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Abstract
As one of the most popular generative models,
Variational Autoencoder (VAE) approximates the
posterior of latent variables based on amortized
variational inference. However, when the decoder
network is sufficiently expressive, VAE may lead to
posterior collapse; that is, uninformative latent rep-
resentations may be learned. To this end, in this pa-
per, we propose an alternative model, DU-VAE, for
learning a more Diverse and less Uncertain latent
space, and thus the representation can be learned
in a meaningful and compact manner. Specifically,
we first theoretically demonstrate that it will re-
sult in better latent space with high diversity and
low uncertainty awareness by controlling the dis-
tribution of posterior’s parameters across the whole
data accordingly. Then, without the introduction
of new loss terms or modifying training strategies,
we propose to exploit Dropout on the variances
and Batch-Normalization on the means simulta-
neously to regularize their distributions implicitly.
Furthermore, to evaluate the generalization effect,
we also exploit DU-VAE for inverse autoregres-
sive flow based-VAE (VAE-IAF) empirically. Fi-
nally, extensive experiments on three benchmark
datasets clearly show that our approach can outper-
form state-of-the-art baselines on both likelihood
estimation and underlying classification tasks.

1 Introduction
Recent years have witnessed the great success of Variational
Autoencoder (VAE) [Kingma and Welling, 2013] as a gen-
erative model for representation learning, which has been
widely exploited in various challenging domains, such as nat-
ural language modeling and image processing [Bowman et
al., 2015b; Pu et al., 2016]. Indeed, VAE models the genera-
tive process of observed data by defining a joint distribution
with latent space, and approximates the posterior of latent
variables based on the amortized variational inference. While
∗This work was done when Dazhong Shen was an intern at Talent

Intelligent Center, Baidu Inc. Hui Xiong and Hengshu Zhu are the
corresponding authors.

the use of VAE has been well-recognized, it may lead to un-
informative latent representations, particularly when the ex-
pressive and powerful decoder networks are employed, such
as LSTMs [Hochreiter and Schmidhuber, 1997] on text or
PixelCNN [Van den Oord et al., 2016] on images. This is
widely known as the posterior collapse phenomenon [Zhao
et al., 2019]. In other words, the model may fail to diver-
sify the posteriors of different data by simply using the single
posterior distribution component to model all data instances.
Also, the traditional VAE model usually produces the redun-
dant information of representation due to the lack of guid-
ance to characterize posterior space [Bowman et al., 2015a;
Chen et al., 2017]. Therefore, the learned representation of
VAE often results in an unsatisfied performance for down-
stream tasks, such as classification, even if it can approximate
the marginal likelihood of observed data very well.

In the literature, tremendous efforts have been made for
improving the representation learning of VAE and alleviat-
ing the problem of posterior collapse. One thread of these
works is to attribute the posterior collapse to optimization
challenges of VAEs and design various strategies, including
KL annealing [Bowman et al., 2015a; Fu et al., 2019], Free-
Bits(FB) [Kingma et al., 2016], aggressive training [He et
al., 2018], encoder network pretraining and decoder network
weakening [Yang et al., 2017]. Among them, BN-VAE [Zhu
et al., 2020] applies the Batch-Normalization (BN) [Ioffe and
Szegedy, 2015] to ensure one positive lower bound of the KL
term. However, the theoretical basis of the effectiveness of
BN on latent space learning is not yet understood, and more
possible explanations based on the geometry analysis of latent
space are needed. Other studies attempt to modify the objec-
tive carefully to direct the latent space learning [Makhzani et
al., 2016; Zheng et al., 2019]. One feasible direction is to add
additional Mutual Information (MI) based term to enhance
the relation between data and latent space. However, due
to the intractability, additional designs are always required
for approximating MI-based objectives [Fang et al., 2019;
Zhao et al., 2019]. Recently, Mutual Posterior-Divergence
(MPD) [Ma et al., 2018] is introduced to measure the diver-
sity of the latent space, which is analytic and has one similar
goal with MI. However, the scales of MPD and original objec-
tive are unbalanced, which requires deliberate normalization.

In this paper, to improve the representation learning perfor-
mances of VAE, we propose a novel generative model, DU-
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VAE, for learning a more Diverse and less Uncertain latent
space, and thus ensures the representation can be learned in
a meaningful and compact manner. To be specific, we first
analyze the expected latent space theoretically from two ge-
ometry properties, diversity and uncertainty, based on the
MPD and Conditional Entropy (CE) metrics, respectively.
We demonstrate that it will lead to a better latent space with
high diversity and low uncertainty by controlling the distri-
bution of posterior’s parameters across the whole data. Then,
instead of introducing new loss terms or modifying train-
ing strategies, we propose to apply Dropout [Srivastava et
al., 2014] on the variances and Batch-Normalization on the
means simultaneously to regularize their distributions implic-
itly. In particular, we also discuss and prove the effective-
ness of two regularizations in a rigorous way. Furthermore, to
verify the generalization of our approaches, we also demon-
strate that DU-VAE can be extended empirically into VAE-
IAF [Kingma et al., 2016], a well-known normalizing flow-
based VAE. Finally, extensive experiments have been con-
ducted on three benchmark datasets, and the results clearly
show that our approach can outperform state-of-the-art base-
lines on both likelihood estimation and classification tasks.

2 Background of VAE
Given the input space x ∈ X , VAE aims to construct a smooth
latent space z ∈ Z by learning a generative model p(x, z).
Starting from a prior distribution p(z), such as standard mul-
tivariate Gaussian N (0, I), VAE generates data with a com-
plex conditional distribution pθ(x|z) parameterized by one
neural network fθ(·). The goal of the model training is to
maximize the marginal likelihood EpD(x)[log pθ(x)], where
the pD(x) is the true underlying distribution. To calculate this
intractable marginal likelihood, an amortized inference dis-
tribution qφ(z|x) parameterized by one neural network fφ(·)
has been utilized to approximate the true posterior. Then, it
turns out to optimize the following lower bound:
L = EpD(x)[Eqφ(z|x)[log pθ(x|z)]− [DKL[qφ(z|x)||p(z)]], (1)

where the first term is the reconstruction loss and the second
one is the Kullback-Leibler (KL) divergence between the ap-
proximated posterior and prior.

Unfortunately, in practice, VAE may fail to capture mean-
ingful representation. In particular, when applying auto-
regressive models as the decoder network, such as LSTMs
or PixelCNN, it is likely to model the data marginal distri-
bution pD(x) very well even without latent variable z, i.e.,
p(x|z) = Πip(xi|x<i). In this case, VAE degenerates to
auto-regressive, the latent variable z tends to be indepen-
dent with the data x. Meanwhile, with the goal to mini-
mize DKL[q(z|x)||p(z)] in ELBO objective, q(z|x) vanishes
to p(z), i.e., q(z|xi) = q(z|xj) = p(z), ∀xi, xj ∈ X . To
solve this problem, we will direct the latent space learning
carefully and purposefully for high diversity and low uncer-
tainty in the following.

3 The Proposed Method
Here, we start with theoretical analysis on the latent space
of VAE from two geometric properties: diversity and uncer-
tainty, respectively. Then, we design Dropout on the variance

parameters and Batch-Normalization on the mean parameters
to encourage the latent space with high diversity and low un-
certainty. In particular, the effectiveness of our approach will
be discussed and proved rigorously. Finally, we extend DU-
VAE into VAE-IAF [Kingma et al., 2016] empirically.

3.1 Geometric Properties of Latent Space
For enabling meaningful and compact representation learning
in VAE model, we have two intuitions: 1) for different data
samples x1, x2, the posteriors q(z1|x1) and q(z2|x2) should
mutually diversify from each other, which encourages poste-
riors to capture the characteristic or discriminative informa-
tion from data; 2) given data sample x, the degree of uncer-
tainty of the latent variable z should be minimized, which en-
courages removing redundant information from z. Guided by
those intuitions, we first analyze the diversity and uncertainty
of latent space under quantitative metric, respectively.

Diversity of Latent Space
Here, we attempt to measure the divergence among the poste-
rior distribution family. One intuitive and reasonable metric
is the expectation of the mutual divergence between a pair
of posteriors. Following this idea, [Ma et al., 2018] proposed
the mutual posterior diversity (MPD) to measure the diversity
of posteriors, which can be computed by:

MPDpD(x)[z] = EpD(x)
[DSKL[qφ(z1|x1)|qφ(z2||x2)]], (2)

where x1, x2 ∼ pD(x) are i.i.d. and DSKL[q1||q2] is sym-
metric KL divergence defined as the mean of DKL[q2||q1]
and DKL[q2||q1], which is analytical under Gaussian distri-
butions. Specifically, we have:

2MPDpD(x)[z] =

n∑
d=1

EpD(x)[
(µx1,d − µx2,d)2

δ2x1,d
]

+

n∑
d=1

EpD(x)
[δ2x,d]EpD(x)

[
1

δ2x,d
]− 1.

(3)

Interestingly, if the value of δ2x,d is upper bounded, like
less than 1 in most practical case for VAEs. then, we can
find that MPD has one lower and strict bound proportional to∑n
d=1 V arPD(x)

[µx,d] (see Supplementary).

Uncertainty of Latent Space
Here, we aim at quantifying the uncertainty about the out-
come of latent variable z given data sample x and the learned
encoder distribution qφ(z|x). In information theory, condi-
tional entropy is utilized to measure the average level of the
uncertainty inherent in the variable’s possible outcomes when
giving another variable. Due to the same goal, we follow this
idea and use the Conditional Entropy (CE) Hqφ(z|x) for z
conditioned on x to measure the uncertainty of latent space:

Hqφ(z|x) = EpD(x)[H(qφ(z|x))], (4)

where H(qφ(z|x)) denotes the differential entropy of poste-
rior qφ(z|x). Actually, H(qφ(z|x)) can be computed analyti-
cally as

∑n
d=1

1
2 log(2πeδ2x,d), then we have:

Hqφ(z|x) =
n

2
log 2πe+

1

2

n∑
d=1

EpD(x)[log δ
2
x,d]. (5)
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Intuitively, in order to reduce the uncertainty in the la-
tent space, we need to minimize the conditional entropy
Hqφ(z|x). However, the differential entropies H(qφ(z|x))
defined on continuous spaces are not bounded from below.
That is, the variance δ2x,d can be scaled to be arbitrarily small
achieving arbitrarily high-magnitude negative entropy. As a
result, the optimization trajectories will invariably end with
garbage networks as activations approach zero or infinite. To
solve this problem, we enforce the differential entropy non-
negativity by adding noise to the latent variable. For one la-
tent variable z, we replace it with z + ε, where ε ∼ N (0, α)
is one zero-entropy noise, where we set constant α = 1

2πe for
convenience. Then based on properties of Gaussian distribu-
tion, we have H(qφ(z|x)) > H(ε) = 0 and δ2x,d > α.

In sum, in order to encourage the diversity and decrease the
uncertainty of latent space, we need to constrain both MPD
in Equation 3 and CE in Equation 4 . One feasible solution
is to regard them as additional objectives explicitly and ap-
proximate them by using Monte Carlo in each mini-batch.
However, the scales among different objective terms are un-
balanced, which require deliberately designed normalization
or careful weight parameters tuning [Ma et al., 2018].

Instead, we propose control implicitly the MPD and CE
without modifying the objective function. Based on Equa-
tion 3 and Equation 4, we note that both MPD and CE are
only dependent on approximated posterior’ s parameters, i.e.,
µx,d or δx,d. This inspires us to select proper regulariza-
tion on the distribution of posterior’ s parameters to encour-
age higher MPD and lower CE. Specifically, in the following
two sub-sections. we will introduce the application of the
Dropout on variance parameters and Batch-Normalization on
mean parameters respectively, and provide theoretical analy-
sis about the effectiveness of our approach.

3.2 Dropout on Variance Parameters
In order to encourage high diversity and low uncertainty of
latent space, we need to increase the MPD in Equation 3 and
decrease the CE in Equation 5, simultaneously. Meanwhile,
we also need to avoid EpD(x)[δ

2
x,d] to be too small for en-

suring the smoothing of the latent space. One extreme case is
that whenEpD(x)[δ

2
x,d] convergence to 0, i.e., δ2x,d ≈ 0, ∀x, d,

each data point is associated with a delta distribution in latent
space and the VAEs degenerate into Autoencoders in this di-
mension. To accomplish these requirements together, we pro-
pose to apply Dropout [Srivastava et al., 2014] to regularize
posterior’s variance parameters in training as following,

δ̂2x,d = gx,d(δ
2
x,d − α) + α, (6)

where gx,d denotes the independent random variable
generated from the normalized Bernoulli distribution
1/pB(1, p), p ∈ (0, 1), where EB [gx,d] = 1. Then, we have
the following proposition (see Supplementary for the proof.):
Proposition 1. Given the Dropout strategy defined in Equa-
tion 6, we have:

EpD(x)·B [δ̂
2
x,d] = EpD(x)[δ

2
x,d],

MPDpD(x)·B [z] > MPDpD(x)
[z],

Hqφ·B(z|x) < Hqφ(z|x),
(7)

Algorithm 1 Training Procedure of DU-VAE

1: Initialize φ, θ, γµ = γ, and βµ = 0
2: while not convergence do
3: Sample a mini-batch x
4: µx, δ

2
x = fφ(x).

5: µ̂x = BNγµ,βµ(µx), δ̂2x = Dropoutp(δ
2
x).

6: Sample z ∼ N (µ̂x, δ̂
2
x) and generate x from fθ(z).

7: Compute gradients gφ,θ ← ∇φ,θLELBO(x;φ, θ).
8: Update φ, θ, γµ, βµ according to gφ,θ.
9: γµ = γ√

E[γ2
µ]
� γµ

10: end while

where two inequalities are both strict, the gaps between two
sides are greater as p decreases to 0. Then, we also have:

MPDpD(x)·B [z] >
1− p
α

n∑
d=1

V arpD(x)[µx,d]. (8)

Proposition 1 tells us that: 1) Dropout regularization en-
courages the increase of MPDpD(x)[z] and the decrease
of the conditional entropy Hqφ(z|x) of the latent space
while preserving the expectation of variance parameters,
which is actually a simple but useful strategy what we need.
2) Dropout regularization also provides one lower bound
of MPDpD(x)[z] independent on the variance parameters,
which makes it possible to ensure positive MPD with further
controls on the variance

∑n
d=1 V arpD(x)[µx,d].

3.3 Batch-Normalization on Mean Parameters
Inspired by Batch-Normalization (BN) [Ioffe and Szegedy,
2015], which is an effective approach to control the distribu-
tion of the output of neural network layer. We apply BN on
the mean parameters µx,d to constrain

∑n
d=1 V arpD(x)[µx,d].

Mathematically, our BN is defined as:

µ̂x,d = γµd
µx,d − µBd

δBd
+ βµd , (9)

where µ̂x,d represents the output of BN layer, and µBd and
δBd denote the mean and standard deviation of µx,d estimated
within each mini-batch. γµd and βµd are the scale and shift
parameters, which lead that the distribution of µ̂x,d has the
variance γ2µd and mean βµd . Therefore, we can control the∑n
d=1 V arpD(x)[µx,d] by fixing the mean Ed[γ2µd ] = γ2 with

respect to each dimension d. Specifically, we regard each
γd as learnable parameters with initialization γ. Then after
each training iteration, we re-scale each parameter γµd with

coefficient γ/
√
Ed[γ2µd ]. In addition, all βµd is learnable with

initialization 0 and no constraint.
Overall, based on the analysis above, we propose our ap-

proach, namely DU-VAE, to encourage high diversity and
low uncertainty of the latent space by applying Dropout regu-
larizations on variance parameters and Batch-Normalization
on mean parameters of approximated posteriors, simultane-
ously. Specifically, we train DU-VAE following Algorithm 1.
Connections with BN-VAE. In the literature, BN-VAE [Zhu
et al., 2020] also applies BN on mean parameters. Zhu et
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al. claim that keeping one positive lower bound of the KL
term, i.e., the expectation of the square of mean parameters∑n
d=1Eqφ [µ2

x,d], is sufficient for preventing posterior col-
lapse. In practice, they ensure Eqφ [µ2

x,d] > 0 by fixing scale
parameter γµd of BN for each dimension d. However, here,
we will demonstrate that keeping one positive lower bound
of MPD is one more powerful strategy for preventing col-
lapse posterior. As the discussion in Section 2, when pos-
terior collapse occurs, we have q(z|xi) = q(z|xj) = p(z),
∀xi, xj ∈ X . Therefore, to avoid this phenomenon, we actu-
ally need to control posterior distributions carefully so that:

q(z|x) 6= p(z), ∃ x ∈ X ,
q(z|xi) 6= q(z|xj), ∃ xi, xj ∈ X .

(10)

where the first term is actually implied in the second term as
the necessary condition andDKL[q(z|x)||p(x)] > 0 is equiv-
alent (both sufficient and necessary) to the first term, we can
claim that keeping one positive lower bound of the KL term
is not sufficient for the second term along with several cer-
tain abnormal cases (detailed analysis can be found in Sup-
plementary.). By contrast, keeping one positive MPD in the
latent space is actually one equivalent condition for the sec-
ond term, which implies the first term. Actually, from the
perspective of the diversity of latent space, we can provide
one more possible explanation for the effectiveness of BN-
VAE. That is, the application of BN on µx ensures one pos-
itive value of V arpD(x)[µx, d] for each d, which is also one
lower bound of MPD defined in Equation 2 when the variance
parameters has one constant upper bound, like 1 in practice.

3.4 Extension to VAE-IAF
Here, to further examine the generalization of DU-VAE, we
aim to extend our approach for other VAE variants, such as,
VAE-IAF [Kingma et al., 2016], one well-known normaliz-
ing flow-based VAE. Different from classic VAEs which as-
sume the posterior distributions are diagonal Gaussian distri-
butions, VAE-IAF can construct more flexible posterior dis-
tributions through applying one chain of invertible transfor-
mations, named the IAF chain, on an initial random variable
drown from one diagonal Gaussian distribution. Specifically,
the initial random variable z0 is sampled from the diagonal
Gaussian with parameters µ0 and δ0 outputted from the en-
coder network. Then, T invertible transformations, are ap-
plied to transform z0 into the final random variable zT . More
details can be found in [Kingma et al., 2016].

Indeed, noting that the MPD and CE of the initial ran-
dom variable z0 have the same form as these for classic
VAEs in Equation 2 and Equation 4, one intuitive idea is to
apply Dropout on δ0 and Batch Normalization on µ0 with
the guidance in Algorithm 1 to control the MPD and CE
of z0. It is surprising to find that this simple extension of
DU-VAE, called DU-IAF, demonstrated comparative perfor-
mance in our experiments. This may be attributed to the close
connection between z0 and zT . In particular, we find that
the CE of z0 is the upper bound of CE of zT . Meanwhile,
MPDpD(x)[z

0] is closely related with MPDpD(x)[z
T ], even

they are equal to each other when each invertible transforma-
tion in IAF chain is independent on the input data. Further
discussion and proof can be found in Supplementary.

4 Experiments
In this section, our method would be evaluated on three
benchmark datasets in terms of various metrics and tasks.
Complete experimental setup can be found in Supplementary.

4.1 Experimental Setup
Setting. Following the same configuration as [He et al.,
2018], we evaluated our method on two text benchmark
datasets, i.e., Yahoo and Yelp corpora [Yang et al., 2017] and
one image benchmark dataset, i.e., OMNIGLOT [Lake et al.,
2015]. For text datasets, we utilized a single layer LSTM as
both encoder and decoder networks, where the initial state of
the decoder is projected by the latent variable z. For images, a
3-layer ResNet [He et al., 2016] encoder and a 13-layer Gated
PixelCNN [Van den Oord et al., 2016] decoder are applied.
We set the dimension of z as 32. and utilized SGD to opti-
mize the ELBO objective for text and Adam [Kingma and Ba,
2015] for images. Following [Burda et al., 2016], we utilized
dynamically binarized images for training and the fixed bina-
rization as test data. Meanwhile, following [Bowman et al.,
2015a], we applied a linear annealing strategy to increasing
the KL weight from 0 to 1 in the first 10 epochs if possible.
Evaluation Metrics. Following [Burda et al., 2016], we
computed the approximate negative log-likelihood (NLL) by
estimating 500 importance weighted samples. In addition,
we also considered the value of KL term, mutual informa-
tion (MI) I(x, z) [Alemi et al., 2016] under the joint distribu-
tion q(x, z) and the number of activate units (AU) [He et al.,
2018] as additional metrics. In particular, the activity of each
dimension zd is measured as Az,d = Cov(Ezd∼q(zd|x)[zd]).
One dimension is regarded to be active when Az,d > 0.01.
Baselines. We compare our method with various VAE-based
models, which can be grouped into two categories: 1) Classic
VAEs: VAE with annealing [Bowman et al., 2015a]; Semi-
Amortized VAE (SA-VAE) [Kim et al., 2018]; Agg-VAE [He
et al., 2018]; β-VAE [Higgins et al., 2017] with parame-
ter β re-weighting the KL term; FB [Kingma et al., 2016]
with parameter λ constraining the minimum of KL term in
each dimension; δ-VAE [Razavi et al., 2018] with parame-
ter δ constraining the range of KL term; BN-VAE [Zhu et
al., 2020] with parameter γ keeping one positive KL term;
MAE [Ma et al., 2018] with parameters γ and η controlling
the diversity and smoothness of the latent space. Note that we
implemented MAE with the standard Gaussian prior, instead
of the AF prior in [Ma et al., 2018] for one fair comparison.
2) IAF-based models: IAF+FB [Kingma et al., 2016], which
utilized the FB strategy with the parameter λ to avoid the pos-
terior collapse in VAE-IAF; IAF+BN, where we applied BN
regularization on the mean parameters of the distributions of
z0 with the fixed scale parameters γ in each dimension.

4.2 Overall Performance
Log-Likelihood Estimation. Table 1 shows the results in
terms of log-likelihood estimation. We can note that DU-
VAE and DU-IAF achieve the best NLL among classic VAEs
and IAF-based VAEs in all datasets, respectively. Besides,
we also have some interesting findings. First, MAE does not
perform well in all datasets, which may be caused by the
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Yahoo Yelp OMNIGLOT
Model NLL KL MI AU NLL KL MI AU NLL KL MI AU
VAE 328.5 0.0 0.0 5.0 357.5 0.0 0.0 0.0 89.21 2.20 2.16 5.0

β-VAE*(0.4/ 0.4/ 0.8) 328.7 6.4 6.0 13.0 357.4 5.8 5.6 4.0 89.15 9.98 3.84 13.0
SA-VAE* 327.2 5.2 2.7 8.6 355.9 2.8 1.7 8.4 89.07 3.32 2.63 8.6
Agg-VAE 326.7 5.7 2.9 6.0 355.9 3.8 2.4 11.3 89.04 2.48 2.50 6.0

FB (0.1) 328.1 3.4 2.5 32.0 357.1 4.8 2.5 32.0 89.17 7.98 6.87 32.0
δ-VAE (0.1) 329.0 3.2 0.0 2.0 357.6 3.2 0.0 0.0 89.62 3.20 2.36 2.0

BN-VAE (0.6/ 0.6/ 0.5) 326.9 8.3 7.0 32.0 355.7 6.0 5.2 32.0 89.26 4.34 4.03 32.0
MAE (1/ 2/ 0.5, 0.2/ 0.2/ 0.2) 332.1 5.8 3.5 28.0 362.8 8.0 4.6 32.0 89.62 15.61 8.90 32.0

DU-VAE (0.5, 0.9) 327.0 5.2 4.3 18.0 355.6 5.3 4.9 18.0 89.00 6.63 5.97 19.0
DU-VAE (0.5, 0.8) 327.0 6.7 6.0 19.0 355.5 6.8 5.9 18.0 89.04 7.46 6.31 32.0
DU-VAE (0.6, 0.8) 326.7 8.7 7.2 28.0 355.8 9.6 7.7 23.0 89.18 10.99 8.22 32.0

IAF+FB (0.15/0.25/0.15) 328.4 5.2 - - 357.1 7.7 - - 88.98 6.77 - -
IAF+BN (0.6/0.7/0.5) 328.1 0.2 - - 356.6 0.6 - - 89.32 1.30 - -

DU-IAF (0.7/0.6/0.5, 0.70/0.70/0.85) 327.4 5.4 - - 356.1 5.1 - - 88.97 6.77 - -

Table 1: The performance on likelihood estimation. Due to the intractability of MI and AU metrics for IAF-based models, we just report NLL
and KL same as [Kingma et al., 2016]. * indictes the results are referred from [He et al., 2018]. Hyper-parameters are reported in brackets
and split by slashes if different on different datasets.

#label 100 500 1k 2k 10k
AE 84.05 86.82 87.93 88.19 88.75

VAE 71.10 71.43 71.58 72.96 77.11
δ-VAE (0.1) 60.11 60.52 61.46 63.79 64.38
Agg-VAE 75.05 77.16 78.50 79.29 80.07
FB (0.1) 75.19 80.78 81.63 82.28 82.39

BN-VAE(0.6) 84.53 88.22 89.45 89.63 89.72
MAE (2, 0.2) 61.50 61.70 62.42 63.58 63.68

DU-VAE (0.5, 0.8) 88.91 89.63 90.36 90.51 90.77
IAF+FB(0.25) 89.73 90.60 90.94 90.91 91.01
IAF+BN(0.7) 87.98 89.03 89.18 89.35 90.29

DU-IAF (0.6, 0.7) 91.25 91.10 91.52 91.97 92.31

Table 2: The accuracy of the classification on Yelp.

difficulty to balance the additional training objective terms
and ELBO. Second, although, Agg-VAE and SA-VAE also
reach the great NLL in both datasets, they require the addi-
tional training procedure on the inference network, leading
to the high training time cost [Zhu et al., 2020]. Third, BN-
VAE also achieves completive performance on text datasets.
However, for images, where the posterior collapse may be
less of an issue [Kim et al., 2018], BN-VAE fails to catch
up with other models, even worse than basic VAE on NLL.
Fourth, DU-VAE prefers to capture higher KL and MI com-
pared with BN-VAE with the same scale parameter γ. In
other words, DU-VAE can convert more information from the
observed data into the latent variable. Fifth, based on the re-
sults of IAF+BN, we can find that the BN strategy used in
BN-VAE can not prevent the collapse posterior in VAE-IAF
with small KL. By contrast, our approach can be easily ex-
tended for VAE-IAF with the best performance. Finally, we
also note that IAF based models may be more suitable for
image dataset without sound performance on text, while DU-
IAF nevertheless achieves competitive performance.
Classification. To evaluate the quality of learned represen-
tation, we train a one-layer linear with the output from the
trained model as the input for classification tasks on both text

#label for each character 5 10 15
AE 37.28 43.38 46.94

VAE 29.48 37.79 42.24
δ-VAE (0.1) 37.28 43.38 46.94
Agg-VAE 33.72 41.31 46.27

FB (0.1) 33.93 41.05 45.21
BN-VAE (0.5) 31.17 39.15 43.24
MAE (05, 0.2) 35.05 41.72 44.95

DU-VAE (0.5, 0.1) 40.54 48.09 52.47
IAF+FB(0.15) 38.33 45.85 49.90
IAF+BN(0.5) 16.58 19.49 21.11

DU-IAF (0.5, 0.15) 41.84 49.86 52.97

Table 3: The average accuracy of classifications on OMNIGLOT.

and image datasets. For classic VAEs, the mean parameter
µ of each latent variable has been used as the representation
vector. For IAF-based models, we first selected the initial
sample z0 in latent space as its mean parameter µ0. Then, the
combination of z0 and zT is used as the representation vector.

Specifically, for text datasets, following [Shen et al., 2017],
we work with one downsampled version of Yelp sentiment
dataset for binary classification. Table 2 shows the perfor-
mance under varying number of labeled data. For the im-
age dataset, noting that OMNIGLOT contains 1623 differ-
ent handwritten characters from 50 different alphabets, where
each character has 15 images in our training data and 5 im-
ages in our testing data, we conducted classifications on each
alphabet with varying number of training samples for each
character. Table 3 reports the average accuracy.

We can find that DU-VAE and DU-IAF achieve the best
accuracy under all settings for classic VAEs and IAF-based
models respectively. Interestingly, we also find that most
baselines show inconsistent results on text and image classifi-
cation. For example, Agg-VAE and BN-VAE may be better at
text classification without sound accuracy in Table 3. On the
contrary, δ-VAE and MAE adapt to image classification bet-
ter with uncompetitive performance in Table 2. Meanwhile,
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(a) True Latent Space (b) VAE (c) Agg-VAE (d) BN-VAE (1.0) (e) DU-VAE (1.0, 0.5)

Figure 1: The visualization of the latent space learned by DU-VAE and other baselines. Figure (a) is the counter plot of the true latent space
for generating the synthetic dataset. In the rest, the first line shows the counter plot of the aggregated posterior qφ(z). The brighter the color,
the higher the probability. Meanwhile, the location of mean parameters are displayed in the second line with colors to distinguish different
categories generated from different Gaussian components, where the blue ones correspond to the component in the center in Figure (a), and
the others denote the other four components. All figures are located in the same region, i.e., z ∈ [−3, 3]× [−3, 3], with the same scale.

(a) Yahoo (b) Yelp (c) OMNIGLOT

Figure 2: Parameter Analysis.

we note IAF chain trends to improve the classification accu-
racy for FB and our approach to both text and image datasets.
However, IAF+BN fails to achieve competitive performance
on image classification, which indicates that the applications
of BN in BN-VAE may not be suitable for image again.
Parameter Analysis. Here, we train DU-VAE by varying γ
from 0.4 to 0.7 and p from 1 to 0.6. As the Figure 2 shows, we
find that, DU-VAE would achieve the best NLL with param-
eters (γ, p) as when (0.6, p = 0.8) for Yahoo, (0.5, p = 0.8)
for Yelp, and (0.5, p = 0.9) for OMNIGLOT, respectively.

4.3 Case Study–Latent Space Visualization
Here, we aim to provide one intuitive comparison of latent
spaces learned by different models based on one simple syn-
thetic dataset. Specifically, following [Kim et al., 2018], we
first sample 2-dimensional latent variable z from one mix-
ture of Gaussian distributions that have 5 mixture compo-
nents. Then one text-like dataset can be generated from one
LSTM layer conditioned on those latent variables. Based
on this synthetic dataset, we trained different VAEs with 2-
dimensional standard Gaussian prior and diagonal Gaussian
posterior. Then, we visualize the learned latent spaces by dis-
playing the counter plot of the aggregated approximated pos-
teriors q(z) = EpD(x)[qφ(z|x)] and the location of approxi-
mated posterior’s mean parameters for different samples x.

According to the results in Figure 1, we have some inter-
esting observations. First, due to the posterior collapse, VAE

learns an almost meaningless latent space where the poste-
rior q(z|x) for all data are squeezed in the center. Actu-
ally, it is not surprising that the aggregated posterior matches
the prior excessively in this case, because we almost have
qφ(z|x) = p(z), ∀x. Second, Agg-VAE, BN-VAE, and DU-
VAE all tend to diverse samples in different categories, but in
different manners and degrees. Intuitively, all three models
force to embedding the blue category in the center around by
the other four categories. However, only the average posterior
learned by DU-VAE have five centers same as the true latent
space. Meanwhile, DU-VAE with Dropout strategy encour-
ages the aggregated posteriors to be more compact, while that
of BN-VAE is more broad, compared with the prior. Those
observations demonstrate that DU-VAE tends to guide the la-
tent space to be more diverse and less uncertain.

5 Conclusion
In this paper, we developed a novel generative model, DU-
VAE, for learning a more diverse and less uncertain latent
space. The goal of DU-VAE is to ensure that more meaning-
ful and compact representations can be learned. Specifically,
we first demonstrated theoretically that it led to better latent
space with high diversity and low uncertainty awareness by
controlling the distribution of posterior’s parameters across
the whole dataset respectively. Then, instead of introducing
new loss terms or modifying training strategies, we proposed
to apply Dropout on the variances and Batch-Normalization
on the means simultaneously to regularize their distributions
implicitly. Furthermore, we extended DU-VAE into VAE-
IAF empirically. The experimental results on three bench-
mark datasets clearly showed that DU-VAE outperformed
state-of-the-art baselines on both likelihood estimation and
underlying classification tasks.
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