology structure

in a graph. To differentiate the importance degrees of

neighbor nodes, some researchers have combined atten-

tion mechanism with GCNs [38–41]. Most graph-based

methods process a large and static social graph, which

leads to computational cost issues. Besides, the dy-

namic property of social relations is neglected among

these methods. Instead of static treatment, we im-

plement GCNs on temporal social graphs. In each

step, the convolution operation is performed on a graph

formed in one time interval (Gt), rather than on an

entire static graph. Moreover, we design an attention

approach in our convolution step by considering both

graph structure context and temporal context.

According to the social influence theory [21], a user’s

preference is affected by his/her social relations. Consi-

dering that the effects can be in different degrees,

we adopt attention mechanism to evaluate neighbor

weights in the SIL module. We design a structural-

temporal attention approach, which is constituted of

structural attention and temporal attention. Given a

target user u and a social graph Gt, the structural at-

tention calculates neighbor weights based on the sub-

graph structure with u as the center node, and here how

long each social relation exists is indiscriminate. Mean-

while, the temporal attention differentiates neighbor

influence by considering when the relations are estab-

lished (i.e., time factor). Social relations from different

time contribute differently to the change of user pref-

erence. Therefore, the temporal attention is devised to

capture time effect. The architecture of our structural-

temporal attention is illustrated in Fig.4. Next, we will

discuss our attention strategy in detail.

3.2.1 Structural Attention

In structural attention networks, the importance de-

grees of the neighbors to a user are evaluated based on

their node features. The inputs to structural atten-

tion layer are a graph Gt and the node features Xt =

{x1
t , x

2
t , . . . , x

|U|
t }, xi

t ∈ R
F , where |U | is the number of

nodes. The outputs are the attention weights. First, all

feature vectors are transformed into intermediate rep-

resentations by a shared weight matrix Wx ∈ R
F×F ′

:

X̂t = XtWx,

where X̂t = {x̂1
t , x̂

1
t , . . . , x̂

|U|
t } is the linear transforma-

tion of Xt. For a target node u and a neighbor node

u′, the relation between node u and u′ is calculated as

follows:

uu′
t = σ(a(x̂u

t ⊕ x̂u′

t )),

where a is a shared parameter vector and ⊕ is con-

catenation operation. The attention is masked, which

means the calculation is only performed among u and

its neighbors at present moment (i.e., Nu
t ). After the

relations are obtained, the attention coefficients are the

normalization of {uu′
t,u

′ ∈ Nu
t }:

αuu′

t = softmax(uu′
t) =

exp(uu′
t)

Σu′∈Nu

t
exp(uu′

t)
,

where αuu′

t indicates the importance degree of node u′

to node u.

(xt, xt  )
u'u f(xt, xt  ; Wx, a)u'u

yt
u

ht
u

zt
u

(xt,    xt  ) f(xt, xt,  et ;       Wx,       Wt,        b)
u' u' u'uu

Fig.4. Illustration of structural-temporal attention architecture.
Vectors in browns are node features and those in grays denote
time factors.

3.2.2 Temporal Attention

In temporal attention networks, the calculation de-

pends on not only node features but also associated

time factors. We use et to denote the embedding vector

of time factor. For each u′(u′ ∈ Nu
t ), the correspond-

ing time factor is obtained by embedding look-up. The

calculation of attention weights here is similar to that

of structural attention:

êt = etWt,

ûu′
t = σ(b(x̂u

t ⊕ x̂u′

t ⊕ êu
′

t )),

βuu′

t = softmax(ûu′
t) =

exp(ûu′
t)

Σu′∈Nu

t
exp(ûu′

t)
,
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where Wt ∈ R
F×F ′

is a weight matrix for linear trans-

formation of time vectors, which is used to map time

vector to a proper vector space. And b is a weight vector

for computing intermediate attention value. The out-

put βuu′

t is the normalized attention coefficient, which

indicates the influence of u′ to u with time effect. Once

obtained, the attention outputs αuu′

t and βuu′

t are used

to aggregate information from two aspects:

yu
t = Σu′∈Nu

t
αuu′

t x̂u′

t ,

zu
t = Σu′∈Nu

t
βuu′

t x̂u′

t ,

ḣu
t = σ(average(yu

t , z
u
t )),

where the meaning of yu
t and zu

t is the social context

vectors from two aspects (i.e., structural context and

temporal context). After the aggregation operation,

ḣu
t serves as the output of the SIL module, which con-

tains social contextual information with temporal in-

fluence. The above algorithm will be implemented to

calculate dynamic social context vectors for all nodes

in the graph.

3.3 Dynamic Preference Learning

The SIL module is applied to extract dynamic in-

formation in the social domain. To obtain users’ pref-

erences in the consumption domain, we use a sequential

model to explore users’ behavioral patterns. As RNNs

are extensively used to process temporal sequence due

to their ingeniously designed recurrent feedback mecha-

nism, we utilize LSTMs [42], a variant of RNNs, to learn

users’ individual preferences. The architecture of our

sequential behavior modeling part (i.e., the DPL mod-

ule) is showed in Fig.2(b).

3.3.1 Input Pooling

In each time step, the LSTMs take current consump-

tion records as inputs. The corresponding outputs serve

as two purposes, i.e., users’ current representations and

the hidden states of the next step. Note that a user can

interact with multiple items in a time window, and the

LSTM takes a fixed-size vector as input at each time

step. To generate valid model inputs, a pooling ope-

ration will be performed. Before input pooling, we first

use an embedding layer to project the sparse represen-

tations of items to dense vectors. The item embedding

set is denoted as Q = {qv1 , qv2 , . . . , qv|V |}. For a target

user u and a specific time step t, from the consump-

tion records set Bu
t we can obtain the corresponding

embeddings Qu
t = {qvi |vi ∈ Bu

t }. Then a pooling ope-

ration will be applied to aggregate input vectors. We

choose the commonly used function average pooling as

the aggregation function. Among all the vectors to be

aggregated, average pooling takes the average value of

every dimension. The calculation of input vector is for-

mulated as follows:

xu
t = average(Qu

t ) =
Σvi∈Bu

t
qvi

|Qu
t |

.

3.3.2 Dynamic Behavior Modeling

Based on the current input xu
t and the previous hid-

den state hu
t−1, the LSTM unit calculates the updated

hidden state hu
t which represents the current prefer-

ence of u. The compact forms of the equations for the

forward pass of an LSTM unit are as follows:

ft = σ(Wf × [hu
t−1,x

u
t ]),

it = σ(Wi × [hu
t−1,x

u
t ]),

ot = σ(Wo × [hu
t−1,x

u
t ]),

ct = ft ◦ ct−1 + it ◦ σ(Wc × [hu
t−1,x

u
t ]),

hu
t = ot ◦ σ(ct),

where ft, it,ot represent the forget gate, the input gate

and the output gate respectively. The initial values c0
and h0 are generally set to zero. All W∗ are learn-able

parameters and σ is the active function. The output

hu
t serves as the preference vector of u in consumption

domain.

3.4 Prediction Layer

The hybrid model DSRS combines the two parts

(i.e., SIL and DPL) to obtain final representation of

user preference. As shown in Fig.2, the SIL module

extracts social contextual information from a temporal

social graph dynamically, and the DPL module adapts

LSTMs to capture the evolving user preference in the

consumption domain. In each time step, the social con-

text vector and the user preference vector are combined

as follows:

ḧu
t = ḣu

t + hu
t .

Note that the input features to SIL and DPL are

both calculated from item embedding; thus the out-

puts ḣu
t and hu

t can be combined by vector addition

operation. When predicting the preference that a user

gives to an item, the predicted rating value equals the

dot product of ḧu
t and qv:

ṙuvt = dot(ḧu
t , q

v).



Yang Liu et al.: Exploiting Structural and Temporal Influence for DSRS 287

3.5 Model Training

We adopt Bayesian Personalized Ranking (BPR) [3]

framework for model learning. BPR is a widely used

pairwise ranking framework for implicit feedback. The

basic assumption of BPR is that a user prefers a posi-

tive item more than a negative one. Based on the above,

the following probability needs to be maximized:

p(u, t, v ≻ v′) = σ(ṙu,vt − ṙu,v
′

t ), (1)

where v and v′ denote a positive sample and a nega-

tive sample respectively, and σ(·) is the sigmoid func-

tion σ(x) = 1/(1 + e−x). With this functional form,

a higher score is expected to be given on the positive

item in comparison with the negative one. Since our

goal is to predict user preference in the future, at time

step t, we treat items that show in t+1 as the positive

samples.

In the training step, for each positive sample (v), we

randomly choose an item that the user has not inter-

acted with before as the corresponding negative sample

(v′). The objective function is adding up the log likeli-

hood of (1) and the regularization term:

J = Σln(1 + e−(ṙu,v
t −ṙ

u,v′

t )) +
λ

2
‖Θ‖2,

where λ is a parameter to control the power of regulari-

zation and Θ denotes all the parameters to be esti-

mated. In practice, we choose Adam [43] as the opti-

mizer, which has proved to be especially effective for

training neural networks. The model parameters up-

dating procedure is repeated iteratively until the con-

vergence is achieved.

3.6 Model Analysis

3.6.1 Space Complexity

All the model parameters come from two parts: the

parameters Θ1 = [Wf ,Wi,Wo,Wc] in LSTMs and the

parameters Θ2 = [Wx,Wt,a, b] in attentive GCNs. For

Θ1, the space complexity grows linearly with the layer

of LSTMs. In most RNNs-based models the layer num-

ber is set to 1 or 2. The parameter sharing mechanism

in RNNs enables its space complexity to be indepen-

dent of the number of users. As for Θ2, it is lighter

than Θ1, and parameters in Θ2 are shared by all users.

Therefore, the total space complexity of DSRS is rea-

sonable.

3.6.2 Time Complexity

Compared with the basic RNN model, the addi-

tional time cost of DSRS mainly lies in the attentive

convolution operation. If the user number is N , the

average neighbor size per time is M , and for T time

steps the time complexity of single layer convolution

calculation is O(2NMT ). In the training datasets, T

equals 12 in Epinions and 3 in Gowalla. The average

number of neighbors per time step is 7 in Epinions and

6 in Gowalla. Hence the additional time cost is accept-

able.

4 Experiments

We conduct experiments on the proposed model and

other compared methods. To verify the model perfor-

mance, our experiments are designed mainly to answer

the following questions.

RQ1. Compared with the state-of-the-art methods,

how does the proposed model perform?

RQ2. How do the two modules SIL and DPL per-

form when they are separately used?

RQ3. Is the attention mechanism helpful in our rec-

ommendation task? What roles do the two attention

strategies play?

RQ4. How do the hyper parameters (e.g., embed-

ding size) influence model performance?

4.1 Datasets

We conduct experiments on two real-world datasets,

i.e., Epinions 1○ and Gowalla 2○. Both the two datasets

contain temporal consumption records and social rela-

tions records. Next, we will briefly introduce the two

datasets, and then we will describe the data processing

in our experimental implementation.

• Epinions [44]. It is a who-trust-whom online social

network of a general consumer review site. Members

of this platform can read new and old reviews about a

variety of items to help them decide on a purchase, and

they can also decide whether to “trust” each other. We

use the public Epinions dataset provided by Richardson

et al. [44] In this dataset, users’ rating and social actions

are timestamped.

• Gowalla [45]. It is a location sharing social net-

working website. Users on this platform are able to

check in at “Spots” in their local vicinity, and they

can also build social relations with each other. We use

1○http://www.epinions.com/, Jan. 2020.
2○https://blog.gowalla.com/, Jan. 2020.
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the Gowalla dataset provided by [45]. In this dataset,

checking-in actions and social behaviors are both times-

tamped.

In both the two datasets, we treat one month as a

time window. There are total 13 time windows in Epin-

ions and 4 in Gowalla. Since implicit feedback is the

main point of focus, we transform the concrete rating

values to binary. Consumption data is recorded in the

form of (u, v, t) triple ID, which indicates that user u

interacted with item v at time t. Similarly, the social

relation is also recorded as (u, u′, t) triple ID, which in-

dicates that user u built a social relation with user v′

at time t. In our sequential prediction task, the goal

is to predict users’ future preferences. Therefore, the

records in the last time window will be used for model

testing (i.e., T = 13 in Epinions and T = 4 in Gowalla)

and the others for training (i.e., T = 1–12 in Epinions

and T = 1–3 in Gowalla). we randomly select 10%

from the training data as validation data for parame-

ter tuning. We filter out users who have less than two

time windows. After data pruning, there are 3 282 users

and 26 991 items in Epinions. In the Gowalla dataset,

there are 7 035 users and 71 139 items. Table 1 lists the

statistics of the two datasets.

4.2 Baselines

We compare our proposed model with the following

baselines.

• BPR [3]. It is a generic optimization criterion and

learning algorithm for personalized ranking. BPR pre-

dicts ratings by calculating the inner product of the

user and item latent vectors. With the assumption

that users prefer positive items to the negative ones,

it adopts a pair-wise loss function for model learning.

• FPMC [29]. It is a traditional sequential model for

next basket recommendation. By combining MC and

MF, FPMC can capture general interest of users and

sequential effects between every two adjacent time in-

tervals.

• SocialMF [6]. This is a classical model for rec-

ommendation with social influence. SocialMF incor-

porates social information into the basic MF model.

Specifically, when updating a user’s latent vector, it

fuses the latent vectors of corresponding neighbors.

• DREAM [13]. We adapt DREAM, an RNNs-based

method, as one of our baselines. For more clearly

comparison, both our basic sequential prediction mod-

ule and DREAM use two-layer LSTMs as the building

block.

• SocialGCN [24]. It is a GCNs-based recommenda-

tion algorithm, which captures social influence by an

information diffusion process. The designers of Social-

GCN leverage rich user and item attributes in their

experiment and propose a general version for the sce-

nario where no attributes are available. We employ the

general version SocialGCN which is applicable to our

recommendation scenario.

As we aim to tackle the problem of bridging tempo-

ral social influence and sequential prediction, we choose

methods by considering two aspects: sequence-aware

methods and social-aware methods. Besides, we also

consider three variants of the proposed method, and

the variants are listed as follows.

• DSRS-avg. As a simplified version of DSRS, this

method also leverages social information and it adopts

an average operation rather than attentive aggregation.

• DSRS-s. This is a variant of the proposed method

which uses structural attention only in the attentive

convolution step.

• DSRS-t. This is a variant of the proposed method

where only temporal attention mechanism is used in the

attentive convolution step.

4.3 Metrics and Setups

4.3.1 Metrics

In order to measure the performance, we adopt

two frequently used evaluation metrics hit ratio (HR)

and normalized discounted cumulative gain (NDCG)

for top-k recommendation task, as applied in previous

literature [12, 22, 24, 34]. HR@k measures the percentage

of the positive samples presented in the top-k ranking

list. For a single user, the calculation of HR@k is as

follows:

HR@k =
NumberofHit@k

|GT |
,

where |GT | is the length of positive samples in test set.

And NDCG@k is sensitive to the positions of the hit

Table 1. Statistics of the Two Datasets

Dataset Users Items Time Windows Social Links Train Records Test Records Link Density (%) Rating Density (%)

Epinions 3 282 26 991 13 106 076 174 325 8 056 0.980 0.190

Gowalla 7 035 71 139 4 47 864 180 944 18 736 0.096 0.036
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positive samples in the ranking list. The calculation of

NDCG@k is as follows:

DCG@k = Σk
i=1

2reli−1

log2(i+ 1)
,

NDCG@k =
DCG@k

IDCG@k
,

where i in DCG is the position index and reli is the rele-

vance score, IDCG is the ideal value of DCG, i.e., the

DCG value where items in the predicted top-k list are

all positive samples. When correctly predicted samples

rank highly on the list, NDCG reaches a higher value.

For both HR@k and NDCG@k, the larger the value,

the better the performance.

4.3.2 Setups

In the training step, all methods are optimized with

mini-batch and the batch size is set to 512. The learning

rate and optimizer are searched for each model accord-

ing to their peculiarity. To prevent the neural networks-

based models from overfitting, we employ dropout and

set the ratio to 0.5. For models that are based on latent

factor, the latent vectors are randomly initialized with

Gaussian distribution with mean 0 and standard devia-

tion 0.01. We tune all the parameters to ensure the best

performance of the baselines for fair comparison. In the

testing step, we generate top-k ranking list and eva-

luate all benchmarks with HR@k and NDCG@k. For

negative sampling, we randomly select 500 items and

each user has not interacted with as the negative sam-

ples. The negative samples are mixed with the positive

ones for ranking. We compare all methods with diffe-

rent latent factor dimensions d = {32, 64, 128, 256} and

set k = 10 for top-k. Experiments are conducted on a

Linux server with four 2.0 GHz Intelr Xeonr E5-2620

CPUs and a Tesla K80 GPU.

4.4 Results and Analysis

4.4.1 Overall Comparison (RQ1)

We first compare the performance of the proposed

DSRS with the baselines. All the methods are evaluated

by same metrics (i.e., HR@10 and NDCG@10). Ta-

ble 2 and Table 3 show the results on datasets Epinions

and Gowalla respectively. We bold the results of DSRS

for better comparing our method with other baselines.

1) From the results we can see that sequential mod-

els give more favorable performance than the static

ones. Among sequence-aware methods, DSRS and

DREAM achieve better performance than FPMC, as

the former can capture multi-step dependency among

users’ preferences and the latter is in a pair-wise way.

Both being neural networks based sequential models,

DSRS performs better than DREAM. As a static latent

factor model, BPR lags behind the sequential methods.

2) By comparing the results of SocialMF and BPR,

the observation highlights the importance of social in-

formation. These two methods are both static la-

Table 2. Overall Performance Comparison on Dataset Epinions

Method Dimension

d = 32 d = 64 d = 128 d = 256

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

BPR [3] 0.158 0.045 1 0.163 0.046 3 0.165 0.046 6 0.159 0.045 4

FPMC [29] 0.167 0.046 3 0.175 0.049 0 0.189 0.051 7 0.185 0.051 5

SocialMF [6] 0.166 0.045 8 0.168 0.046 4 0.167 0.045 1 0.163 0.049 3

DREAM [13] 0.182 0.044 5 0.210 0.051 5 0.221 0.057 0 0.213 0.056 5

SocialGCN [24] 0.186 0.046 0 0.184 0.048 8 0.173 0.046 2 0.169 0.046 0

Proposed DSRS 0.201 0.048 3 0.220 0.053 6 0.233 0.060 8 0.230 0.061 1

Table 3. Overall Performance Comparison on Dataset Gowalla

Method Dimension

d = 32 d = 64 d = 128 d = 256

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

BPR [3] 0.480 0.154 0.495 0.160 0.498 0.161 0.488 0.157

FPMC [29] 0.511 0.151 0.527 0.167 0.532 0.172 0.536 0.173

SocialMF [6] 0.481 0.157 0.516 0.173 0.552 0.182 0.578 0.189

DREAM [13] 0.527 0.151 0.557 0.168 0.563 0.175 0.558 0.165

SocialGCN [24] 0.484 0.158 0.537 0.177 0.515 0.161 0.493 0.161

Proposed DSRS 0.569 0.170 0.623 0.192 0.635 0.198 0.663 0.206
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tent factor based, and the difference is that SocialMF

leverages social information for recommendation. As

a social-aware deep model, SocialGCN does not give

significant upgrades as expected. The ordinary per-

formance of SocialGCN lies in two aspects. First, the

temporal information is neglected in SocialGCN. Sec-

ond, it does not differentiate the important degrees of

all neighbors, and the diffusion process in SocialGCN

brings more information meanwhile it causes more dis-

turbance. DSRS, by contrast, processes sequential so-

cial graphs and uses attention mechanism to differenti-

ate neighbor weights, and it outperforms SocialGCN.

3) Generally, the proposed model outperforms all

other methods in most cases. Compared with SocialMF

and SocialGCN, DSRS extracts social information dy-

namically by constructing a graph sequence. The bene-

fit of such an approach is that we do not have to process

a large social graph at one time. Moreover, the designed

structural-temporal attention mechanism can eliminate

redundancy and maintain quality social information ef-

fectively. Compared with all the baselines, on the Epin-

ions dataset, DSRS achieves 8.06%–44.65% increase in

HR@10 and 4.07%–34.81% in NDCG@10, and on the

Gowalla dataset, the improvements are 7.97%–35.86%

in HR@10 and 7.59%–31.21% in NDCG@10.

4.4.2 Module Performance (RQ2)

To test the performance of the two modules (i.e., SIL

and DPL) in DSRS, we conduct comparative experi-

ments and show the results in Table 4 and Table 5,

where DSRS-SIL utilizes only social context informa-

tion to make predictions and DSRS-DPL only learns

user personal preference. By comparing model per-

formance on the two datasets, we can see that social

information plays different roles in different scenarios.

On the Epinions dataset, DPL performs better than

SIL. On the Gowalla dataset, SIL is superior to DPL.

The above results indicate that in dataset Gowalla so-

cial context gives more information than consumption

records, and it is the reverse in dataset Epinions. By

combining SIL and DPL, DSRS reaches the best per-

formance in all cases.

4.4.3 Attention Effect (RQ3)

To investigate what role the structural-temporal at-

tention mechanism plays, we conduct experiments on

three variants of DSRS. In this subsection, we will first

compare performance of all variant methods and then

we will analyze the working mechanism of the two at-

tention strategies with examples.

1) To investigate the impact of the designed atten-

tion networks, we test the performance of three variants

of DSRS on the two datasets. In this part of experi-

ments, we fix the vector size and set it d = 32. Table 6

shows the results and the improvements of all the vari-

ant methods. The values in “Improv.” column indicate

the lifting percentages with DSRS-avg as benchmark.

Among all the variants, DSRS-s and DSRS-t are both

single layer attention networks and they are designed

for learning structural weights and temporal weights

respectively. As shown in Table 6, the attentive meth-

ods achieve better performance than DSRS-avg, which

aggregates social information by a simple average sum

operation. Besides, we can observe that the tempo-

ral attention (DSRS-t) attains a slight increase over

the structural attention (DSRS-s) in both HR@10 and

NDCG@10. It indicates that time factor could con-

tribute to the extraction of dynamic social information.

Table 4. Module Performance Comparison on Dataset Epinions

Method Dimension

d = 32 d = 64 d = 128 d = 256

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

DSRS-SIL 0.181 0.044 4 0.186 0.047 1 0.209 0.054 5 0.194 0.051 8

DSRS-DPL 0.189 0.044 6 0.215 0.051 0 0.225 0.059 0 0.220 0.057 3

DSRS 0.201 0.048 3 0.220 0.053 6 0.233 0.060 8 0.230 0.061 1

Table 5. Module Performance Comparison on Dataset Gowalla

Method Dimension

d = 32 d = 64 d = 128 d = 256

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

DSRS-SIL 0.560 0.167 0.600 0.181 0.616 0.188 0.623 0.190

DSRS-DPL 0.553 0.161 0.583 0.174 0.603 0.182 0.625 0.195

DSRS 0.569 0.170 0.623 0.192 0.635 0.198 0.663 0.206
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Table 6. Effect of Structural and Temporal Attention Mechanism

Method Dataset

Epinions Gowalla

HR@10 Improv. (%) NDCG@10 Improv. (%) HR@10 Improv. (%) NDCG@10 Improv. (%)

DSRS-avg 0.188 – 0.044 7 – 0.554 – 0.163 –

DSRS-s 0.191 +1.60 0.045 4 +1.57 0.560 +1.08 0.167 2.45

DSRS-t 0.195 +3.72 0.045 7 +2.24 0.565 +1.99 0.168 +3.07

DSRS 0.201 +6.91 0.048 3 +8.05 0.569 +2.71 0.170 +4.29

As a hybrid approach, DSRS reaches the best results.

2) With the learned attention weights, we can track

back what and when the social information dominates

the prediction, which helps us to understand the rec-

ommendation strategy. The structural attention esti-

mates which neighbors among current social relations

are more important. The temporal attention measures

the effects of time when relations are established. Final

neighbor weights come from comprehensive results of

the two attention strategies. For better demonstrating

the working mechanism of our attention networks, we

show the tendency of structural and temporal atten-

tion weights during three time steps in Fig.5. We ran-

domly choose five center users (the real IDs of user 1–

user 5 are 4 003, 8 003, 12 003, 16 003, 21 003 respec-

tively) from dataset Gowalla, and draw the learned at-

tention weights of their certain neighbors in three time

steps. As shown in Fig.5, when getting closer to current

time step (t = 3 in this example), the overall values of

temporal attention weights are on a decreasing trend.

The explanation behind this is: as time progresses, the

influence of old neighbors will decrease and their posi-

tion could be replaced by newly-added neighbors.

4.4.4 Hyper Parameter Investigation (RQ4)

The common hyper parameter of all methods is the

embedding size d. As shown in Table 2 and Table 3,

different methods reach their best results at different d

due to their unique property. A larger vector size does

not always bring a significant improvement, and the

time consumption will become more expensive when

the vector size increases. Hence the determination of

a proper d comes from the trade off. In DSRS, there

is another hyper parameter, i.e., the embedding size

dt for time factor. In the overall comparison stage,

we set the default value of dt equal to d. To explore

the impact of time factor size, we test model perfor-

mance by setting d to a fixed value and changing the

value of dt. Fig.6 illustrates the results on Epinions and

Gowalla, where in each sub-figure, the curve in lighter

t t t

Time Steps

U
se

r 
5

U
se

r 
4

U
se

r 
3

U
se

r 
2

U
se

r 
1

t t t

Time Steps

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

U
se

r 
5

U
se

r 
4

U
se

r 
3

U
se

r 
2

U
se

r 
1

Structural Attention Weights

0.13 0.15 0.24

0.29 0.14 0.16

0.34 0.05 0.01

0.64 0.23 0.60

0.02 0.18 0.12

0.16 0.09 0.01

0.27 0.05 0.02

0.07 0.02 0.00

0.59 0.32 0.12

0.04 0.02 0.00

Temporal Attention Weights

Fig.5. Visualization of the learned neighbor weights by structural and temporal attention during three time steps.
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Fig.6. Changing tendency of DSRS performance when changing the dimension of time factor. (a) Epinions-HR. (b) Epinions-NDCG.
(c) Gowalla-HR. (d) Gowalla-NDCG.

color indicates the results with d = 32, dt = {16, 32, 64}

and the curve in darker color shows the results with

d = 64, dt = {32, 64, 128}. Generally, the variations on

the two metrics are not obvious, but we can get the

observation that keeping dt no larger than d is a more

appropriate choice. Time factor is a kind of auxiliary

information, for which a larger size is superfluous.

5 Conclusions

In this paper, we aimed at exploring user social

context to enhance the performance of recommender

systems. To that end, we conducted a comprehen-

sive study to reveal the dynamic social influence on

users’ preferences, and then we proposed a deep model

called Dynamic Social-Aware Recommender System

(DSRS) to address the dynamic social-ware recommen-

dation task. DSRS contains two main components, i.e.,

Social Influence Learning (SIL) and Dynamic Prefer-

ence Learning (DPL). Specifically, we firstly arranged

user social status in a sequential order and developed

graph convolution networks to learn social context

of the target users in SIL. Moreover, we designed a

structural-temporal attention mechanism to discrimi-

natively model the social influence on structural and

temporal aspects. Then, we modeled the users’ indi-

vidual dynamic preferences by DPL. Finally, with a

prediction layer, we integrated the users’ social context

and dynamic preferences to generate personalized rec-

ommendations. We conducted quantitative and quali-

tative experiments on two real-world datasets and com-

pared the proposed DSRS with several state-of-the-art

methods. Experimental results clearly demonstrated

the rationality and effectiveness of DSRS.
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