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Abstract

The pre-training models such as BERT have achieved great
results in various natural language processing problems.
However, a large number of parameters need significant
amounts of memory and the consumption of inference time,
which makes it difficult to deploy them on edge devices. In
this work, we propose a knowledge distillation method LRC-
BERT based on contrastive learning to fit the output of the
intermediate layer from the angular distance aspect, which is
not considered by the existing distillation methods. Further-
more, we introduce a gradient perturbation-based training ar-
chitecture in the training phase to increase the robustness of
LRC-BERT, which is the first attempt in knowledge distilla-
tion. Additionally, in order to better capture the distribution
characteristics of the intermediate layer, we design a two-
stage training method for the total distillation loss. Finally, by
verifying 9 datasets on the General Language Understanding
Evaluation (GLUE) benchmark, the performance of the pro-
posed LRC-BERT exceeds the existing state-of-the-art meth-
ods, which proves the effectiveness of our method.

Introduction

Recently, one of the main trends of natural language pro-
cessing (NLP) is pre-training model (Peters et al. 2018;
Radford et al. 2019). The pre-training models such as
BERT (Devlin et al. 2019) and XLNet (Yang et al. 2019)
have achieved remarkable results in tasks like Sentiment
Classification (Socher et al. 2013) and Natural Language In-
ference (Williams, Nangia, and Bowman 2017). The training
of these models usually consists of two stages: the first stage
is the model pre-training on a large scale corpus by predict-
ing specific words according to the given context. The sec-
ond stage is to add a specific prediction layer on a specific
downstream task for fine-tuning training. However, these
models usually contain hundreds of millions of parameters.
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For example, the original BERT-base (Devlin et al. 2019)
model has 12 layers and 109 million parameters. This lim-
its the deployment of online services because of inference
delay and device capacity constraints. Therefore, in the case
of limited computing resources, it is necessary to reduce the
computational cost of these models in practice.

Knowledge distillation (KD) (Hinton, Vinyals, and Dean
2015; Adriana et al. 2015) is an effective method of model
compression (Han, Mao, and Dally 2015). By compress-
ing a large teacher network into a small student network,
the student network has the same predictive ability as the
teacher network. At the same time, the student network has
fewer parameters, correspondingly faster inference speed on
specific tasks and can be effectively deployed to edge de-
vices, greatly saving computing resources. Recalling the ex-
isting research on the KD method in NLP, DistilBERT (Sanh
et al. 2019) uses soft label distillation loss, cosine embed-
ding loss, and initializes the student from the teacher by
taking one layer out of two. This strategy forces the struc-
ture of the transformer layer in the student network to be
consistent with the teacher, and the distillation of the output
characteristics of the intermediate layer is not fully consid-
ered. The student model in BERT-PKD (Sun et al. 2019)
patiently learns from multiple intermediate layers of the
teacher model for incremental knowledge extraction, includ-
ing PKD Last and PKD Skip. The former try to learn from
the last k layers, the latter learn from each k layer. Like Dis-
tilIBERT, BERT-PKD also requires the corresponding layer
in the student to be exactly the same as the teacher, which
greatly limits the flexibility of structural design and the com-
pression scale. TinyBERT (Jiao et al. 2019) uses more fine-
grained knowledge including the hidden state of the trans-
former network and self-attention distribution. Additionally,
a parameter matrix is introduced to perform a linear trans-
formation on the hidden state of student so as to reduce the
number of parameters in the tranformer layer of the student.
However, these models only mimic the output value of each
layer of the teacher network, without considering structural
information such as the correlation and difference of the out-
put distribution among different samples.



In this work, we design a model compression framework
called LRC-BERT to distill the knowledge of the teacher
network into the student network. Specifically, we design
a variety of different loss functions for the output of the
transformer and prediction layer. For the output logits of
the prediction layer, we calculate Kullback—Leibler (KL) di-
vergence and cross entropy with the output of the teacher
and the real label respectively; for the output of the inter-
mediate transformer layer, we design a novel contrastive
loss cosine-based noise-contrastive estimation (COS-NCE)
to capture the distribution structure characteristics of the
output of the intermediate layer. The design of COS-NCE
is inspired by infoNCE (Oord, Li, and Vinyals 2018) and
CRD (Tian, Krishnan, and Isola 2020). Optimizing the con-
trastive loss can narrow the gap between the representations
of positive pairs in a metric space, push the gap between the
representations of negative pairs away, and learn the struc-
tural information output by the teacher network in the inter-
mediate layer effectively. However, these structural informa-
tion is ignored in the existing methods, such as TinyBERT
and MINILM (Wang et al. 2020), they only approximate the
output values of the teacher network in the transformer lay-
ers. Compared with existing model DistilBERT, LRC-BERT
choose a more flexible student structure without the limita-
tion of the structure and parameter quantity of the interme-
diate layer to be consistent with the teacher by introducing
a dimension transformation matrix. Then, in order to help
LRC-BERT focus on the structural information of the output
distribution in the early stage of training, we adopt a two-
stage training method for the total distillation loss, and ver-
ify the effectiveness of calculating distillation loss by stages
in the experimental part. Finally, we introduce a new model
training architecture based on gradient perturbation (Miyato,
Dai, and Goodfellow 2017), which perturbs the output of
the word vector embedding layer through the gradient value,
thereby changing the output distribution of the model in this
layer and improving the robustness of the model. Our con-
tributions are summarized as follows:

* For the distillation of the intermediate layer, a new
contrastive loss COS-NCE is proposed to effectively
capture the structural characteristics between differ-
ent samples.

The gradient perturbation is introduced for the first
time in knowledge distillation and verified in the ex-
perimental part that it can improve the robustness of
LRC-BERT.

We use a two-stage training method to better capture
the output distribution characteristics of the interme-
diate layer based on COS-NCE.

We evaluate the proposed method on 8 NLP datasets,
and the experimental results show that our LRC-
BERT model outperforms than the state-of-the-art
baseline models.

Related Work
NLP Pre-trained Language Models

The emergence of pre-training models has brought NLP into
a new era (Peters et al. 2018; Song et al. 2019; Jiao et al.
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2019; Devlin et al. 2019). The advantages of using pre-
training models are as follows: 1) Pre-training models learn
knowledge from the large-scale corpus, which is helpful for
downstream tasks; 2) pre-training provides a better parame-
ter initialization method, which makes better generalization
and faster convergence on the target task; 3) pre-training can
be considered as a regularization method, which can pre-
vent the model from over fitting on small datasets (Qiu et al.
2020). Specifically, the pre-training language model can be
divided into two stages: 1) pre-training word embedding; 2)
pre-training context encoder.

In the first stage of pre-training word embedding, only
word vectors are trained, which is a static feature-based
mode. Typical examples are Word2Vec (Mikolov et al. 2013)
and Glove (Pennington, Socher, and Manning 2014). The
word vector is used for token embedding and sent it into the
specific model. This kind of model has simple structure, but
it can also get high-quality word vector which can capture
the potential grammatical and semantic information between
words in the potential text. However, this type of pre-training
word vector can not be dynamic with the context variety. In
addition, in the downstream tasks, the remaining model pa-
rameters still need to be retrained.

In the second stage of pre-training context encoder, the se-
mantic information dynamically changes with the context.
Typical examples are ULMFiT (Howard and Ruder 2018),
ELMo (Peters et al. 2018) and GPT2 (Radford et al. 2019).
With the introduction of transformer (Vaswani et al. 2017),
it has brought more attention to the pre-training language
model with a deeper structure. The typical representative is
BERT (Devlin et al. 2019), which is a bi-directional encoder
based on transformer and can learn sentence information
more completely by using context. Through pre-training via
masked language modeling and next sentence prediction, it
has achieved the advanced performance on many NLP tasks,
such as the GLUE benchmark (Wang et al. 2019a).

Contrastive Learning

Contrastive Learning (Hadsell, Chopra, and LeCun 2006;
Weinberger and Saul 2009; Schroff, Kalenichenko, and
Philbin 2015), as a kind of self-supervised learning method,
uses the data itself as the supervised information to learn
the feature expression of the sample data by constructing
positive samples and negative samples, without manual an-
notation information. In fact, by minimizing some specially
constructed contrastive loss such as infoNCE (Oord, Li, and
Vinyals 2018) and CRD (Tian, Krishnan, and Isola 2019),
the lower bound of the mutual information between all sam-
ples can be maximized.

The construction of positive and negative samples is one
of the major difficulties in contrastive learning. In the field
of image, deep InfoMAX (Hjelm et al. 2018) takes local
features of training images and different images as positive
samples and negative samples respectively. Then, MoCo (He
et al. 2020) and SimCLR (Chen et al. 2020) extract positive
samples by clipping, rotation and other transformation oper-
ations. For the data such as text and audio, because the data
itself is sequence, the method adopted by the CPC (Oord,
Li, and Vinyals 2018) is to take the sample from the data
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Figure 1: Overview of the proposed latent-presentation con-
trastive distillation framework for BERT model compres-
sion. Among them, contrastive learning is used to transfer
the structural characteristics of output distribution from the
teacher to the student. For instance, for the same input sam-
ple, the output distribution 2° of the student is more similar
to 2T that of the teacher when comparing with the outputs
nT and n? of the teacher for the negative input samples.

that has not been input into the model as a positive example,
and randomly sampling an input from the input sequence as
a negative example.

Knowledge Distillation

The model compression technology (Han, Mao, and Dally
2015) accelerates the inference speed and reduces the num-
ber of model parameters while ensuring the prediction per-
formance of the model. Its main technologies consist of us-
ing fewer bits to represent the quantization of parameter
weights (Gong et al. 2014), weight pruning (Han et al. 2015)
to reduce or dilute network connections and knowledge dis-
tillation (Adriana et al. 2015; Tang et al. 2019; Tan et al.
2018).

Knowledge distillation has proven to be a promising
method in model compression, which transfers the knowl-
edge of a large model or a group of neural networks
(teacher) to a single lightweight model (student). (Hinton,
Vinyals, and Dean 2015) first proposed using the soft tar-
get distribution to train the student model and impart the
knowledge of teachers to students. (Chen, Goodfellow, and
Shlens 2016) introduced technologies that effectively trans-
fer knowledge from existing networks to a deeper or wider
network. (Turc et al. 2019) used a small pre-trained lan-
guage model to initialize students during task-specific dis-
tillation. MiniBERT (Tsai et al. 2019) uses soft target distri-
bution for mask language modeling prediction, guides the
training of multilingual student models. TinyBERT (Jiao
et al. 2019) and MobileBERT (Sun et al. 2020) further in-
troduced self-attention distribution and hidden state to train
students. (Aguilar et al. 2020) distilled internal representa-
tion knowledge from attention layer and intermediate output
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layer in a bottom-up way.

Different from the existing works paying more attention
to approximate the attention value and output value in the
transformer layer, we try to capture the correlation and dif-
ference of the output distribution between different input
data of the teacher network in each layer, and these structural
features have also been proved to be feasible in the knowl-
edge distillation by CRD.

Method

In this section, we first propose COS-NCE by distilling the
output distribution of the intermediate layer, and then show
the process details of proposed adaptive deep contrastive dis-
tillation framework LRC-BERT, as shown in Fig. 1. Finally,
we introduce a model training method based on gradient per-
turbation to enhance the robustness of LRC-BERT.

Problem Definition

The trained teacher network is represented by the function
fT(x,0), where x is the input of the network and @ is the pa-
rameters. Our goal is to make the student network f°(z, 6")
imitate the output distribution of ¥ (x, ) in the interme-
diate and prediction layer by minimizing the specific loss
Liotal, SO as to realize the purpose of knowledge distillation.

COS-based NCE Loss

Inspired by recent contrastive learning algorithms (Oord,
Li, and Vinyals 2018; Tian, Krishnan, and Isola 2019;
Sohn 2016), we design a contrastive loss COS-NCE for
the transfer of the intermediate layer. In particular, we
use the penultimate layer of distillation to elicit our pro-
posed COS-NCE. For a given teacher network f7 and stu-
dent model f*, we randomly sample K negative samples
X = {a],z;,....,xx} for each input training sample x,
and record the output of sample x in the penultimate layer
of fT and f° networks as 27 and z°, respectively. Corre-
spondingly, we can obtain the output N = {n,nd ..., n%}
of negative samples in the penultimate layer of f7 network.
As shown in Fig. 2, we map the outputs of the penultimate
layer to certain points on the high-dimensional feature space.
Different from the previous contrastive loss works consid-
ering Euclidean distance or mutual information in feature
space (Sun et al. 2014), we propose a new contrastive loss
COS-NCE based on angular distance distribution to consider
the latent structural information output by the intermediate
layer.

Formally, distilling the output of a given sample and
K negative samples in the penultimate layer, the proposed
COS-NCE formula is as follows:

K
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Figure 2: Map the output of the teacher network and the
student model in the penultimate layer to the same feature
space. The green line represents Euclidean distance. (a) the
angular distance between positive pairs z° and 2z with the
same input z is smaller than that between negative pairs z°
and n with different inputs = and z7 , (b) for different stu-
dent models f°' and f52, the distance between the output
292 and 27 is closer than that of z°! under the evaluation
standard based on Euclidean distance; however, under the
standard based on angular distance, ' is better than f°2.

where g(.,.) — [0, 2] is a function used to measure the an-
gular distance between two input vectors, and the smaller
g(z,y) means that the distribution distance of the two vec-
tors is closer to each other. When g(z,y) = 2, it means that
the two vectors reach the maximum dissimilarity. The pur-
pose of COS-NCE in formula (1) is to minimize the angle
between z° and the positive sample 27, while increasing
the angle between z° and the negative sample nI € N.
Instead of constructing the form of triplet loss based on
Euclidean distance as used in previous work (Weinberger
and Saul 2009; Schroff, Kalenichenko, and Philbin 2015),
we apply the function ¢(.,.) to minimize the angular dis-
tance between the training sample and positive samples.
Then, in order to maximize the distance between the train-
ing sample and the negative samples (the first term in for-
mula (1)), the loss is constructed from the geometric per-
spective as shown in Fig. 3. Obviously, the difference value
g(nT,2%) — g(27,2%) between g(n!,2°) and g(2T,2%)
need to be maximized. In order to transform the maximiza-
tion problem into the minimization equivalent problem, we
calculate the distance from g(z7, 2°) to the lower boundary
of the function and g(n?, z°) to the upper boundary. There-
fore, the maximization problem is redefined as minimizing
the sum of these two distances: 2— (g(n7, 2%) —g(2T, 2%)).

Distillation for Transformer-layer

The COS-NCE is proposed to transfer the output of trans-
former layer knowledge from the teacher network to the stu-
dent model. Each transformer layer in BERT consists of two
main sub-layers: multi head attention and fully connected
feed-forward network (FFN), but we only distill the output
of FFN. Assuming that the teacher model has IV transformer
layers and the student model has M transformer layers, we
need to select M layers in the teacher for knowledge transfer
and the objective is as follows:
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max g(n!,z%) — g(2",z%)

0 9", 2% g(nf,2%) 2

Figure 3: We use the difference between g(nl, 2°) (simi-
larity with negative sample) and g(z7, 2°) (similarity with
positive sample) to represent the distance from the negative
sample.

b= Lo(hSW,hE  H] ), 3)

where hy € R4 is the output of the training sample x
in the i-th transformer layer of the student network, h?{; €

R s the output of the training sample x in the ¢;-th
transformer layer of the teacher model, j = ¢; is a map-
ping function, which means that the output of the ¢-th layer
of student network needs to imitate the output of the j-
th layer of teacher model, [ is the input text length, and
scalar values d and d’ represent the hidden size of stu-
dent and teacher respectively, usually d is smaller than d’.
Hf = {h§ 5,71 4,5 Pic_1,4,} is the output of K nega-
tive samples in the ¢-th transformer layer of teacher network.
Referring to the exiting works (Jiao et al. 2019; Wang et al.

2019b), we use matrix W € R?*? to map the outputs of
different dimensions to the same feature space.

Distillation for Predict-layer

In order to predict specific downstream classification tasks,
we simulate the student’s prediction output from the soft la-
bel of the teacher model and the hard label corresponding
to the real label respectively. Among them, the KL diver-
gence is used to imitate the output of the teacher network,
and cross-entropy loss is used to fit the difference between
the student’s output and the one-hot encoding of the real la-
bel.

- T\ softmax(y” /1)
Esoft - softmax(y /T) IOg( softmax(ys/r) )7 (4)
Lharg = —softmax(y/7) - log(softmax(y®)),  (5)

where 3 and y” are logits vectors output by the predict
layer of student and teacher respectively, 7 is a temperature
that adjusts the concentration level, y is the one — hot encod-
ing of real label. It should be noted that there is no negative
sample involved in the distillation of the prediction layer.
When the downstream task is a regression problem, the cal-
culation of L, ¢ and Lj4rq is changed to mean squared er-
ror (MSE) loss function.

The various losses described above are shown in Fig 1. By
combining the various losses of different layers described
above, we can obtain the final distillation objective function
for transforming the knowledge of the teacher network into
the student model:

M—1
['total =« Z ['lT + ﬂ['sotf + ’Y»Charda

=0

(6)



Model Params | MNLI-m MNLI-mm QQP  SST-2 QNLI MRPC RTE CoLA STS-B | Avg
(393k) (393k) (364k) (67k) (105k) (3.7k) (2.5k) (8.5k) (5.7k)
BERT-base (teacher) 109M 84.3 83.8 71.4 93.6 90.9 88.0 66.4 53.0 84.8 79.6
DistilBERT 52.2M 78.9 78.0 68.5 91.4 85.2 82.4 54.1 32.8 76.1 71.9
BERT-PKD 52.2M 79.9 79.3 70.2 89.4 85.1 82.6 62.3 24.8 79.8 72.6
TinyBERT 14.5M 82.5 81.8 71.3 92.6 87.7 86.4 62.9 43.3 79.9 76.5
LRC-BERT; 14.5M 82.8 82.6 71.9 90.7 88.3 83.0 51.0 31.6 79.8 73.5
LRC-BERT 14.5M 83.1 82.7 72.2 92.9 88.7 87.0 63.1 46.5 81.2 71.5

Table 1: The results are evaluated from the official website of GLUE benchmark, and the optimal experimental results are
identified in bold. The number under each dataset represents the corresponding number of training samples.
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Figure 4: The illustration of training based on gradient per-
turbation.

where «, § and +y are used to weigh the influence of different
losses. Specifically, in order to enable the model to learn the
contrastive structural features more effectively in the prelim-
inary training, we will adopt a two-stage training method. In
the first stage, we only calculate the contrastive loss of the
intermediate transformer layer, that is, the values of «, 8 and
v are set to 1, 0 and O respectively. In the second stage, the
weight values are set to be greater than O to ensure the model
has the ability to predict downstream tasks.

Training Based on Gradient Perturbation

In the training stage, we introduce gradient perturbation to
increase the robustness of LRC-BERT. The method based
on gradient perturbation has been applied in word embed-
dings (Miyato, Dai, and Goodfellow 2017), and the predic-
tion performance is more stable. Fig. 4 shows the training
process based on gradient perturbation. For the distillation
loss Lot oObtained according to formula (6), we do not
directly use the loss to carry out the parameter update by
backward gradient propagation, but calculate the gradient of
each element in the output matrix emb® of the embedding
layer in the student network, and use the gradient value to
interfere with the distribution of emb®. Then use the distri-
bution after interference to calculate the loss according to
the network forward propagation, and the loss is finally used
to update the network parameters. The specific process is as
follows:
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embS = embS + 9/ll9ll2, @)
9= VLiotar(emb®). (8)

Where embS’ is the vector after using gradient perturba-
tion to interfere, and the calculation of the gradient pertur-
bation is Ly norm processing for the gradient value emb®.
Before the parameter of the student network is updated, it
is passed into the subsequent transformer layer and predic-
tion layer again to calculate the loss £}, ., after the gradient
perturbation.

Experiment

In this section, we elaborate on a large number of exper-
iments to verify the effectiveness of the proposed LRC-
BERT. The specific details are shown in the following sub-
sections.

Datasets

We evaluate LRC-BERT on GLUE benchmark. The datasets
provided on GLUE were all from NLP datasets with high
recognition. We evaluate LRC-BERT in tasks such as natu-
ral language reasoning, emotion analysis, reading compre-
hension and semantic similarity.

In more detail, we evaluate on 8 classification
tasks, including Corpus of Linguistic Acceptability
(CoLA) (Warstadt, Singh, and Bowman 2019), Stanford
Sentiment Treebank (SST-2) (Socher et al. 2013), Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and Brockett
2005), Semantic Textual Similarity Benchmark (STS-
B) (Cer et al. 2017), Quora Question Pairs (QQP) (Chen
et al. 2018), Question Natural Language Inference
(QNLI) (Rajpurkar et al. 2016), Recognizing Textual
Entailment (RTE) (Bentivogli et al. 2009) and Multi-Genre
Natural Language Inference (MNLI) (Williams, Nangia,
and Bowman 2017). Among them, MNLI is further divided
into two parts: in-domain (MNLI-m) and cross-domain
(MNLI-mm), so as to evaluate the generality of the test
model. When evaluating the model, we use the metrics used
by GLUE benchmark. Specifically, For QQP and MRPC,
the metric is F1-score, for STS-B, the metric is Matthew’s
correlation, the rest tasks use accuracy.

Distillation Setup

We use BERT-base (Devlin et al. 2019) as our teacher.
BERT-base contains a total of about 109M parameters, in-
cluding 12 layers of transformer (N = 12), and each layer



Model transformer hidden Params inference
layers size time(s)
BERT-base 12 768 109M 121.4
LRC-BERT 4 312 14.5M 12.7

Table 2: The number of parameters and inference time be-
fore and after model compression.

has 768 hidden dimensions (d' = 768), 3072 intermediate
sizes and 12 attention heads. The student model we instan-
tiated has 4 transformer layers (M = 4), 312 hidden sizes
(d = 312), 1200 intermediate sizes and 12 attention heads,
with a parameter of approximately 14.5M. In order to test
the generality of our model more effectively, we design two
groups of experimental procedures. The first group uses the
Wikipedia corpus to conduct pre-training, and then distills
on specific tasks, which is called LRC-BERT. In the pre-
training stage, only one epoch of distillation is carried out
on the transformer layers, the values of «, 5 and -y are set to
1, 0 and O respectively. The second group is directly distilled
under the specific task dataset and recorded as LRC-BERT].

For the distillation of each task on GLUE, we fine-tune
a BERT-base teacher, choosing learning rates of 5e-5, le-
4, and 3e-4 with batchsize of 16 to distill LRC-BERT and
LRC-BERT;. For each sample, we choose the remaining
15 samples in batchsize as negative samples, i.e. K = 15.
Among them, 90 epochs of distillation are performed on the
MRPC, RTE, and CoLA with the training dataset less than
10K, and 18 epochs of distillation on other tasks. For the
proposed two-stage training method, the first 80% of the
steps are chosen as the first stage of training, the rest 20% of
the steps are the second stage. Specifically, the partition pa-
rameter value 80% applies to all tasks is obtained by search-
ing on MNLI-m and MNLI-mm tasks, and the search range
is {0%, 5%, 10% ,...,95%}. Then, we set the parameters of
the second stage to v : §: v =1 : 1 : 3, and the search
range of each parameter is {1,2,3,4}. For the hyperparamet-
ric temperature 7, we set it to 1.1. Considering that there are
fewer training samples for RTE and CoL A, we use the data
augmentation method used by TinyBERT in LRC-BERT to
expand the training data by 20 times and conduct 20 epochs
of transformer layer distillation on the augmented dataset
before specific task distillation.

We distill our student model with 6 V100 in the pre-
training stage, and 4 V100 for distillation training on spe-
cific task dataset and extended dataset. In the inference ex-
periments, we report the results of the student on a single
V100.

Main Results

The results of the evaluation on GLUE are recorded in Ta-
ble 1. By comparing with BERT-PKD (Sun et al. 2019),
DistilBERT (Sanh et al. 2019) and TinyBERT (Jiao et al.
2019), which also have 4 transformer layers, the following
three conclusions can be drawn: 1) in all evaluation tasks,
LRC-BERT has better distillation effect than other meth-
ods, and the average prediction effect of LRC-BERT can
reach 97.4% of the teacher model BERT-BASE, which in-

12835

Model MNLI-m MNLI-mm MRPC CoLA
LRC-BERT 83.4 83.5 89.0 50.0
LRC-BERT¢ 78.0 78.2 81.5 37.0
LRC-BERTs 82.7 83.0 89.4 48.8
LRC-BERT 83.0 83.5 88.7 48.6

Table 3: Ablation studies of different loss functions (dev).

Model Accuracy
LRC-BERT 834
LRC-BERT, 79.4

Table 4: Effect of two-stage training method on MNLI-m
task (dev).

dicates that the proposed method is effective for distillation
on specific tasks. 2) For tasks with a large amount of train-
ing data, LRC-BERT;, which does not use data augmen-
tation and pre-training, can significantly simplify the dis-
tillation process while still effectively transferring teacher
knowledge to students. Specifically, for tasks with a training
set greater than 100K LRC-BERT; has surpassed the ex-
perimental effect of TinyBERT, increasing by 0.3%, 0.8%,
0.6%, and 0.6% in MNLI-m, MNLI-mm, QQP and QNLI
respectively. 3) Compared with the experimental results of
LRC-BERT and LRC-BERT], the distillation performance
of LRC-BERT can be significantly improved by pre-training
and data augmentation, especially when the amount of train-
ing data is small. For example, the prediction results on tasks
MRPC, RTE and CoLA are 4.0%, 12.1% and 14.9% higher
than that of LRC-BERT], respectively.

Inference time is another important evaluation metric for
model compression. Therefore, we further investigated the
increase in model inference speed, and summarized the in-
ference time of different baseline models in Table 2. Our
4-layer 312-dimensional student network is 9.6 x faster than
the original teacher model BERT-BASE with the model size
is 7.5x smaller. This result is similar to TinyBERT, because
our student model structure is the same as TinyBERT.

Ablation Studies

In this section, we conduct ablation tests on MNLI-m,
MNLI-mm, MRPC and CoLA from two aspects: the con-
struction of different loss functions and the use of gradient
perturbation.

Effect of Different Loss Function We remove the COS-
NCE of transformer layer, soft loss or hard loss of predic-
tion layer from the loss function for distillation shown in
formula (1) to get three contrast models of LRC-BERT¢,
LRC-BERTg and LRC-BERTy. The evaluation results of
these four tasks on dev are shown in Table 3. The exper-
imental results indicate that the COS-NCE plays the most
important role in distillation. When COS-NCE is discarded,
the performances are getting worse in all datasets, especially
on the CoL A task, which is drop from 50 to 37. In addition,
the absence of soft-loss or hard-loss shows little effect on the
results. It is worty to noted that they have different degrees
of influence on different tasks. For example, the prediction



sentencel sentence2 MSE angular distance(g) label prediction (BERT )
Paper goods. Paper products. 1.532 0.505 entailment entailment
oh constantly Rarely 1.557 0.525 contradiction contradiction
The truth? Will you tell the truth? 1.730 0.496 neutral contradiction
I’'m not exactly sure. I’m not exactly sure if you're 2.108 0.484 entailment neutral

aware of your issues.

Table 5: Display of prediction results: In the given 4 cases, LRC-BERT can make accurate prediction, while BERT; performs
poorly, indicating that the angle-based distillation effect is better than the Euclidean distance.
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Figure 5: Effect of gradient disturbance on training loss. The
variants are validated on the training set of the MNLI-m task
and the loss fluctuation in the second stage of the two-stage
training method is obviously increased.

performance of soft loss used in MRPC and CoL A are out-
perform than that of hard loss, but the performance of hard
loss used in MNLI-m and MNLI-mm is better. All of these
experimental groups show that the three different losses used
are useful in LRC-BERT.

Effect of Gradient Perturbation The introduction of gra-
dient perturbation can change the data distribution of the
middle layer in the training phase. In order to verify the
stability improvement brought by the gradient perturbation
on knowledge distillation, we construct LRC-BERT, after
removing the gradient perturbation from the training pro-
cess. Fig. 5 shows the training loss of LRC-BERT and LRC-
BERT, on the MNLI-m task. It can be seen from the result
that in the first stage of the two-stage training, their down-
ward trend is relatively consistent, but in the second stage,
after considering soft loss and hard loss, the training loss of
LRC-BERT with gradient perturbation is more stable than
LRC-BERT,,. It also shows that the gradient perturbation is
feasible in knowledge distillation.

Analysis of Two-stage Training Method

The purpose of the two-stage training is to force LRC-BERT
to focus only on the distribution characteristics of the data
output in the transformer layer of the student model at the
beginning of the training. In order to verify its effectiveness,
we design LRC-BERT; without using the two-stage train-
ing method. In addition, during the entire training phase of
LRC-BERTj, the weighting parameter of the training loss
Liotar 18 always setas a: f:y =1:1: 3. Table 4 shows
the evaluation results of LRC-BERT and LRC-BERT; on
the dev set of MNLI-m. Although we can conclude from the
ablation studies that COS-NCE based on contrastive learn-
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ing can effectively transfer the knowledge of the transformer
layer in the teacher model to the student, the accuracy of
LRC-BERT; without using the two-stage training method
is 4.0% lower than that of LRC-BERT, which indicates that
the knowledge distillation of prediction layer from the be-
ginning will greatly affect the results of contrast distillation
in the transformer layer.

Analysis of Angle-based Distribution Features

COS-NCE is proposed to capture the angular similarity fea-
ture of the output in the transformer layer, which is not con-
sidered by the existing knowledge distillation methods. For
this reason, we design a comparison model BERT ,, which
utilizes MSE for intermediate layer distillation. The aver-
age performance of BERT, is 77.0, which is lower than
77.5 of LRC-BERT. Table 5 shows the four use cases ex-
tracted from the dev set of MNLI-m that can be correctly
predicted by LRC-BERT, and record the prediction results of
BERT),. Specifically, when LRC-BERT and BERT; pre-
dict the first two cases, the MSE and angular distance of the
transformer layer are in line with the expected fluctuation
range, both can make correct prediction. When the last two
cases are predicted, the MSE of BERT), increased signifi-
cantly, while angular distance of LRC-BERT has no obvious
change. LRC-BERT is trained based on COS-NCE and can
still make correct prediction, which shows that the structural
characteristics of the output distribution in the middle layer
can be effectively used for knowledge distillation. However,
in the knowledge distillation method based on Euclidean
distance, the prediction result may be completely opposite,
which briefly illustrates that the loss function based on an-
gular similarity is feasible in knowledge distillation.

Conclusion

In this paper, we propose a novel knowledge distillation
framework LRC-BERT to compress a large BERT model
into a shallow one. Firstly, the COS-NCE based on con-
trastive learning is proposed to distill the output of the inter-
mediate layer from the angle distance, which is not consid-
ered by the existing knowledge distillation methods. Then,
we introduce a gradient perturbation-based training archi-
tecture in the training phase to increase the robustness of
the model, which is the first attempt in knowledge distilla-
tion. Finally, to better capture the distribution characteris-
tics of the intermediate layer, we design a two-stage training
method for the total distillation loss. Extensive experiments
on 9 datasets provided by GLUE benchmark show that the
model is effective.
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