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ABSTRACT
In today’s fast-evolving job market, the timely and effective under-
standing of the career trajectories of talents can help them quickly
develop necessary skills and make the right career transitions at
the right time. However, it is a non-trivial task for developing a
successful career trajectory prediction method, which should have
the abilities for finding the right timing for job-hopping, identify-
ing the right companies, and matching the right positions for the
candidates. While people have been trying to develop solutions for
providing some of the above abilities, there is no total solution or
complete framework to integrate all these abilities together. To this
end, in this paper, we propose a unified time-aware career trajec-
tory prediction framework, namely TACTP, which is capable of
jointly providing the above three abilities for better understanding
the career trajectories of talents. Along this line, we first exploit
a hierarchical deep sequential modeling network for career em-
bedding and extract latent talent factors from multiple networks,
which are designed with different functions of handling related
issues of the timing, companies, and positions for job-hopping.
Then, we perform collaborative filtering for generating personal-
ized predictions. Furthermore, we propose a temporal encoding
mechanism to handle dynamic temporal information so that TACTP
is capable of generating time-aware predictions by addressing the
challenges for variable interval time sequence modeling. Finally,
we have conducted extensive experiments on large-scale real-world
data to evaluate TACTP against the state-of-the-art baselines, and
the results show that TACTP has advantages over baselines on all
targeted tasks for career trajectory prediction.
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1 INTRODUCTION
Nowadays, job change has become a new normal for working life
in the fast-paced business world. According to the US Bureau of
Labor Statistics, 20-24% of Americans (i.e., more than 41 million
people) search for new jobs every year since 2017 [1]. There are
many benefits to understanding the career trajectory of talents from
the perspectives of organizations, individuals, as well as the poli-
cymakers of labor and economics. For example, career trajectory
analysis supports the human resource department in monitoring
regional brain drain, making internal promotion decisions to mo-
tivate key talents, estimating the probability for a job seeker to
accept the job offer through the hiring process, and many other
meaningful tasks. Besides, from the perspective of talents, schedul-
ing a satisfactory career trajectory from the abundant overload of
job opportunities is usually a difficult decision to make, mainly due
to the indecisiveness when facing high opportunity costs. Hence,
career trajectory prediction results can benefit talents by guiding
their career development paths. Also, career trajectory analysis is
beneficial for the policymakers to find out the popular companies
and corresponding cities when formulating policies and guidelines
for attracting talents.

Regarding the career trajectory prediction, traditional methods
are mainly based on empirical analysis [7, 41]. Recently, people
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Alice

Software Developer
Oracle
2010/6-2011/6

Software Developer
Google
2011/7-2016/1

Forward Deployed Engineer
Palantir Technologies
2016/1-2017/5

Bob

Software engineer
Oracle
2010/8-2014/3

Software Developer
Booking.com
2014/5-2016/10

Figure 1: A motivating example of career path.

have witnessed the rapid development of professional social net-
works (PSNs) [38], such as LinkedIn and Glassdoor, supporting the
over 200 billion recruitment market worldwide [1]. Corresponding
job-related data enable people to seek effective machine learning
solutions to the career trajectory prediction problem [24, 27, 30, 49].
For example, Li et al. [19] designed recurrent neural networks to
predict talents’ next companies and positions while Meng et al.
[27] focused on forecasting potential companies and estimating the
working durations for the next jobs by an attentive recurrent model.
Based on convolutional neural networks, He et al. [10] predicted
talents’ future job positions, salaries, and company scales.

However, there are still many issues in existing models. First,
existing solutions usually assume that the current job-hopping time
is fixed and simply take historical job durations as a part of histor-
ical features [4, 10, 22, 27]. It is very difficult to capture the state
changes for talents with variable intervals, and thus we should con-
sider the interval between every two jobs as an important factor for
sequential modeling. For example, in Figure 1, Alice and Bob have
a similar starting point of careers. Alice only stayed a short period
in Oracle while Bob chose to spend an extended period. Intuitively,
they would have different choices for job transitions. An effective
forecasting method should be capable of estimating the influences
of different working durations, as well as the most likely time point
for job-hopping. Importantly, we summarize three key aspects in
career trajectory planning: the right timing for job-hopping, the
right company for job application, and the right job position. None
of the existing works aim to address all three prediction tasks in
a unified manner. Moreover, due to the sparseness of individual
career trajectory data, how to provide high-quality personalized
predictions is also a long-standing challenge. Although some neigh-
borhood based collaborative filtering (CF) methods [23, 51] have
been developed, there still lacks a comprehensive and robust model
to generate personalized prediction results.

To this end, in this paper, we propose a comprehensive hierar-
chical time-aware career trajectory prediction framework, namely
TACTP, for jointly solving all the aforementioned problems. To the
best of our knowledge, this is the first work to construct a joint
model to predict the three key elements in career trajectory, i.e.,
timing, company, and position, simultaneously. Specifically, we

propose a general temporal encoding mechanism to obtain latent
time representations from original discrete time values. These time
representations are incorporated in both sequential modeling and
collaborative filtering stages to enhance our TACTP framework of
recognizing and exploiting temporal information. Then, we employ
the recurrent networks to map the heterogeneous feature inputs
into three dynamic latent vectors representing talent-time, talent-
company, and talent-position factors, respectively. Furthermore,
we learn the dynamic latent company representations from deep
collaborative networks and the latent position representations from
Gaussian priors. As a result, our method could combine the latent
company, position vectors with talent-company, talent-position,
and time vectors to derive personalized time-aware predictions.
Following this way, our TACTP framework can integrate the ad-
vantages of both sequential modeling and collaborative filtering to
produce high-quality time-aware predictions according to different
working durations of the current job. Finally, we conduct extensive
experiments and evaluate TACTP by comparing it with state-of-the-
art baselines on a large scale real-world dataset. The experimental
results clearly demonstrate the effectiveness of TACTP in terms of
all career trajectory prediction tasks.

2 PRELIMINARIES
In this section, we first introduce the real-world dataset used in
this study. Then we will formulate the prediction problem with the
three correlated forecast targets, i.e., company, position and timing.
Finally, we give an overview of our proposed TACTP Framework.

2.1 Data description
The real-world dataset in this paper was collected from LinkedIn,
one of the most famous commercial professional social networks,
which has served hundreds of millions of users to share their career
experience and professional resumes. These resumesmainly contain
two aspects of information, i.e., static and time-varying features. On
one hand, static features are composed of user name, the number
of user’s social connections, and user’s self-introduction text. On
the other, time-varying features consist of the features related to
companies and positions, such as company name, position name,
and job duration of each working experience in their resumes.

However, only exploiting the above extracted information may
be insufficient to support the modeling and inferring process for
such a challenging prediction task from both user and item aspects.
Therefore, we further adopt the following twomeasures to addmore
useful features to our study. First, we collected some other static
company features from the open data sources as supplementary
information, including company age, type, location, and description
text. Second, we manufactured some relevant time-varying features
by handling the original information into new forms. For example,
we computed the working seniority for each user and the company
size for each company at each time period as supplementary fea-
tures. Also, we calculated the talent flow ratios for each company
since talent flow analysis is much beneficial for monitoring compa-
nies’ competitive advantages [42, 48]. Specifically, we counted the
numbers of personal flow in/out/transfer records among companies
every three years and then normalized these values. In this way,
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Figure 2: Distributions of career trajectory records.

we can employ the previous talent flow in/out/transfer ratios as the
time-varying features for the next time period.

The next challenge of this task is how to transform the massive
raw data into standardized sequence forms. We believe the job
transition process is a sequential modeling task and consider the
career trajectory data as time series. However, in the real world,
one talent may be employed by several companies at the same
time. To solve this problem, we followed the treatment in [53]
to find the major career path when there exist multiple parallel
paths in talents’ resumes. Specifically, if the absolute difference
between the end time of the former job and the start time of the
later job is less than a predefined time threshold, we regard this job
transition as a valid record. Then we could construct a career tree
if the former job has more than one valid later job. Finally, we only
keep the longest career path in the career tree as the major career
path. As for job positions, since the position names are provided
by users, many positions in the raw data indeed have the same
or similar meanings but totally different ways of expression. For
normalizing these multifarious position names, we followed [53]
to use an online API called MonkeyLearns1 to classify the raw
names into 26 job categories. Thus, in the following part of this
paper, the job positions all refer to these 26 categories. Another
notable thing is that a talent may change his/her position several
times in one company. Since the career trajectory prediction task
mainly focuses on the job-hopping behaviors among companies,
job position transitions in one company are not the focus of our
study. Thus, we only consider the first job position in each company
for all the users. More details about the statistical information and
pre-processing of the data can be found in Section 4.1.

1https://app.monkeylearn.com/main/classifiers.

To better understand the dataset properties, we present the distri-
butions of career trajectory records from different views in Figure 2.
Figure 2(a) and 2(b) show the distributions of the job records from
company and position perspectives, respectively. Here we have
sorted the companies and positions in descending order according
to the number of users. From the company perspective, we can find
that the long tail effect is quite obvious. Non-collaborative meth-
ods may be prone to focus on the top popular companies while
neglecting the companies in the long tail. The distribution from
the position perspective is also quite imbalanced. Therefore, it is
important to learn independent representations for all companies
and positions to solve the imbalanced data. Figure 2(c) presents the
number of users of different career lengths. It is noticed that we
have employed the logarithm to the number of users due to the
imbalance data. Less than 5% users have been occupied by more
than 6 companies. Figure 2(d) presents the counts of users of dif-
ferent working durations. A unit of abscissa in the figure means a
half-year. It is interesting to observe the periodicity of durations,
which shows the numbers of users in odd half-years are larger
than even half-years except for the first year. Besides, more than
80% job experiences last less than 4 years, which also indicates the
importance of career trajectory prediction.

2.2 Problem formulation
Based on the extracted career movement records and various fea-
tures, here we introduce the problem formulation of the career
trajectory prediction task.

The t-th job record of the i-th talent can be represented by the
combination of three elements, i.e., company Cit , position Pit and
duration Dit . Supposing the length of career path is Ti for talent i ,
we can denote the job sequence as Si = {(Ci1, Pi1,Di0), (Ci2, Pi2,Di1),
... , (CiTi , PiTi ,Di,Ti−1)}. It is noticed that the working duration in
the sequence refers to the (t − 1)-th job. This is because we usually
do not know how long the talents will stay in the current company
until they move to the next company and update their resumes on
PSN. We denote Di0 = 0 for the first job.

Similarly, the feature sequence for talent i can be denoted as
Fi = {Fi1, Fi2, ... , FiTi }. All the features can be classified into two
types, i.e., static and time-varying features. Static features keep
unchangeable throughout the whole career path. On the opposite,
time-varying features would have different values over different
time periods. For better usability, we first transform the original
heterogeneous features into vectors using the preprocessing meth-
ods that will be introduced in Section 4.1. Then we concatenate
the static and time-varying features to form the complete feature
vector Fit ∈ Rr for each job record in the career path.

With the setup stated above, more formally, we define the pre-
diction problem as follows:

Definition 2.1. (CareerTrajectoryPredictionProblem.) Given
a sequence of job records Si for talent i , along with the correspond-
ing feature sequence Fi and length Ti , our goal is to predict the
next job transition for talent i , including companyCi,Ti+1, position
Pi,Ti+1, and duration Di,Ti .
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Figure 3: The network architectures of career modeling and prediction process in TACTP.

2.3 Solution overview
In this subsection, we will give an overview of our proposed TACTP
Framework. As introduced in Section 2.2, TACTP aims to jointly
make predictions on three different tasks: (1) find the most likely
company for job-hopping; (2) identify the next job position; and (3)
forecast the working duration for the current job. On one hand, the
three prediction tasks are naturally closely related and mutually in-
teracted in the real world. On the other hand, constructing a unified
solution for the three tasks can help promote each other and obtain
better understanding for the career trajectories. Consequently, it is
improper to consider them separately. Along this line, we integrate
the three prediction tasks in this paper. In TACTP, we employ the
idea of latent factor based collaborative filtering [15] to factorize the
job sequence records into latent vectors in a shared low-rank space.
Specifically, TACTP could be divided into two stages, namely mod-
eling stage and prediction stage. First, the modeling stage jointly
constructs deep understandings for talent, company, position, and
time factors. As illustrated in Figure 3, career modeling process can
be further classified into three parts: 1. Temporal encoding, which
transforms the raw time values into latent continuous space and
combines them with input talents’ features by an adaptive time
perception layer; 2. Sequential modeling, which produces dynamic
talent profiling information; and 3. Embedding networks, which
maps the talent states to latent vectors. Prediction process aims
to predict the three key elements (company, position, and timing)
concurrently. Besides, we also learn the dynamic latent company
representations from company embedding networks and latent po-
sition representations from Gaussian priors. Finally, we combine
these latent vectors to produce the predictions for the three tasks
in the prediction stage.

3 TECHNICAL DETAILS OF TACTP
FRAMEWORK

In this section, we will present all the technical details of TACTP,
including the modeling stage, the prediction stage, and the final
comprehensive optimization objective.

3.1 Career sequential modeling
The goal of the career sequential modeling process is to model
the individual career path of each talent. As shown in Figure 3,
given the input features Fi = {Fi1, Fi2, ... , FiTi } and time vectors
{di0,di1, ... ,di,Ti−1}, we want to learn the latent talent state hit
automatically for the i-th talent.

3.1.1 Temporal encoding. Time factor is quite important when tal-
ents make their choices on the job transition [47]. Generally, there
are two types of temporal information playing influential roles in
managing career paths. First is the working durations of past jobs,
since historical working experiences will produce a sustainable in-
fluence on talents [34]. Career management researches have shown
that historical working experience will produce a sustainable in-
fluence on their future career development [34]. Second, how long
the talent stay in the current job also has a massive impact on ca-
reer movement. As a result, we have to carefully consider the past
time factor in the modeling stage and the current time factor in the
prediction stage for generating time-aware predictions. Since the
working durations are variable intervals, it is a great challenge to
figure out their influences on job transitions.

To achieve this goal, we propose a general temporal encoding
mechanism for capturing and exploiting the time factor in both
modeling and prediction stage. In this paper, we focus on the career
trajectory prediction tasks. However, this paradigm can be easily
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extended to other time sequential modeling problems with variable
intervals. Specifically, we first transform the discrete time values
into the continuous input embeddings for better usage in deep
neural networks. Then, we design an adaptive time perception layer
to transform the original time representations into individually
customized time-aware representations.

Intuitively, the obtained latent representations from temporal en-
coding have to keep both the relative and absolute relations among
original time values. For example, the representation of 5 years
should be similar to 4 and 6 years while far away from 1 and 9
years. Here we introduce two implementations for deriving con-
tinuous time representations, namely manually specified approach
and jointly learning approach.

Manually specified approach. To avoid increasingmodel com-
plexity, manually specified approach chooses to utilize predeter-
mined representations as the embedding results. In other words,
the latent time representations are artificially designed and would
not change during the model training. There are many workable
choices for deciding the time representations [8]. In this paper, we
draw the approach of positional encoding employed in the well-
known sequential model, Transformers [43], to use sine and cosine
functions with different frequencies for the vector dit :

d
(2j)
it = sin(Dit /100002j/r ),

d
(2j+1)
it = cos(Dit /100002j/r ), (1)

where d(j)it means the j-th dimension of dit . r is the dimension of
dit , which is the same as the feature vector Fit . Equation 1 has
shown its effectiveness in NLP field for measuring spatial distance
information. Here we can similarly exploit Equation 1 formeasuring
temporal distance information.

Jointly learning approach. Since the artificially designed rep-
resentations may not accord with the practical relative and absolute
relations of different time values, jointly learning approach chooses
to learn the latent representations through the model learning.
Specifically, we first randomly initialize the latent time vector for
all the feasible time values in the dataset (or initialize with the val-
ues in manually specified approach). Thus according to the value
of working duration Dit , we can assign the corresponding time
vector dit to the t-th working experience of talent i . Then the val-
ues of time vectors will be updated after each training batch. In
this way, we can learn the relations among different time values by
exploring real historical job records. We will further compare the
performances of these two approaches in the experiments.

After getting the time representations, we need to combine them
with the user information in the input feature vector Fit and time
vector di,t−1 for producing time-aware input F̃it at each time point.
A direct way is to combine these two vectors by the concatenation
operation, which is a common treatment for integrating information
in deep learning methods:

F̃it = Fit ⊕ di,t−1, (2)

where ⊕ is the concatenation operation.
We can observe that the time vector di,t in Equation 2 only

depends on the working duration Di,t . Thus, it would result in
the invariant temporal information for a fixed input duration even
when we change the user experience features. However, the timing

, 1i td −

, 1i ts −

, 1i tF −  kernelFW

, 1'i td −

, 1i td − kernelSW

 kerneldW

, 1i td −

, 1i tF −

, 1i tF −

Figure 4: The time perception layer.

of job-hopping for a talent is largely depend on the current job
status in practice. For example, talents in Internet companies tend
to have more frequent career transitions and less working duration
for each job. Moreover, even the same duration would naturally
carry distinct meanings for talents with different working senior-
ities. Hence, in order to comprehensively measure the influence
of temporal information with different job status and seniorities,
we design an adaptive time perception layer to obtain individually
customized time-aware representations.

Time perception layer. The time perception layer takes three
input vectors Fit ,di,t−1, and si,t−1, representing a talent’s current
job information, working duration, and seniority, respectively. Here
the seniority before the t-th job record is defined as the sum of
working durations of the past t −1 jobs for each talent. Then we can
easily obtain the seniority vector si,t−1 by the introduced manually
specified approach or jointly learning approach.

As shown in Figure 4, we first transform the input feature vector
Fit through a nonlinear function and then let it interacts with the
duration vector di,t−1 to analyze the influence from job status:

d ′i,t−1 = fF (WF Fit + bF ) + di,t−1, (3)

where fF is a chosen nonlinearity, such as tanh function.WF is
a learned kernel and bF is a bias term. Further, we project the
influence of two time vectors d̃i,t−1 and si,t−1 onto a shared latent
space by two linear functions:

d̃i,t−1 =Wdd
′
i,t−1 +Wssi,t−1, (4)

whereWd ,Ws are learned kernels. Intuitively, the learned kernels
would be trained to adapt the varying time scales and job experience
of talents for mining the influence of temporal information on
job-hopping. By comparison, di,t−1 only contains general time
information while d̃i,t−1 integrates personal experiences with the
duration vector. Finally, we combine the individually customized
time vector d̃i,t−1 with the primary input features and duration
vectors to form the final input vector:

F̃it = Fit ⊕ di,t−1 ⊕ d̃i,t−1. (5)

In this way, we can obtain the time-aware inputs, which reflect
the influence of time factor in the modeling stage. We found the
temporal encoding mechanism performs well across the three tar-
geted prediction tasks. A similar temporal encoding process will
also be used in the prediction stage with a little modification. We
will discuss this later in Section 3.4.
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3.1.2 Sequential modeling. With the input vector sequence de-
scribed above, we then incorporate recurrent networks to track the
dynamics of talent states. We can apply many workable network
architectures to TACTP framework, such as Recurrent Neural Net-
work (RNN) [12], Long Short-Term Memory (LSTM) [9] and Gated
Recurrent Unit (GRU) [5].

Let us take LSTM as an example to introduce the modeling
process. As introduced in section 2.2, each input feature Fit is
the concatenation of static and time-varying features. The static
features are all the same for ∀t . Thus given the static features Fis
of talent i , we first employ a single hidden layer to get the initial
hidden cell hi0 of the recurrent network. Then given the time-aware
input feature F̃it for the t-th job, (t − 1)-th neural cell cit−1 and
(t − 1)-th hidden state hit−1, we can obtain the t-th hidden state by

hit = LSTM(F̃it , c
i
t−1,h

i
t−1). (6)

Notice that hit is not only decided by the current state of talent
i , but also the historical working experience. When using RNN or
GRU for TACTP framework, the modeling process is analogous.

Finally, we adopt the dropout layer to randomly drop out the state
hit . In this way, the networks would receive different incomplete
inputs for follow-up tasks in each training epoch. Thus, the dropout
strategy can improve the robustness and generality of TACTP.

3.2 Career embedding networks
Since the obtained latent talent vectors are synthetical representa-
tions, we need to further specify the talent states from different per-
spectives. Specifically, there are three primary perspectives related
to career trajectory prediction problems, i.e., company, position,
and time.

From the company perspective, we can use an embedding net-
work to transform the talent representation hit into the talent-
company vector uit . We choose the multi-layer perception (MLP)
networks as the embedding networks. Thus, we have:

д1 = f1(W1h
i
t + b1),

дt = ft (Wtдt−1 + bt ), t ∈ [2,n − 1],
uit = fn (Wnдn−1 + bn ), (7)

where дt is the t-th hidden layer with weight matrixWt and bias
term bt . For the activation function ft (·), we employ the sigmoid
function for the first n − 1 layers and the tanh function for the last
layer. Usually in practice, 2-layer MLP has been good enough for
generating high-quality embeddings.

Here, we let the embedding networks at different time points
share the same weights. This is because we assume the talent rep-
resentations are independent of time so that similar talent repre-
sentations would result in similar talent-company vectors at any
time point. Such treatment also helps reduce model complexity and
prevent over-fitting. Similarly to talent-company vector, we also
gain the latent talent-position vector wit and talent-time vector
xit from position and time perspectives, respectively. The network
architectures are the same as talent-company embedding network
and the only difference is the parameters of embedding networks.

3.3 Company and position modeling
After modeling talents, we then need to construct the latent com-
pany and position vectors for utilizing collaborative filtering.

The latent talent vectors are not only influenced by the current
job but also the past working experience. Consequently, we build
a sequential modeling process for users. On the contrary, since
company properties can be essentially represented by the current
state without the need for historical states, we can directly use a
shared embedding network to transform the features of the j-th
company into latent company vector vjt for all the time periods.
Considering company features contain both static and time-varying
features about the company, we are able to learn the time-aware
representations in different periods. The network architectures are
similar to Equation 7.

Different from the company perspective, the states of positions
are much more steady and usually not vary with time. Thus we
can employ time-independent latent position vectors for all time
periods. In detail, we denote qk as the latent position vector and
then the prior probability over qk is assumed to be the normal
distribution as follows:

p(qk ) ∼ N(0, λ−1I ), (8)

where λ is the regularization parameter. qk will be updated by the
gradients after each training batch.

3.4 Prediction stage
In the prediction stage, we finally combine the above discussed
latent factors to produce the final prediction results for timing,
company, and position, respectively.

For predicting the working duration of the current job, we can
use a single hidden layer to transform xit into the prediction d̂i,t ,
which is equal to the Logistic Regression. Here we suggest nor-
malizing the original time values into the range (0, 1) to make the
model more robust. Thus the loss function for working duration
prediction can be given by:

Ld =
∑
i,t

1
2
(d̂i,t − di,t )

2. (9)

For predicting the next company of talents, we first need to
inject temporal information of the current job into talent-company
vectors, since the time factor is an important decisive force for
career movement. We also use 1-layer MLP G(·) to transform the
time vector into the same space of talent vectors :

G(dit ) =Wdit + b,

G(sit ) =Wsit + b, (10)

whereW is the weight matrix and b is the bias term. Then we can
adopt the time perception layer to obtain the time-aware talent
vector ũit . There are some differences between the time perception
layer in modeling stage and prediction stage. Firstly, the three input
vectors uit ,G(dit ), and G(sit ) in prediction stage are in the low-
rank latent space while Fit ,di,t−1, and si,t−1 in modeling stage are
in the feature space. Besides, in order to ensure the consistency in
the dimension of latent space, we choose to add the concatenation
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of two latent time vectors to the talent vector uit :

G̃(dit ) =Wдd (fu (Wuuit ) +G(dit )) +WдsG(sit ),

ũit = uit +G(dit ) ⊕ G̃(dit ), (11)

where the dimensions of both G(dit ) and G̃(dit ) are equal to half
of the dimension of uit .

In this way, the obtained vector ũit would contain both the tal-
ent interest and temporal information. Notice that in the training
process, we input the time vector dit according to the real working
duration Dit . Differently, in the prediction process, we can input
varying duration values instead of the real working duration to gain
different time-aware talent vectors. This is especially important
when we do not know the ground truth of the duration of current
job. A natural approach is to input our predicted working dura-
tion. Talents can also assign the user-specific working durations by
themselves in practice.

Afterwards, we adopt collaborative filtering to get the final job
transition probability yi,t+1:

yi,t+1 = so f tmax(vTt ũit ), (12)

where n is the number of companies and vt = {v1t ,v2t , ..., vnt }
is the latent company matrix for the time point of the t-th job.
so f tmax(·) is the softmax function. Hence the j-th dimension of
yi,t+1 represents the job transition probability to the j-th company.

Let oit ∈ Rn denote the one-hot embedding of company Cit .
Thus the Cit -th dimension of oit is equal to 1 and otherwise 0.
The loss function for next company prediction can be given by the
cross-entropy form:

Lc = −
∑
i,t

oi,t+1 log(yi,t+1). (13)

For predicting the next position of talents, the prediction process
is the same as predicting the next company. Thus we can similarly
calculate the loss function Lp for the next position prediction.

We also add the regularization term to prevent model from over-
fitting problem:

Lr =
∑

i,t, j,k

1
2
(∥uit ∥

2 + ∥wit ∥
2 + ∥vjt ∥

2 + ∥qk ∥
2). (14)

Finally, we have the whole objective function as follows:

L = Lc + αLd + βLp + λLr , (15)

where α , β and λ are hyper-parameters for balancing the different
parts in the loss function.

4 EXPERIMENTS
In this section, we will demonstrate the effectiveness of our pro-
posed TACTP framework from the following aspects: (1) the overall
prediction performance compared with state-of-the-art baselines
on the three targeted prediction tasks; (2) the analysis on temporal
encoding; (3) the model robustness evaluation; and (4) the analysis
on latent company and position vectors.

Table 1: The statistical information of the dataset.

The number of total job records 1,872,624
The number of users 414, 266
The number of companies 1, 002
The number of positions 26
The mean value of the lengths of career paths 4.52

Table 2: The description of the features in our dataset.

Feature level Feature Type Category Feature

User Static
Categorical User ID
Numerical Number of social connections

Text Self-introduction
Time-varying Numerical working seniority

Company

Static Categorical

Company ID
Company age
Company type
Company location

Text Company description

Time-varying

Categorical Company size

Numerical

Job duration
Company flow in ratio
Company flow out ratio
Company flow transfer ratio

Position Static Categorical Position ID

4.1 Data pre-processing
In this subsection, we introduce how to standardize the input fea-
tures. The description of all the utilized features is given in Table 2.
All the features could be classified into three categories (categori-
cal, numerical, and textual data) according to the data forms. For
categorical features, we first used one-hot encoding to obtain the
vector representations. Then we further employed a single layer
MLP to reduce the high-dimension features. For numerical time
values, following the settings in [27], we set the time window as
a half year and then segmented the time periods. In this way, the
value of working durations and working seniorities could be pre-
sented as integers. For instance, 3 years and 9 months would be
transformed into time value 8 since there are 8 half-years. We set
the maximum time value as 21 for the working duration, which
means all the working durations larger than 10 years were classified
into one category. Then we used the introduced temporal encoding
mechanism to further obtain the final time embedding. Meanwhile,
we also utilized a single layer MLP to reduce the dimensions of
numerical talent flow in/out/transfer ratios. Lastly, for textual data
such as self-introduction and company description, we adopt the
well-known text processing method, wold2vec [35], to transform
the raw text into vectors.

4.2 Experimental settings
Dataset. In our dataset, the time span of the career path data ranges
from 1988.1 to 2018.11. We first remove the companies with very
few job records. Then we filtered out the users with less than four
job records. After data filtering, the statistical information of the
dataset is presented in Table 1. Specifically, in our experiments, we
randomly sampled 80%/10%/10% users and their career paths to
construct the training/validation/test set. In this way, we randomly
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Table 3: The overall performance for next company prediction, next position prediction and current working duration predic-
tion tasks. (“−” means the method is not suitable for this task.)

Company Position Duration
Methods Acc@1 Acc@15 Acc@30 MRR Acc@1 Acc@2 Acc@3 MRR MAE RMSE
PP − − − − − − − − 3.190 4.296
MHP − − − − − − − − 3.267 4.715
GBDT 0.022 0.196 0.320 0.075 0.212 0.327 0.413 0.369 3.992 5.471
RF 0.045 0.285 0.393 0.107 0.262 0.428 0.531 0.445 3.303 5.146
LR 0.055 0.317 0.425 0.123 0.341 0.494 0.596 0.511 3.226 4.994
CRF 0.058 0.336 0.453 0.129 0.344 0.459 0.537 0.491 3.277 5.091
CTMC 0.060 0.336 0.457 0.089 0.342 0.462 0.542 0.492 4.225 5.938
HCPNN 0.076 0.408 0.540 0.159 0.352 0.523 0.630, 0.528 − −

NEMO 0.124 0.507 0.636 0.224 0.392 0.553 0.653, 0.559 − −

TACTP (RNN) 0.104 0.481 0.612 0.200 0.390 0.551 0.652, 0.558 2.806 3.744
TACTP (GRU) 0.135 0.535 0.657 0.239 0.400 0.562 0.663, 0.555 2.771 3.752
TACTP-P (LSTM) 0.141 0.545 0.667 0.248 0.396 0.559 0.660, 0.564 2.780 3.761
TACTP (LSTM) 0.150 0.560 0.680 0.258 0.401 0.564 0.664 0.568 2.774 3.732

split each dataset five times and reported all the results by mean
values. For each user, we validated the prediction performance of
three tasks on every job record except for the first job.
Baseline approaches. To verify the effectiveness of TACTP, we
compare it with some state-of-the-art baseline methods. Specifically,
non-sequential models contain Logistic Regression (LR), Random
Forest (RF), and Gradient Boosting Decision Tree (GBDT). Sequen-
tial models contain Conditional Random Field (CRF) [16], Continu-
ous Time Markov Chain (CTMC) [2], HCPNN [27] and NEMO [19].
HCPNN and NEMO are the most advanced and relevant career
trajectory prediction methods, which are both based on LSTM mod-
els. The original HCPNN model cannot predict the positions of
talents. We modify HCPNN by replacing the input companies with
positions and deleting the position embeddings in original model.
Then we can train a new modified HCPNN model to predict the
next positions. For predicting the timing, baselines also include the
stochastic time series models, such as Poisson Process (PP) [14] and
Multi-variable Hawkes Process (MHP) [26]. TACTP (RNN), TACTP
(GRU), and TACTP (LSTM) are the three different implementations
of TACTP framework using RNN, GRU, and LSTM as the recurrent
network architectures, respectively. TACTP-P (LSTM) is a variant
of TACTP (LSTM) where we input the predicted working durations
instead of the real working durations in the prediction stage.
Evaluation metrics. To evaluate the performance of next com-
pany and position predictions, we adopted two widely used eval-
uation metrics, i.e., accuracy@K (Acc@K) and mean reciprocal
rank (MRR). Acc@K counts the ratio that correctly predicted re-
sults are in talents’ top-K items. Specifically, we calculated it by
Acc@K = 1

N
∑N
l=1 I (r (l) ≤ K), where r (l) denotes the rank of the

l-th predicted item and N is the number of predicted items. I (·) is
the indicator function. Here we chose K = 1, 15, 30 for company
prediction and K = 1, 2, 3 for position prediction. MRR measures
the rank of the prediction items, i.e., MRR= 1

N
∑N
l=1

1
r (l ) . For dura-

tion prediction, we adopted two widely used evaluation metrics,
mean absolute error (MAE) and root mean square error (RMSE).
Generally, the larger the values of Acc@K , MRR are, and the smaller
the values of MAE, RMSE are, the better results we have.

Parameter settings. In our experiments, the dimensions of all
the latent talent-company, talent-position, company, and position
vectors were set as 150. Accordingly, we chose talent-company,
talent-position and company embedding networks in TACTP as
2-layer MLPs with dimensions 100×150. Meanwhile, the dimension
of talent-time vector was set as 50 and the time embedding network
was set as a 2-layer MLP with dimensions 50×50. Besides, we chose
the jointly learning approach for combining input features with
time vectors in the overall prediction performance comparisons.
Then we tuned the values of hyper-parameters α in [1, 2, ..., 10], β
in [0.1, 0.2, ..., 1], and λ in [0.0, 0.01, ..., 0.1]. The dropout ratio was
set as 0.99. Finally, we performed Adam algorithm for optimization
and tuned the learning rate from 0.0001 to 0.01. For all the baseline
methods, we use the grid search to explore the parameters. Partic-
ularly, for the two LSTM based models, HCPNN and NEMO, we
adopt the exactly same sizes with our TACTP model for their LSTM
layers. Besides, for these two LSTM based models, we concatenated
the time vectors with other feature embeddings, such as company
and position vectors, to construct the network inputs. Here the
time vectors were obtained just the same as the introduced jointly
learning approach in our TACTP framework. Thus we can compare
them with our models fairly.

4.3 Prediction performance comparison
We want to validate our proposed method on the three career tra-
jectory prediction tasks: providing the right timing for job-hopping,
identifying the right company for a job application, and matching
the right position for the candidate. The overall prediction perfor-
mance for three tasks is shown in Table 3.

First, for company prediction, it can be easily observed from Ta-
ble 3 that TACTP significantly outperforms all the baselines, owing
to the integration of sequential modeling and collaborative filtering.
Specifically, TACTP (LSTM) outperforms the best baseline, NEMO,
by the relative boost of 20.97%, 10.45%, 6.92%, and 15.18% for the
metric ACC@1, ACC@15, ACC@30, and MRR, respectively. By
comparison, HCPNN and NEMO are also LSTM based models, but
they purely consider time as one of the fixed features and adopt a
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Table 4: The performance of different ways for handling
temporal information in TACTP framework.

Company Position Duration
Acc@1 MRR Acc@1 MRR MAE

TACTP-N 0.117 0.217 0.390 0.552 2.788
TACTP-C (M) 0.123 0.223 0.394 0.562 2.785
TACTP-O (M) 0.127 0.230 0.396 0.563 2.786
TACTP (M) 0.134 0.240 0.398 0.566 2.781
TACTP-C (J) 0.134 0.235 0.397 0.564 2.775
TACTP-O (J) 0.138 0.241 0.392 0.560 2.777
TACTP (J) 0.150 0.258 0.401 0.568 2.774

non-collaborative way for prediction. Differently, TACTP produces
personalized time-aware prediction results and thus, achieves a
large improvement to them in the variable interval time sequence
tasks. Besides, we can observe that sequential models always have
stronger modeling ability and perform better than non-sequential
models, which demonstrates the necessity of sequential model-
ing again. As for the three implementations of TACTP, we can
find that TACTP (LSTM) achieves the best result while TACTP
(RNN) performs not well. This may be because LSTM model can
largely alleviate the gradient vanish problem and is more suitable
for variable interval time sequences than RNN and GRU. Finally,
TACTP-P (LSTM) also produces similar results to TACTP (LSTM),
which demonstrates that with the predicted working durations, our
TACTP framework is still able to achieve comparable performance.
In practice, we can further employ TACTP framework for handling
varying interval inputs.

For position prediction, as shown in Table 3, TACTP (LSTM)
achieves the best performance against all the baseline methods.
Specifically, TACTP (LSTM) outperforms the best baseline, NEMO,
by the relative boost of 2.30%, 1.99%, 1.68% and 1.61% for the metric
ACC@1, ACC@15, ACC@30 and MRR, respectively. Similarly to
the company prediction task, TACTP (LSTM) performs better than
TACTP (RNN) and TACTP (GRU). We can observe that the absolute
values of Acc and MRR in position prediction tasks are much larger
than the company prediction task. This is because the number of
companies is much larger than the number of positions. Thus it is
much more difficult to provide precise predictions for companies
than positions.

Lastly, for current job duration prediction, we can observe that
our proposed TACTP models achieve the best performance in both
evaluation metrics. Specifically, TACTP (LSTM) outperforms the
best baseline, MHP, by the relative boost of 17.90% and 26.34%
for the metric MAE and RMSE, respectively. We can find that the
stochastic time series models, (PP andMHP) both have better perfor-
mance than the other baseline approaches. However, with the help
of deep sequential modeling and understanding of talents, TACTP
can outperform them with a large margin. Different from company
and position prediction tasks, the results among the three imple-
mentations of TACTP have no significant difference in duration
prediction task.

4.4 Analysis on temporal encoding
In this subsection, we will discuss the different approaches for
handling time factor vectors in our proposed TACTP framework.
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Figure 5: Analysis on temporal encoding. The two figures
present the Euclidean distances among the latent time vec-
tors obtained by manually specified and jointly learning ap-
proaches, respectively.

Figure 6: The visualization of TACTP based company clus-
tering. (The clusters are distinguished by different colors.)

Specially, we compare the following variants and show the per-
formance in Table 4: 1) All the three TACTP (M) variants adopts
manually specified approach for temporal encoding while the three
TACTP (J) variants adopt jointly learning approach; 2) TACTP-C
(M) and TACTP-C (J) directly concatenate the talent representa-
tion with the working duration vector and seniority vector without
time perception layer in both modeling and prediction stages; 3)
TACTP-O (M) and TACTP-O (J) only exploit temporal information
in modeling process but not prediction process, which means we
directly use the latent talent vector uit for prediction instead of
time-aware vector ũit ; 4) TACTP-N ignores the temporal encoding
mechanism and simply input the primary talent representations in
both modeling and prediction stages.

First we can observe that TACTP-N performs worse than all the
other variants, which clearly demonstrates the necessity of the tem-
poral encoding mechanism. Moreover, TACTP-O (M) and TACTP-O
(J) perform worse than TACTP (M) and TACTP (J), respectively.
This demonstrates the importance of producing time-aware predic-
tion results, but not just exploiting dynamic temporal information
in the modeling stage. By comparing TACTP-C (M) and TACTP-C
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Table 5: Analysis on position vectors obtained by TACTP. The values in the brackets are the cosine similarities between the
latent vectors of the given position and the target position.

Target position Positions and cosine similarities

entrepreneurship consulting (0.2432) finance (0.2288) operation (0.2009)
community and social services (-0.1894) quality assurance (-0.1797) purchasing (-0.1686)

sale market (0.2403) accounting (0.2182) operation (0.2102)
quality assurance (-0.2647) legal (-0.2531) research (-0.1765)

program and project management consulting (0.5006) engineering (0.3857) business development (0.3695)
health-care services (-0.3719) real estate (-0.3551) legal (-0.2998)

(J) with TACTP (M) and TACTP (J), we can easily observe the large
performance boost by our designed time perception layer, which
shows that the time perception layer can successfully capture the
individually customized temporal information. Lastly, variants with
jointly learning approach significantly outperform manually spec-
ified approach by large margins, implying that jointly learning
approach could learn better representations for fitting the complex
temporal information in real-world data.

To further show the differences between manually specified and
jointly learning approaches, we present the heatmap of the Eu-
clidean distances among the latent time vectors obtained by these
two approaches. A unit of abscissa or ordinate in Figure 5 means a
half-year. Here we only show the vectors representing nomore than
10 years, since the great majority of working durations are less than
10 years in our dataset. We can easily find that the Euclidean dis-
tance between two time values in jointly learning approach changes
more smoothly than manually specified approach. Interestingly,
we can observe the sawtooth tendency for the Euclidean distances
among the latent time vectors, that is to say, the latent time vectors
in odd half-years tend to have smaller distances with other time
vectors. This phenomenon is exactly in accord with Figure 2(d),
which shows that talents change their jobs more frequently in the
first half of a year than the second half of a year. Our jointly learn-
ing approach is capable of learning this tendency automatically
from the real-world data while manually specified approach has no
such property. In summary, jointly learning approach can produce
more proper latent vectors and better prediction performance than
manually specified approach.

4.5 Analysis on latent position vectors
Our TACTP framework is able to learn a unique latent vector for
each position. The larger similarity between two latent position
vectors would imply more chances for talents to change their jobs
between these two positions. Here we provide some cases to show
the practical guiding significance of TACTP. Table 5 shows the
top 3 positively related and negatively related positions to the
target position. For example, we can observe from Table 5 that the
positions with top 3 cosine similarities to “entrepreneurship” are
“consulting”, “finance”, and “operation”, while the positions with top
3 similarities from the bottom are “community and social services”,
“quality assurance”, and “purchasing”. Thus, if a talent wants to
become an entrepreneur, she may first accumulate experiences in
the related positions. Also, we can find that themost related position
to “sale” is “market”, since it is easy for talents to change their

jobs between these two positions. Meanwhile, talents in “research”,
“legal”, and “quality assurance” are not likely to transfer to “sale”.

4.6 Analysis on latent company vectors
In this subsection, we provide an overall view of the companies
in our dataset to show the interpretability of TACTP. The smaller
distance between two latent company vectors indicate talent may
be more likely to change their jobs between these two companies.
We first performed k-means clustering [3] to partition all the 1, 002
companies into 8 clusters according to their latent company vectors
in the first half of 2017 obtained by TACTP. Then we utilize the
t-SNE algorithm [25] to transform the original 150-dimensional
vector into a 2-dimensional space for visualization, as shown in
Figure 6. We can observe that cluster 3 and 4 are quite close. Actu-
ally, companies in these two clusters are all high-tech companies,
such as Google, Apple, Microsoft, Facebook, and IBM. Moreover, clus-
ter 5 and 8 are also very close to and interlocked with each other
in the low-dimensional space. In fact, the companies in these two
clusters are both relevant to energy and manufacturing industries.
The difference is that clusters 5 contains more military and avia-
tion companies, such as Lockheed Martin and Airbus, while clus-
ters 8 contains more home appliance companies, such as Sony and
Siemens. Besides, cluster 6, which is the biggest cluster, is composed
of many retail and hospitality industries, such as Amazon, Best Buy,
Hilton, 7-Eleven, McDonald’s, and KFC. Differently, cluster 7, as the
smallest and most concentrated cluster, mainly consists of health-
care, pharmaceutical, and biotechnology industries, such as Pfizer
and Johnson & Johnson. Lastly, in cluster 1 and cluster 2, the vast
majority of companies belongs to banks, financial and insurance
companies, such as JPMorgan Chase & Co, BNP Paribas, Goldman
Sachs, and AXA. To sum up, our TACTP framework is capable of
capturing the attributes of different companies automatically, and
the results can be used for guiding talents to find out the suitable
career transitions.

5 RELATEDWORK
The related work can be classified into three main categories, i.e.,
career trajectory prediction, time sequential modeling, and collabo-
rative filtering.

Career trajectory prediction. Career trajectory prediction is
an important topic in human resource management [52, 53]. Tradi-
tional studies usually focused on the qualitative analysis [7, 41]. In
recent years, there is an increasing interest in applying machine
learning solutions, especially deep learning methods, to career
trajectory modeling. Many of them focused on the transitions of
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companies and positions. For example, Li et al. [19] designed a re-
current neural network to predict the employee’s next career move.
Liu et al. [24] utilized a multi-task learning model for predicting
career paths while He et al. [10] chose to predict job seekers’ future
job information by convolutional neural networks. Xu et al. [49]
developed a deep sequence career trajectory prediction model based
on the recurrent neural network model to predict whether there is
a job change in six months. Recently, Meng et al. [27] predicted the
next potential company and how long the talent will stay in the
next job with an attention-based Long Short-Term Memory model.
Besides the above works, there are also some researchers who tried
to construct job recommender systems based on the prediction of
career trajectories [22, 29, 38, 45, 51]. For example, Shalaby et al.
[38] used a graph-based approach for building an item-based job
recommender system. Besides, some works took the employees’
skills into considerations for better job recommendation [6, 30].

Different from the above works, we provide a unified solution for
all three job recommendation tasks (i.e., the next company, position,
and current working duration) by integrating sequential modeling
and collaborative filtering methods.

Time sequential modeling. Time sequential modeling has
achieved great success in a variety of applications, such as rec-
ommender system, events prediction, time-evolving graphs, and
so on [13, 17, 21, 32]. Early sequential prediction tasks focused on
the sequential pattern mining [39] and transition modeling [36].
Since recurrent neural networks (RNNs) [12] (e.g., the well-known
Long Short-Term Memory (LSTM) [9] and Gated Recurrent Unit
(GRU) [5]), have achieved great success on various sequential mod-
eling tasks due to their superior performance, they are also widely
applied in personalized prediction systems. One representative
application is sequential recommendation, which is based on the
sequential prediction task. For instance, Wang et al. [46] modeled
complicated interactions among multiple factors by using differ-
ent aggregation operations over the representations. Quadrana
et al. [33] designed a hierarchical recurrent neural network with
cross-session information transfer. Li et al. [21] incorporated users’
historical preferences and consumption motivations for next-item
recommendation scenario.

While many current studies focus on sequences with fixed inter-
vals [18], variable interval time sequences is still a great challenge,
where the time intervals are different, and thus temporal informa-
tion would be more influential in exploring the state changes at
different time points and making next predictions. Quite recently,
some works tried to capture the dynamic temporal information
in the sequences. For example, Pavlovski et al. [31] calculated a
temporal score to measure the influence of irregular time intervals.
Tan et al. [40] designed a dual-attention GRU to handle the missing
values in time intervals for patients. Li et al. [18] chose to incorpo-
rate the time relation matrix into self-attention units. However, all
of the above works just consider the dynamic temporal information
in the modeling process but not the prediction process, and thus
cannot handle the varying user status for the next prediction. In
this paper, we design a general temporal encoding mechanism for
both the modeling and prediction stages.

Collaborative filtering. Generally, collaborative filtering (CF)
methods can be further divided into two classes, i.e., neighborhood
based and latent factor based methods. Neighborhood based CF

methods [37] usually first search the nearest neighbors from the
user or item aspect and then make recommendations according
to the neighbors’ records. By comparison, latent factor based CF
methods choose to project users and items into latent factor space.
For example, probabilistic matrix factorization [28], as one of the
most widely used latent factor models, factorized the rating matrix
into the product of user and item latent vectors in a low-rank space.
Recently, many researchers began to combine neural networks with
CF methods. For instance, He et al. [11] leveraged a multi-layer
perceptron to learn the user-item interaction function and Xue et al.
[50] designed an implementation of matrix factorization by using
multi-layer perception networks. Moreover, Wang et al. [44] and
Li and She [20] exploited the stacked denoising autoencoders and
variational autoencoders for combining collaborative filtering with
deep content embeddings.

Some researchers tried to combine neighborhood based CF meth-
ods with job recommender systems [23, 51]. However, neighbor-
hood based CF methods usually perform not well in sparse situ-
ations [15]. In this paper, we incorporate the latent factor based
CF method in our proposed framework for generating high-quality
personalized recommendations.

6 CONCLUSION
In this paper, we proposed a novel time-aware career trajectory
prediction (TACTP) framework for jointly predicting the three key
elements in career trajectory, i.e., timing, company, and position. A
unique perspective of TACTP is that we can generate time-aware
predictions according to the varying duration of the current job
owing to our proposed temporal encoding mechanism. Specifically,
we first developed a unified time-aware sequential model based on
recurrent networks to map the heterogeneous inputs into latent
factor vectors from time, company, and position perspectives for
each talent. Then we combined the talent representations with
company and position representations to make predictions by latent
factor based collaborative filtering. Finally, we conducted extensive
experiments on a large-scale real-world dataset to demonstrate the
effectiveness of TACTP.
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