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Abstract

Most topic modeling approaches are based on the bag-of-words assumption, where
each word is required to be conditionally independent in the same document. As a
result, both of the generative story and the topic formulation have totally ignored
the semantic dependency among words, which is important for improving the
semantic comprehension and model interpretability. To this end, in this paper, we
revisit the task of topic modeling by transforming each document into a directed
graph with word dependency as edges between word nodes, and develop a novel
approach, namely Graph Neural Topic Model (GNTM). Specifically, in GNTM,
a well-defined probabilistic generative story is designed to model both the graph
structure and word sets with multinomial distributions on the vocabulary and word
dependency edge set as the topics. Meanwhile, a Neural Variational Inference
(NVI) approach is proposed to learn our model with graph neural networks to
encode the document graphs. Besides, we theoretically demonstrate that Latent
Dirichlet Allocation (LDA) can be derived from GNTM as a special case with
similar objective functions. Finally, extensive experiments on four benchmark
datasets have clearly demonstrated the effectiveness and interpretability of GNTM
compared with state-of-the-art baselines.

1 Introduction

As one of the most widely-used techniques for document analysis, topic modeling aims to learn a
set of latent topics from the observed document collection, each of which describes an interpretable
semantic concept. In particular, Latent Dirichlet Allocation (LDA) [5]] and its extensions [3} /9,44, 60]
have achieved great success in various application scenarios over the past decades. These approaches
usually specify a probabilistic generative model to draw the document data with a structure of
latent variables sampled from prior distributions and word distribution on the vocabulary as topics.
Recently, with the development of Variational Autoencoder (VAE) [24]], a Neural Variational Inference
algorithm (NVI) with neural networks for topic modeling, namely Neural Topic Model, has attracted
great attention [35} 34, [11,[12] 142, 49,161] , due to its appealing flexibility and scalability.

However, it is well-known that traditional topic modeling usually has the bag-of-word assumption,
where the words in a document are assumed to be “exchangeable”, which also arouses two typical
challenges behind most topic models. On one hand, given the topic distribution of the document, the
words are conditionally independent. This implicates that the dependency relationship among words
is totally ignored, while words are dependent on each other according to linguistic knowledge [30].
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On the other hand, the concept of topics is introduced as multinomial distributions on vocabulary
without modeling the dependency relation among words, which produces more ambiguous terms in
topics. For example, LDA discovers word such as “network” in a topic which does not seem to be
that insightful. Instead, we can convey more interpretability to readers by mining the strong word
dependency between “neural” and “network” [19].

Along this line, many extensions have been proposed to address the above two issues by dealing with
the dependency relation among words. One thread of these works focus on the sequential dependency
by taking the document as a sequence of words [[12, [15] [16} 128 32, 142} |56 52 55/ |60]. However,
most of them prefer to enhance language modeling with better performance on language modeling
metric, such as Perplexity, rather than the state-of-the-art quality of learned topics. It may be due to
the limitation that they only handle the linear dependency of words [30] and push models to capture
the local syntax information instead of global semantic information. Specifically, to mitigate the
first problem, most of them assume that the topic assignment or generative possibility of a word
is dependent on the proceeding words [12, 1516} 28,142l [56]]. As for the second problem, related
literature is restricted to exploring n-gram terms by integrating few neighboring words as one term
with Markov Chain based generative story [52} 155 32].

Nonetheless, words may be mutually dependent on each other in a much more complex and non-
linear manner. Therefore, several studies explore to model the graph representation of documents,
where nodes denote words and edges represent the relationships among words, such as syntax or
semantic relation constructed by dependency parsing [30} 54] or justified by relative position among
words [9} 161]. They either consider the graph structure as side information to constrain the relation
of topic assignments of words [30} 54], or replacing the word sets with edge sets as the instances to
generative [9,161]. Most of them only trickle with the first problem without efforts to enhance the
interpretability of topics.

To this end, in this paper, we represent documents as directed semantic graphs by introducing word
dependency as edges between word nodes, and develop a Graph Neural Topic Modeling (GNTM)
method. The key contributions of our model can be categorized into four parts: 1) we formulate a well-
defined probabilistic generative story of the document graph with the novel generative probabilistic
functions for both graph structure and word sets; 2) we propose a new concept of topics, consisting
of multinomial distributions on both the vocabulary, like conventional topic models, and word
dependency edges; 3) a Neural Variational Inference (NVI) approach is designed to infer our model
with graph neural network to encode the document graphs; 4) we also demonstrate that LDA can be
derived from GNTM as a special case with similar objective functions. Finally, extensive experiments
over four benchmark datasets have clearly demonstrated the effectiveness and interpretability of
GNTM compared with state-of-the-art baselines.

2 Preliminary

2.1 Topic Model

Topic modeling is one of the most important text mining techniques and has been extensively studied
for a variety of applications in recent two decades [2} 21} 31} 48| 47]. Among the most representative
models, Latent Dirichlet Allocation (LDA) [5] formulates each topic & as the distribution 5} on
vocabulary V' and draws each word wy,,, in a document d from one of K topics stochastically. The
well-known generative process of LDA can be described as three steps: 1) sampling document-topic
proportions 8, ~ Dir(«), where « is hype-parameter for the Dirichlet distribution prior; 2) drawing
individual topic assignments 24, ~ Multi(f;); 3) generating each word wg,, ~ Multi(8}, ).
Then, the marginal likelihood for a document d is: 7

p(d‘a7 /B) = ‘/9 p(9d|a) H Z p(wd,n|ﬂ:d1n)p(zd,n|9d)d0d- (1)

n zqn

Conventional approaches for inferring topic models, such as LDA, are either Markov Chain Monte
Carlo [7] or probabilistic variational inference [22], which are both widely applied [58], |14} 46].
However, they either require careful selection of distribution for each latent variable or tolerate
arduous and customized mathematical derivation case by case, which limits the flexibility and
scalability of model design [35]]. Recently, with the successes of Variational Autoencoder (VAE) [24],
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Figure 1: The document graph example and the directed probabilistic graph of our model.

which applies the variational distributions parameterized by neural networks to approximate the
posterior of latent variables, the use of deep learning on inferring topic models has attracted more and
more attention [S7]. Most of those neural topic models (NTMs) [35} 134,149, [11] can be regarded as
extensions of LDA, but often integrate out the discrete latent variable 2, ,,. Therefore, the variational
lower bound (ELBO) for the log-likelihood of the document d can be derived as:

La = Egy 00|y _log p(wa,nl0a, B°)] — DicLlgs(0ald)||p(6a)), )

where ¢, (6|d) is the variational distribution of ; parametrized by a neural network ¢. To obtain a
differentiable estimator of £, the reparameterization trick (RT) has been applied for 6. In particular,
due to the limitation of RT on Dirichlet distribution [49], those approaches usually stand on Gaussian-
based posterior ¢, (0q|d).

2.2 Document Graph Construction

Most existing methods in topic models commonly represent a document as an unordered collection
of words, known as bag-of-word (BOW) representation, which totally ignores the relationship among
words in the document. To represent documents with word dependency relations, we discuss the
representation of documents in a graph manner, where the graph-based models has been widely
explored and applied recently extensively [25} 150, [13]].

Formally, given one document d with word sequences [wd,t]i\fl, we construct a directed edge from
Wq,t, 0 Wwqy, if 0 < to — 1 < s, where s is the hyper-parameter of window size. The hidden
logic is that the semantic is consistent and interdependent among neighboring words, which can be
traced back to n-gram [8]], BTM [9]] and Word2vec [36]]. As the example in Figure shows (stop

words are filtered), we can denote a document d as a graph G4 = (Vy, Ey), where V; = {wd’n}gil
(words as nodes, e.g., 7 words in Figure |I(a)) and E; are sets of nodes and word edges (e.g.,
(““artificial”, “neural’)), respectively. Note that, for simplification in analysis, we distinguish the
same words on different positions in £z and V;. We also denote E as the unique word edge sets in

the whole document collection with nodes in the vocabulary V' = {w,}l‘;‘l (unique word set). For
convention, we further denote G4 = (V?, E9) as the graph structure of G4 with only the placeholders
V9 ={1,2,.., Nq} (e.g.. {1,2,.., 7} in Figure[I(a)), not the specific words Vg, where [V?| = [Vql,
and the placeholder edge set E is the edge set on the placeholder set V7 (e.g., (1, 2)), distinguishing
from the word edge set F .

3 Graph Neural Topic Model

With the definition of the document graph G4, we turn to introduce the technical detail of GNTM.
Specifically, we first formulate the generative story for both the graph structure G and word sets V.
Then, an NVI inference algorithm will be proposed to learn our model.

3.1 Generative Story

Figure [I(b)| shows our directed graphical model. In contrast to three-step generative process in LDA,
four steps are involved in the generative story. The main differences lie in the conditional generation
for the observed data given all latent variables (steps 3 and 4 in the following). To be specific, 1)
the generative story of a document d begins with topic proportion 8 drawn from the Dirichlet prior
Dir(«). Then, 2) each word w,, (or placeholder n) has corresponding topic assignment z,, drawn
from Multi(0). Finally we generate the observed data with two steps: 3) drawing the graph structure



G conditioning on the topic assignment set Zg, i.e., G§ ~ p(G9|Zq); 4) generating the word set Vy
based on both topic assignment set Z,; and graph structure G9, i.e., Vy ~ p(V4|G9, Z4). Based on
the generative process, the joint model of G4 and all latent variables can be decomposed as:
Ng
P(Ga, 04, Za; &) = p(Val Za, G3)p(G3| Za) | | p(2a.n100)p(6]cx). (€)
n=1
In the following, we turn to formulate the formal definition of p(GY|Z4) and p(Vy|Z4, G) with
additional parameters, i.e., topic dependency matrix M and topic set 3, which is the most important
contribution of our model.

3.1.1 Generation for Graph Structure

Here, we aim to construct the graph structure G based solely on the topic assignment z,, on
each placeholder wy ,,. The hidden motivation is to explain the word dependency as the semantic
dependency among their topics, which can encourage our model to find the relation among different
topics in turn. To be specific, we denote M € R¥* X ag the dependency matrix among topics, where
each element m; ; € [0, 1] represents the possibility that there exists a dependency edge between two
placeholders with topic ¢ and j, respectively. Then, we can formulate p(G§|Zg) as

p(GmZd; M) = H mzdm/’zd,n’ H (1 - mzd_’n,zdm/ )7 N

(n,n’)EEé’ (n,n’)gE(c’i

where M is a learnable parameter without additional assumptions.

3.1.2 Generation for Word Set

Contrast to LDA, once a document is represented as a graph, the word sampling should be cast as
the sampling of this graph. In other words, we should consider dependency between words when
generating word set V. To provide a well-defined word sampling process, we first re-define the
concept of topic. Different from the conventional concept of topic in LDA, which is represented by
the multinomial distribution 5} on the vocabulary, we further enhance each topic k by introducing
one distribution on word dependency edge with parameters 55, i.e., S = (8}, B5,), where:

Z /Blg,w =1, Z Blg,wﬁlzc),w’ﬁz,(w,w’) =1, 515@ >0, ﬁlj,(w,w’) > 0. 3)
weVvV w,w’ eV
where the product 5 ., 8 . B 1,y denotes the possibility of the directed edge from word w to w’
under the topic k. Note that, in practice, only parameters B,‘;(w)w,) corresponding to edge (w.w') € E
would be used in model learning. In other words, we can reduce the space complexity of 3j; into
O(|E]) easily by assuming that 3} =0,Y(w,w') ¢ E.

w,w’)

Then, based on the new concept of the topics, we propose a well-defined probability measure for
generating each word set V; with the document graph structure G and topic assignment sets Z.
The probability of p(Vy|Z4, G3) is modeled by :

K

p(ValZa, G5 8) = [ [ p(Vae| Giorr B,
) k=1 (6)

P(Vak|Ga ks Br) = [Baxl H B w Z B, (ww')»

T weVy i (w,w)EE  k
where G ;. is the graph structure consisting of all placeholders with the topic assignment , similarly,
Va i is the set of words assigned by topic k and Eg, is the word dependency edge among them.
In other words, we split the document graph G4 into K dependent sub-graphs G4 based on
topic assignment set Z, and then define the generative possibility of each topical sub-graph Gg j,
with the word dependency edges Eq . If Eq) = 0, we set Z(w’w,)eEd)k ﬁ;’(w’w,)/|Ed,k| = 1.
Mathematically, we have the following theorem:

Theorem 1 Given the topic set 3 in Equation@and the document graph structure G, the probability
function p(Vyq|Z4, GS; B) in Equation@ is a legal probability measure on the vocabulary V.

The proof can be found in Appendix A.1 which is mainly inspired by [30].
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Figure 2: The overivew of network structures to infer our model.

3.2 NVI Inference

Here, we infer our model by applying a NVI inference algorithm, which is well-know of flexibility
and scalability [24]. Based on the mean field assumption, we approximate the posterior of latent
variables 64 and Z; for each document d with the following variational family:

Ng

404, Za|Ga) = 45 (0a|Ga; pra, 6a) [ [ 96(2a.|Gas wan; pa.n), ©)

n=1

where ¢y (24,n|Gd, wq,,) is defined as one multinomial distribution with parameters ¢, and
q4(04|Gq) is the approximation for the true Dirichlet posterior p(6|G4). Both of them are pa-
rameterized by neural networks ¢. However, directly approaching the Dirichlet distributions would
make the reparameterization trick hard to apply. Here, we follow [49} [17] and resolve this issue by
constructing a Laplace approximation to the Dirichlet posterior with the Logistic Normal distribution
parameterized by (p4, d4), that is,

04 = softmax (N (pia, 03)). (8)
Then, we can derive the training objective for each document d, i.e., ELBO:

Lq = Eyz,16,)logp(Gg|Za; M) +log p(Va| Za, Gg; B)]

N(i 9
K Lg(041Ga) p(00)] — Etoniiin (> KLa(za0 G wan) o200 00)]), ®

n=1

where the first line aims to reconstruct the observed data G4, and the second line consists of two KL
divergence that attempts to close the distance between the posterior and prior of latent variables 6,
and Z,. Fortunately, K L[q(04|Gq4)|p(04)] and K L[q(za,n|Ga, wan)||p(z4.n]04)] are both analytic
(see Appendix A.2). Then, we approximate the expectation of the second KL term over 6 with Monte
Carlo samples by applying the reparameterization trick on q(9d|Gg)ﬂ As for the deduction of the
first line, we will discuss in Section[3.2.3]

After the probabilistic definition of the generative story and the corresponding variational family, we
turn to introduce the detailed network structure to implement our model. As the overview shown in
Figure 2] the neural network structure of GNTM can be broadly split into three parts: 1) the topic
representation, including the topic set /3 and the dependency relation matrix M; 2) an encoder, which
maps the observed data to the variational parameters; 3) a decoder, which computes the possibility of
the observed data given the latent variables. We describe each term as below.

2 Although, the expectation of the second KL term can also be computed analytically under Dirichlet
distribution, in which our model is conjugate, we still use the sampling strategy here, which is more general and
can also be applied for more flexible situations without conjugate distributions, such as [4,53]]



3.2.1 Topic Representation

Inspired by [34]], we introduce word vectors € RIVI*#  topic-word vector u” € RF*H | topic-edge
vector u¢ € RE*2H ‘and generate 37 and 3 by:

exp(Fuwy wy - (UZ)T)
2 (wweB BrawBi w €2p(Pww - (ug) ™)

v\T
B = —lre (k) ) a0

2wrey €xp(ruwr - (ug))

where, 7o, w, = Tuwy D Tw,. (+) and @ denote dot product and concatenation operations, respectively.

’ Bzﬁ(wlﬂm) =

Therefore, each topic k can be represented by the vector vy, = uj, ® uf. Meanwhile, 37 and 3} can
be explained as the semantic similarity between the topic and words or edges (the concatenation
of word vectors as the edge vector). Along this line, we further define each element of the topic
dependency matrix M as the semantic similarity among topics with additional learnable parameter
matrix W € R37x2Y;

ar @by = ux - W, my; =oa(g(a;-b))), Vi, j,k, i#j, (11)

where o (-) is the sigmod function. ay,, by € RY are two transitional vectors for the topic & to compute
the possibility of directed edges among different topics. g(-) denotes a vector similarity metric and is
set as the consine similarity g(a,b) = C'(a - b/(||a||||b]])) here, in which C'is a hyper-parameter to
re-scale the range of o(g(-)) to approach [0, 1].

3.2.2 Encoder

Here, we aim to model the mapping from the observed data G4 to the variational parameters for
latent variables 64 and Z;. To be specific, we denote X € RIVIXL a5 the trained and fixed word
embeddings for all words in the vocabulary V. For the document d, X; € RIV4/*Z is the word
embedding set for word set V;. Then, we encode the local information of each node and the global
information of the whole graph G4 with one layer of graph neural network, such as GraphConv [38]]:

ha = tanh(GNN(Gg, Xa)),

o Ja (12)
hd = tanh(z o(f1(han ® zan)) © tanh(fo(han & Tan))),

n=1

where hy € RIVal*L ig the node-level representation vectors, h§ € R” is the graph-level representa-
tion vector, and f, () is a full connected layer. Self-loops have been added to G for preserving the
current word feature. The second project network is following [29].

Then, the parameters of variational marginals ¢(64|G4) and q(z4,,|Ga, wa,n) can be specified as:

pa = fu(h§), logdy = fs(hG),

13)
Pd,n = fs@(h’g ©® hd,n ©® Id,n)~

3.2.3 Decoder

We denote the reconstruction part in Equation E] (the first line) as £, which can be deduced as:

Li= > @in-(ogM) -aw+ Y @an-logl—M)-pau

(n,n")EEG (n,n")¢E] (14)
Ny K Z Zk: Zk ﬁe
T 1 (n,n")eES “d,n~d,n’ k'v(wd,n’wd,n’)
+ Z Pdn - 10g B, + Z Eq(zq1c4)l0g ) s ok ok Js
ne1 h—1 (n,n")eEg “d,n“d,n’

where zfj’n = 1if zq,, = k otherwise 0. Indeed, the first two terms equal to E¢(z, |, [log p(G§|Za)]
and the other items are derived from E;(z,|q,)[log p(Va|Za, G3)] (see Appendix A.2) . In practice,
the graph G is often very sparse which causes the unbalance between the first two terms. Here, we
follow [26] and re-weight the second terms with |ES| (D (nn") ¢ B2 -t

Now, the only challenge to compute the ELBO loss £, is at how to compute the last term in
Eqaution[T4] which is the expectation of a log-sum function and can not be computed analytically.
Here, we estimate this expectation with Monte Carlo samples from ¢(Z4|G4). Meanwhile, to ensure
the differentiability, we use Straight-Through Gumbel-Softmax (STGS) estimator [20] to approximate



the undifferentiable multinomial sampling, which outputs the discrete samples as the approximated
multinomial samples in the neural forward pass, but applies a continuous approximation in the
backward pass.

We conclude this section with an observation to show that the objective function in LDA can be
derived from that of GNTM as a special case. This demonstrates the generalization of our proposed
model and the contribution to model the word dependency by representing documents as graphs. The
proof can be found in Appendix A.3.

Corollary 1 If the word dependency edge E4 of the document d is one empty set, the objective
function defined in Equation[9would reduce into the ELBO in LDA with the Laplace approximation
of the Dirichlet distribution.

4 Experiments

Here, we conduct extensive experiments on four benchmark text datasets to evaluate the effectiveness
and interpretability of our model. Our code and data are available at https://github.com/
SmilesDZgk/GNTM.

4.1 Experimental Setup

Datasets: Our experiments are conducted on four benchmark datasets with varying sizes, including
20 News Groups (20NG) [27]], Tag My News (TMN) [51]], the British National Corpus (BNC) [10],
Reuters extracted from the Reuters-21578 dataset. In particular, 20NG and TMN are single-labeled
datasets. We follow [[16] and only use the title text in TMN to represent the short documents. We
also filter out the stop words, and words and dependency edges with low frequency among the whole
collection to reduce noise. The statistics and links of these datasets are shown in Appendix A.4.

Evaluation Metrics: Here, we focus on measuring the quality of learned topics. Traditionally,
perplexity has been used to measure the quality of topic models, but it has been repeatedly shown
that perplexity is not a good metric for the qualitative evaluation of topics [39]. Therefore, we adopt
another two metrics: topic coherence (TC) and topic diversity (TD). Given the reference corpus, TC
measures the interpretability of a topic by computing the semantic coherence in the most significant
words [37]. With the suggestion in [43]], we selected two TC measurements to provide a robust
evaluation, i.e, Normalized Pointwise Mutual Information (NPMI) [[1]] and C,, [43]]. Specifically, both
NPMI and C), are computed on the top words of each topic with the original document corpus of
each dataset as the reference documents. Higher value indicates better interpretability. TD aims to
measure how diverse the discovered topics are. We follow [11] and defined TD as the percentage of
unique words in the top words. TD closes to 0 indicates redundant topics. TD closes to 1 indicates
more varied topics. In addition, we also evaluate our model in a document clustering task on labeled
datasets, i.e., 20NG and TMN, to evaluate the quality of the learned topic propitiation. Specifically,
following [40]], we assign every document the topic with the highest probability as the clustering
label and compute Purity and Normalized Mutual Information (NMI) [45] as metrics. Both of them
always range from 0.0 to 1.0, and higher scores reflect better clustering performance.

Benchmark Models: We select several state-of-the art-topic model as the baselines, including: 1)
LDA [5]]; 2) GSM [34], an NTM model which replaces the Dirichlet-Multinomial parametrization
in LDA with Gaussian Softmax; 3) ProdLDA [49], an NTM model which keeps the Dirichlet-
Multinomial parametrization with a Laplace approximation; 4) ETM [11], an NTM mdoel which
incorporates word embedding to model topics; 5) GraphBTM [61], an NTM model with graph-based
word dependency; 6) iDocNADE and iDocNADEe [16], neural autoregressive topic models with
sentence-based word dependency, where iDocNADEge incorporates word embeddings. Note that
iDocNADE®e constrains the equality of the dimension of word embedding and the number of topics.
We can only set the number of topics as 50 and 100, due to the lack of pretraining word-embedding
with other dimensions in public. 7)TopicRNN [12], a neural autoregressive topic model with word
sequence-based dependency. All baselines are implemented carefully with the guidance of their
official code.
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Figure 3: The performance on the topic quality. The first two rows show the topic coherence score,
i.e., NPMI and C,,, with corresponding topic diversity in the third row, where error bars in each
point denote the standard deviation of results on 5 runs. The result of iDcNADE, iDocNADEge,
and TopicRNN has been omitted due to the uncompetitiveness. Completed results can be found in
Appendix A.7.

Experiment Settings: In practice, we construct document graphs with window size s = ﬂﬂ In
particular, we mix together with the same words in different positions as one node with word
frequency to compute the correct likelihood. In other words, we implicitly assume that the same
words in one document share the topic assignment, which is widely used in [3} 134,142} 54]]. We set
the Dirichlet prior parameter o = 1. Following [49], batch-normalization [18]] has been used on
the inference network for the posterior parameters of 6. We utilized 300-dimensional GloVe word
embeddings [41] to fix X (i.e., L = 300) in our model and word vectors in ETM. We also set the
size of word vectors p¥ as 300, i.e., H = 300. The size of transitional vector a; and by were set
as Y = 64. For the optimization, We follow [34] and alternately update the decoder parameters
with topic representation and the encoder parameters. Only one sample is used in neural variational
inference for 6, and Z; if needed. For the optimization, Adam [23]] optimizer has been used with
the initial learning rate of 0.001 and the linear learning rate decay trick to find the optimal. All
quantitative results are based on 5 runs with different random seeds and the average performance is
reported without special description. (More experimental details can be found in Appendix A.5.)

4.2 Experimental Results

We follow [[11]] and select the top 10 words with the highest probability in each topic as the represen-
tative word set to compute both TC and TD metrics. The results are displayed in Figure [3| with the
varying number of topics K from 20 to 100 (see Appendix A.7 for more results based on the different
number of top words). We find that our proposed model outperforms other baselines in terms of
both C',, and NPMI score with high topic diversity on all datasets. In particular, GSM also achieves
the competitive performance on TC metrics, but its TD score is lower than most models. It may be
because that, in contrast to Dirichlet prior used in other models, the Gaussian-Softmax distribution
in GSM leads to lower sparsity among topic proportions, which causes redundant topics in turn.
Meanwhile, although some other baselines may have higher TD score than our model on several
datasets with several topic numbers, they cannot achieve high topic coherence. In addition, despite

3When s = 5, the degree of one word is 10, i.e., 5 in-degrees and 5 out-degrees, which is similar to that in
Skip-gram with the size of text window as 5 that performs better in empirical experiments [36]]. We show the
sensitivity analysis of the windows size s in Appendix A.5.



Table 1: The performance on document cluster. We highlight the best and second scores in boldface
and with an underline, respectively. The standard deviation can be found in Appendix A.7.

Purity NMI
20 30 50 70 100 | 20 30 50 70 100
LDA 02980 0.3340  0.3375 0.3510 0.3740 | 0.2908 0.3013  0.2852 0.2878  0.2858
GSM 04133 0.4379 0.4629 0.4429 04210 | 04394 0.4369 0.4433 0.4449 0.4412
ProdLDA 03306 0.3450 0.3641 0.3638 0.3807 | 0.3405 0.3345 0.3350 0.3298 0.3343
20NG ETM 0.3496 0.4154 0.4380 0.4510 04616 | 03842 0.4227 0.4296 0.4297 0.4356

GraphBTM ():1448 0.1210  0.1630 0.1068  0.0992 | 0.1552 0.1108 0.1807 0.0816 0:0707
iDocNADE 02175 0.2844 0.3064 0.3187 0.3371 | 0.1128 0.1723  0.1802 0.1901  0.1990

iDocNADEe - - 0.1300 - 0.1507 - - 0.1185 - 0.1228
TopicRNN 0.0728 0.0761 0.0865 0.0920 0.1001 | 0.0109 0.0141 0.0229 0.0303  0.0400
GNTM 0.4500 0.4882 0.5089 0.5090 0.5021 | 0.4436 0.4419 0.4416 04362 0.4371
LDA 03509 0.3692 0.3725 0.4031 0.4228 | 0.0622 0.0665 0.0754 0.0901 0.1064
GSM 0.5933 0.6054 0.6184 0.5934 0.2632 | 0.2848 0.2787 0.2996 0.3246  0.0204
ProdLDA 0.3141 0.2808 0.2505 0.2535 0.2438 | 0.0508 0.0334 0.0056 0.0053  0.0000
TMN ETM 0.5841 0.5967 0.6347 0.6358 0.6420 | 0.2764 0.2705 0.2829 0.2784 0.2767

GraphBTM 0.2438 0.2438 0.2438 0.2438  0.2438 | 0.0000 0.0000  0.0000 0.0000  0.0000
iDocNADE 02712 03116 0.3314 0.3512 0.3730 | 0.1074 0.1436  0.1488 0.1585 0.1701

iDocNADEe - - 0.2623 - 0.4171 - - 0.0332 - 0.1728
TopicRNN 0.2493  0.2537 0.2586 0.2684 0.2775 | 0.0048 0.0071 0.0108 0.0154 0.0221
GNTM 0.6150 0.6252 0.6472 0.6656 0.6773 | 0.2851 0.2801 0.2789 0.2821  0.2870

considering word dependency, GraphBTM fails to capture the state-of-the-art performance. The
reason may be that it construct each document graph on the whole vocabulary and include words that
are not in the document as noise. In terms of document clustering with results in Table[I] our model
performs the best with a significant gap over other models on Purity metric, while GNTM is also
comparative on NMI metric. Those results demonstrates that our model captures both interpretable
topics with better quality and good document representations for clustering. We also note that the
GraphBTM fails to cluster documents. Especially, the NMI metric has vanished to O on the TMN
dataset, which indicates that all documents were clustered to one category and GraphBTM cannot
capture significant topics with similar semantics to the document labels.

Visualization: Since GNTM models topics as multinomial distributions on both the vocabulary and
the word dependency edge sets, we can represent each topic k as a graph on the vocabulary V' with
the edge set E and adjacency matrix Ay, = (37 - (B7)T) ® BL. We show two topics learned by a run
of GNTM on News20 with K = 20 as examples in the left of Figure First, we can find that the
top words in each topic are highly semantically consistent, where topic #12 is about space science
and topic #13 is related to computer technology. Second, we observe that the top edges are also
highly interpretable with semantic dependency between two word nodes, such as “space station” and
“satellite orbit” in topic #12, or “floppy dives” and “floppy disk’ in topic #13, which also helps us to
reduce the possible ambiguity and understand the specific meaning of words in each specific topic.
Third, the graph representation of topics also provides a new possibility to further separate the topic
semantic by clustering the word nodes. For example, we utilize the fast unfolding algorithm [6],
a widely-used community detection algorithm, to cluster nodes and color different categories. We
find that, interestingly, the top words of topic #12 are split into three sub-clusters with different
sub-topics related to space research (violet), celestial bodies (green), and space exploration (orange),
respectively. Similarly, the top words of the topic #13 are separated into two categories: one is about
software or hardware (orange); the other may be about programming development (violet).

In addition, we also show the topic dependency matrix M in the right of Figure[d} where each element
m; ; represents the possibility of existing a directed edge from topic ¢ to j. We have the following
interesting observations. First, there always exist high possibility values between topic #0 with any
other topics. It is actually reasonable because topic #0 is represented with several general words,
commonly used in any scenario. Second, the diagonal tend to have a high value. It indicates that the
words with the same topic should be linked, which is consistent with the widely-used assumption that
interdependent (or neighboring) words prefer to have the same topic assignment [15} 30} 32} 159/160].
Third, we note that the topic dependency matrix also mines the dependency relation between different
topics. For example, in our topic sets, the top words of the topic #9 is full of sport-related words,
while the topic #8 focuses on the hockey games with keywords related to team or game name, such as
“bos” (Boston Bruins), “det” (Detroit Red Wings) and “nhl” (National Hockey League). Considering
the strong relation between topic #8 and #9, the value mg ¢ and myg g is high.
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Figure 4: The case study. The left shows topics learned by GNTM with top 5 words, and top 5 edges
and corresponding topic graph representation in the top 30 words, where the sizes of nodes and edges
are positively correlated to By and Ay = (87 - (Bp)T) ® B¢, respectively. Nodes are colored by their
cluster labels detected by fast unfloding algorithm [6]. The right displays the heatmap of the topic
dependency matrix M, with several topics represented by the top 5 words.

5 Conclusion

In this paper, we revisited the topic modeling techniques by representing documents as semantic
graphs and proposed a Graph Neural Topic Model (GNTM) method. Specifically, we first formulated
a well-defined probabilistic generative story to model both the graph structure and word sets with a
new concept of topics, i.e., multinomial distributions on both the vocabulary and word dependency
edge. Then, a Neural Variational Inference (NVI) approach was proposed to learn our model with
graph neural networks to encode the document graphs. Besides, we also have demonstrated that LDA
can be derived from GNTM as a special case with similar objective functions. Finally, extensive
experiments on four benchmark datasets have clearly validated the effectiveness and interpretability
of GNTM compared with state-of-the-art baselines.

Limitation and Future Work: Here, we discover word dependency only by linking words in a small
sliding window on word sequence. Several other approaches can also construct document graphs,
such as dependency parse [33]. An interesting direction of future work is to consider multiple types
of word dependency relation together by representing documents as multi-relational graphs.
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