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Abstract
Patent classification has long been treated as a crucial task to support related services.
Though large efforts have been made on the automatic patent classification task, those prior
arts mainly focus on mining textual information such as titles and abstracts. Meanwhile,
few of them pay attention to the meta data, e.g., the inventors and the assignee company,
and the potential correlation via the metadata-based graph has been largely ignored. To
that end, in this paper, we develop a new paradigm for patent classification task in the per-
spective of multi-view patent graph analysis and then propose a novel framework called
Patent2vec to learn low-dimensional representations of patents for patent classification.
Specifically, we first employ the graph representation learning on individual graphs, so
that view-specific representations will be learned by capturing the network structure and
side information. Then, we propose a view enhancement module to enrich single view
representations by exploiting cross-view correlation knowledge. Afterward, we deploy an
attention-based multi-view fusion method to get refined representations for each patent and
further design a view alignment module to constraint final fused representation in a rela-
tional embedding space which can preserve latent relational information. Empirical results
demonstrate that our model not only improves the classification accuracy but also improves
the interpretability of classifying patents reflected in the multi-source data.

Keywords Patent classification · Multi-view learning · Network embedding

1 Introduction

Patent classification is of great significance to improve the efficiency of large-scale patent
management and services [46]. Generally, each patent will be manually classified into mul-
tiple categories by patent examiners according to its domains [34]. However, due to the
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rapid growth of patent applications in recent years, traditional solution with laborious and
time-consuming manual operations may hardly meet the demands. Therefore, the automatic
patent classification tools are urgently required to support related services.

As far as we are concerned, large efforts have been made to deal with this task. Some
studies target at mining distinctive features to classify the patents, including the multiple
structured meta features (e.g. patent inventor, patent assignee and patent citations) and the
unstructured information (e.g. title, abstract, claims and citation networks) in patent doc-
uments [22, 45]. And the others focus on adapting various techniques to design special
classifiers for better classification results, including SVM [44], CNN [22] and Bert [32].

However, most prior arts mainly focus on one specific aspect for patent classification. In
other words, few of them pay attention to the multi-view perspective based on the poten-
tial correlations among various meta-features, e.g., words, patents, inventors and assignee
companies. Indeed, as shown in Figure 1, we realize that patents are not only directly con-
nected via citations, but also indirectly connected via meta-features, which results in the
multi-view meta-data-based graphs. Along this line, the explainability of the classifica-
tion process could be even enhanced by integrating and weighing the multiple sources of
metadata. Accordingly, patents with mutual connections may share similar representations.
Therefore, a new graph-driven paradigm could be designed by integrating and analyzing
the multiple graphs for more comprehensive patent representation, and then support the
classification task.

Along this line, however, challenges still exist in how to jointly represent and integrate
the individual graphs, in which the different contributions from different views could be
measured. To tackle these challenges, in this paper, we propose a novel framework called
Patent2Vec for the patent classification task based on the multi-view patent representation.
To be specific, we first construct three patent graphs with considering the word, inventor
and assignee, which are illustrated in Figure 1. Afterward, we design a three-stage frame-
work to represent the patent in a multi-view way. In detail, to exploit cross-view correlation
knowledge, we propose a view enhancement module to enrich single-view representations
by capturing the interactions between different views. Then, to eliminate abundant informa-
tion, we deploy an attention-based multi-view fusion method to get refined representations
for each patent. Moreover, to preserve latent relational information, we design a view align-
ment to model the dependency relations by mapping final refined representation and single
view representations to a shared representation space. At last, the model is trained in a
joint learning paradigm by simultaneously optimizing classification and alignment loss. The
contributions of this paper can be summarized as follows:

Figure 1 An Example of multi-view graphs
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– We propose a novel framework Patent2vec for patent classification in a multi-view
graph-based perspective, which is among the first ones to best of our knowledge.

– We design a comprehensive learning approach by capturing cross-view correlation
knowledge and modeling dependency between fused representations and single-view
representation relations, by which we can obtain effective patent representations.

– Extensive experiments on real-world data proved that patent2vec outperforms several
state-of-the-art baseline methods by a large margin, which demonstrates that our model
can improve the accuracy and explainability through the construction and analysis of
multiple meta-data-graphs.

The rest of the paper is organized as follows. In Section 2, we introduce related works,
including patent classification, graph representation learning and multi-view representation
learning. In Section 3, we describe the real-world data and formulate the problem. The
technical details of our proposed patent2vec framework are presented in Section 4. We then
show experimental results and discussions in Section 5. Finally, we conclude our work in
Section 6.

2 Related work

In this section, we will summarize the related works as the following three categories, namely
patent classification, network embedding and multi-view representation learning respectively.

2.1 Patent classification

Many efforts have been made for automatic patent classification, existing methods can be
roughly divided into two aspects: factor mining and specially designed patent classifiers.
On the one hand, since there are multiple structured meta features and unstructured infor-
mation like content and corrections in patent documents, factor mining methods [13, 19,
45] focus on mining distinctive features for classification in patents through qualitative
and quantitative analysis. Among these features, textual information [13, 22, 45] is often
the most widely exploited factor for distinguishing different types of patents. On the other
hand, specially designed patent classifiers [8] involve traditional non-deep learning meth-
ods like association rule [11], and support vector machine [25, 44], and deep learning ones
like CNN [12, 22, 25], GRU [31], Bert [32], graph neural networks [35] and so on. For
example, DeepPatent [22] built a deep convolutional neural network model combined with
the word embedding to classify patent documents and PatentBert [32] exploited the power-
ful pre-training language model Bert [3] and then fine-tuning it to handle multi-label patent
classification problem. [22] present an attention-based GCN model over textual graph to
solve patent classification problem. However, few of these previous deep learning related
studies have focused on this task from a multi-view perspective. Furthermore, existing
methods lack explainability, which requires that an intelligent system provides explanations
about why patents are classified into a certain category.

2.2 Network embedding

Network embedding aims to embed nodes into a low dimensional space while preserving the
network structure and property. The traditional techniques are based on matrix factorization,
like LLE [33] and GraRep [1]. Inspired by the skip-gram model [20], some random-walk
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based models are proposed to deploy truncated random walks on graph for presentation
learning, such as Deepwalk [29], Node2vec [9] and metapath2vec [5]. The main differ-
ence of these models is the sampling strategy of random-walk, which generates the node
sequence similar to word sequence in natural language processing. For example, Deep-
walk [29] applies the depth first search strategy to create node sequence, and Node2vec [9]
extends Deepwalk by taking advantage of the breadth first search strategy, while they can
only be used for the homogeneous graph. And metapath2vec [5] proposes a new strategy to
consider the heterogeneity of graph. TFE [47] employs random walks on both original and
transpose networks to learn representations for competitive analysis. Recently, some graph
neural networks are proposed to capture the rich neighborhood information to represent
nodes. For example, GCN [17] performs graph convolution by aggregating neighborhood
information to learn embedding. GraphSAGE [10] iteratively generates the node embedding
by aggregating features from its sampling neighborhood. GAT [37] applies the attention
mechanism for aggregating representation of neighbors to parallel update node represen-
tation. SOPE [4] integrates heterogeneous information and multiple relations to generate
representations in signed network.

2.3 Multi-view representation learning

Representation learning aims at learning low-dimensional vector of the data and then applies
it to downstream tasks [2, 39, 41, 43]. However, multi-view representation learning targets
at exploring how to utilize multi-view data for representation learning. The existing tech-
niques can be roughly divided into two categories. The first one is multi-view representation
fusion, which aims to integrate multi-view data into a single representation to comprehen-
sively represent data [24]. Representative methods include graphical model-based fusion
and neural network based fusion, consisting of multi-view autoencoder [48], multi-view
convolutional neural network [7] and multi-view recurrent neural network [16]. For exam-
ple, [48] built an autoencoder to fuse multiple views into a single refined representation,
which is then utilized to perform link prediction. [40, 42] introduce a collective fusing strat-
egy to fuse representations frommulti-view transition graphs to detect risky areas. The other
one is called alignment, which tries to capture relations among multiple different views. For
example, canonical correlation analysis based method DeepCCA [38] and CM-GANs [28]
that use GANs to model cross-view joint distribution. [27] employs deep CNNs to align
multi-view representations.

3 Preliminaries

In this section, we first introduce the real-world dataset in our study and then discuss
the insights we found in the data. Finally, we formulate the problem of multi-view patent
representation task for patent classification.

3.1 Pre-study of dataset

The data utilized in this paper are collected from USPTO (the United States Patent and
Trademark Office), one of the largest patent granting organization in the world. The dataset
contains more than 7 million patents belonging to about 1 million companies and more than
3 million inventors. Detailed statistics of the dataset are shown in Table 1. The patent classi-
fication is different from traditional text classification problems due to the inherent special
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Table 1 The statistics of the
dataset Statistics Values

The number of patents 614 943

The number of classes 443

The number of inventors 82 977

The number of companies 6 859

The number of words 126 988

characteristics of patent data, such as relations between patents and inventors, patents and
companies, which might have an extensive effect on promoting patent classification. To
reveal this point, we select some representative companies and inventors and measure the
distributions of different patent categories.

Figure 2 illustrates patent categories distribution of selected companies and inventors,
from which we can find that patents’ categories are highly related to its corresponding com-
panies and inventors. Besides, every company or inventor holds a latent unique distribution
over patents categories. Take Microsoft as an example, more than 40% of its patents belong
to the G06F category, which refers to “ELECTRIC DIGITAL DATA PROCESSING”. Fur-
ther statistics reveal that over 80% of patents for each company nest in only a small set of
about 5% categories and over 90% of patents for each inventor nest in about 10 categories.
With this clue, we can incorporate proper representations of companies and inventors to
boost the patent representation for achieving more accurate classification results.

3.2 Formulation of patent graphs

With the patent records and above insights, we construct multi-view patent graphs to
formally describe the dataset, which is defined as follows:

Definition 1.1 (Semantic View Graph) The semantic view graph is defined as Gs =
(V p ∪ V w , Eww ∪ Epw), where V p denotes the set of patent, V w denotes the set of word,
Eww denotes the word-word edge set and Epw denotes the patent-word edge set. Each
edge in Eww indicates the positive Point-wise Mutual Information (PMI) score between two

words. The PMI score is calculated by PMI
(
wi,wj

) = log
p(wi,wj )

p(wi)p(wj )
, where p(wi,wj )

represents the frequency of co-occurrence of two words wi,wj in a sliding window, and

Figure 2 Heatmap of patent category distributions w.r.t. companies and inventors. The horizontal axis
denotes the patent category and the vertical axis denotes the company and inventor respectively. The darker
the color, the greater the number
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p(wi) denotes the word frequency. Each edge in Epw indicates whether a patent contains a
word, which is undirected and unweighted.

Definition 1.2 (Assignee View Graph) The assignee view graph is defined as Ga = (V p ∪
V c , Epp ∪ Epc), where V p denotes the set of patent, V c denotes the set of company,
Epp denotes the patent-patent edge set and Epc denotes the patent-company edge set. Each
edge in Epp indicates the citation relationship between two patents and each edge in Epc

indicates whether the patent belongs to the company.

Definition 1.3 (Cooperative View Graph) The cooperative view graph is defined as Gc =
(V p ∪ V i , Epp ∪ Epi), where V p denotes the set of patent, V i denotes the set of inventor,
Epp denotes the patent-patent edge set and Epc denotes the patent-company edge set. Each
edge in Epp indicates the citation relationship between two patents and each edge in Epc

indicates whether the patent is proposed by the inventor.

3.3 Problem formulation

Following the above definitions, we present the problem formulation of multi-view patent
representation for patent classification. In general, we target at classifying patents into mul-
tiple categories. Obviously, the different patent graphs we build can describe patents from
different perspectives, therefore we can integrate information from the multi-view graphs
to make better classifications. Inspired by network representation learning, we formulate
the patent classification as the task of node classification over the multi-view patent graphs,
and then to enable the node classification task, we push forward representation learning
over the patent graphs to learn unified and optimal representations for patents. Formally, the
studied problem can be defined as the task of multi-view patent representation for patent
classification:

Definition 2.1 Given the multi-view patent graphs G = {Gs,Ga,Gc}, which represents
the semantic, assignee and cooperative view graph respectively. For each patent pi ∈ V p ,
we aim to learn the potential low-dimensional vector representation Pi ∈ R

d ( d � |V p|)
. The generated representation is then utilized to handle patent classification problem.

4 Patent2vec framework

In this section, we first present a general description of our Patent2vec framework. Then we
introduce each component of the framework in detail and finally illustrate the optimization
objective.

4.1 Overview

In this paper, we propose a novel framework called Patent2vec to learn low-dimensional
representations of patents for patent classification task from the perspective of multi-view
graph analysis. Specifically, we first employ the graph representation learning on individ-
ual graphs to capture the network structures and side information. Then, we design an
enhancement module to fully boost the representations from a single view by incorporating
information from other views. After that, the individual representations from single views
are fused as a unified compact representation through the attention mechanism.
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Furthermore, to make sure the unified representation preserves the information from
single view, we design a cross-view alignment constrain to tackle the inductive bias and dis-
agreement between the fusion embedding with the corresponding embedding from single
view. Finally, the fusion representations of patents are feed to a fully connected layer to clas-
sify patents into multiple categories. By jointly optimizing classification loss and alignment
loss, we can obtain patent representations and perform classification task simultaneously.
Figure 3 shows the process of incorporating multi-view information to embed patent in a
unified representation for patent classification. In the following parts, we will elaborate on
the technical details of each component.

4.2 View-specific representation

In this part, we will introduce the representation learning on three graphs, which represent
the semantic view, assignee view and cooperative view respectively.

4.2.1 Semantic view

Semantic information plays a fundamental role when classifying patent documents into
certain categories. For each patent document, we utilize its title and abstract as the
semantic information sources. Inspired by the recent achievement of patent semantic learn-
ing [35], we do not distinguish between the types of patent and word nodes and apply
GraphSAGE [10] model to learn node embedding to improve operating efficiency and
representation performance.

At first, GraphSAGE samples neighborsN(v) for each node v to improve efficiency, then
it recursively updates embedding for each node by Aggregating and Updating operations.
In the aggregating stage, node v aggregates the information from its immediate neighbors
N(v) by the aggregator functions AGGk , where k denotes the search depth. Here we choose
the long-short-memory network (LSTM) as aggregator for its expressive ability. Given a
sequence of neighbors embedding, the aggregating process is defined as:

hk
N(v) ← AGGk

(
hk−1

u ,∀u ∈ N(v)
)

, (1)

where hk
u denotes the representation of node v in search depth k. In the updating stage, node

v’s representation hk
v is updated by concatenating the aggregated neighborhood vector h

k
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s
iP

a
iP

c
iP

s
iP

a
iP

c
iP

iP
Prediction

View
enhance

View
fusion

att

ijy
bceL

Word Assignee InventorPatent

Assignee 
view

Semantic 
view

Cooperative 
view

6

5

Aggregating

Updating

Metapath

Walks

Metapath

Walks

3

m

4

1

2 n

2

j

3

1
4

6

i

5

2

1

i 1 3

j 5

j 3

j

1 i

n 2

2 n5

m

m

m4n

1 i

2

1

Alignment constraint

c
alignL

iP

s
iP

iP

iP

a
iP

c
iP

a
alignL

alignL

s
alignL

Figure 3 Overview of Patent2vec framework

1797World Wide Web (2021) 24:1791–1812



and its own node hidden state hk−1
v :

hk
v ← σ

(
Wk

s · concat
(
hk−1

v , hk
N(v)

))
, (2)

where σ(·) is the sigmoid function, and Wk
s is the trainable parameter in depth k. At last, we

employ the unsupervised loss to make optimization according to [10], which makes adjacent
nodes have similar representations, while the representations of nodes far away from each
other have a large difference.

4.2.2 Assignee view

The assignee view graph contains two kinds of nodes, i.e., patents and companies. Different
from the above semantic view graph, we consider assignee view graph as a heteroge-
neous graph since it has a more complex structure. Here, we incorporate the meta-path
based random walk to learn node embeddings which is widely adopted in practice to
exploit structural properties of a heterogeneous graph. First, we define a meta-path pattern

P : ci
assign−→ pj

cite−→ pk
assign−→ cl , where ci denotes company i and pj denotes patent j .

This meta-path pattern describes the correlation between ci and cl via a path between pj

and pk . Next, we generate meta paths based on the defined pattern, where each path is a
node sequence. Finally, we utilize the skip-gram model proposed in Word2vec [26] to learn
representation of each node. The objective function is shown as follows:

∑

v∈V c∪p

∑

n∈Nc(v)∪Np(v)

log
exp(Embv · Embn)∑

u∈V c∪p exp(Embv · Embu)
, (3)

where V c∪p denotes the set of company and patent, Nc(v) denotes the company neighbors
of node v, Np(v) denotes the patent neighbors of node v and Embv denotes the embedding
of v. We can improve efficiency of the objective with the negative sampling method and
learn embedding with SGD method [5].

4.2.3 Cooperative view

Similar to the assignee graph, we also employ the meta-path random walk based network
embedding method for the cooperative graph. However, the difference lies in that here we

define two kinds of meta-path patterns. The first one is P1 : im
invent−→ pi

cite−→ pj
invent−→ in,

which constructs the correlation between inventor m and n via a path between patent i and

j . The other one is P2 : im
invent−→ pj

invent−→ in, which indicates the co-author relationship
between two inventors. By executing the random walks on these meta paths and optimiz-
ing the following objective, we can obtain the representation for each node on cooperative
graph.

∑

v∈V i∪p

∑

n∈Ni(v)∪Np(v)

log
exp(Embv · Embn)∑

u∈V i∪p exp(Embu · Embv)
, (4)

where V i∪p denotes the set of inventor and patent, Ni(v) denotes the inventor neighbors of
node v, Np(v) denotes the patent neighbors of node v and Embv denotes the embedding of
v. The optimize process is similar to the assignee view.
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4.3 Single view representation enhancement

Although the graphs from different view can provide unique information, there still exist
implicit information and sophisticated correlation knowledge across different views. To
obtain better single-view representation, we design a view enhancement module to boost
single view representation by aggregating other views representations. As mentioned before,
there are three patent graphs G = {Gs,Ga,Gc}, which represent the semantic, assignee and
cooperative view graph respectively. By employing the graph representation learning meth-
ods introduced above on individual graphs, we can obtain the corresponding representation
of node for each view. For simplicity, we denote P s

i , P a
i and P c

i as the representation of
patent pi in semantic, assignee and cooperative view. The target of this module is to get the
enhanced representations for each single view, namely P s∗

i , P a∗
i and P c∗

i respectively.
Figure 4 shows the graphical representation of single view representation enhancement

module. At first, we stack the three single view representations to get the input of the
enhancement module Pi = [P s

i , P a
i , P c

i ], where Pi ∈ R
k×d , d is the representation size

and k is the number of view, i.e., k=3. It is intuitive that the representations of each view can
make different contributions on other views, so that we then leverage the covariance matrix
to capture the view-wise correlations among representations from different views.

To be specific, we employ a function f (·) to reduce the size d to d
r
of the input tensor,

where f (·) consists of a linear transformation followed by a batch normalization layer and
a Leaky Rectified Linear Unit (LeakyReLU), r denotes the reduction factor. In addition, we
use another transformation to form g(·), which acts like the function f (·). The shapes of
f (Pi) and g(Pi) are both k × d

r
. After that, following the practice in [23], we design the

covariance matrix as follows:

� = f (Pi) · I · f (Pi)
T , (5)

where I = 1
d/r

(
I − 1

d/r
1
)
, I ∈ R

d
r
× d

r denotes identity matrix and 1 ∈ R
d
r
× d

r denotes all-

one matrix. Next, we design a self-attention with � to model the view-wise correlations.
Similar to [6], we use 1√

d/r
as the scaling factor for the covariance matrix before applying

softmax, which yields

Ui = sof tmax

(
�√
d/r

)
g(Pi). (6)
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Figure 4 The schematic diagram of representation enhancement module
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Finally, we concatenate the original view representation with enrich knowledge to form the
new enhanced representations for each view.

P∗
i = Ui ⊕ Pi (7)

where symbol ⊕ represents the concatenation operation and P∗
i is a tensor containing the

enhanced representations P s∗
i , P a∗

i and P c∗
i .

4.4 Multi-view fusion

The representation of each view provides a specific aspect of information, it is intuitive to
integrate them together to get a more comprehensive representation.

Hence, we design an attention-based multi-view fusion module to refine the multiple
representations into a single representation, which exploits the complementary information
contained in multiple views to comprehensively represent the patent. In this way, we can
distinguish the contribution of different views, and also better explain the classification
results.

Specifically, the input of fusion module is the enhanced specific view representation, i.e.,
P s∗

i , P a∗
i , P c∗

i . We utilize the attention mechanism to capture the degree of attention for
representing the importance of single view, which is implemented by a two fully connected
layer to calculate the attention weights for each view. The fusion module can be formulated
as follows:

attm = Wm
2 · tanh (

Wm
1 · P m

i + bm
1

) + bm
2 ,

˜att = sof tmax( ˜att),

P m′
i = tanh

(
Wm

3 · P m
i + bm

3

)
,

P ∗
i = ∑

m attm · P m′
i ,

(8)

where m ∈ {s∗, a∗, c∗} represents the enhanced representation of a specific view, attm
denotes the attention weight of each view m, ˜att is a vector containing attm ,Wm

i , bm
i are

trainable parameters and P ∗
i denotes the final representation of patent pi .

4.5 Alignment constraint

Though fusion module can compress multi-view embeddings to a single refined representa-
tion, however, attention-based fusion may introduce extra noise since different view feature
vectors inhabit in different representation spaces. Directly conduct a weighted combination
of the multi-view embeddings into a single vector may ignore this issue. Inspired by multi-
modal representation learning [18], we propose a view alignment module to address this
issue by projecting the single-view representation into a shared representation space and
we then further assume that single view embedding of a patent is near to it’s fused rep-
resentation while far from other patent’s fused representation in the shared representation
space.

To be specific, we first project the fused representation into three view-specific shared
representation spaces by the alignment transformation matrices, then we maximize the dot
product of the projected fused representation and single view representation to construct the
view-specific alignment constraints as follows:
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Ls
align = ∑

i

σ
(
Wps · P ∗

i

)T
σ

(
Wps · P s∗

i

)
,

La
align = ∑

i

σ
(
Wpa · P ∗

i

)T
σ

(
Wpa · P a∗

i

)
,

Lc
align = ∑

i

σ
(
Wpc · P ∗

i

)T
σ

(
Wpc · P c∗

i

)
,

(9)

where Wps , Wpa and Wpc represent the alignment transformation matrices for three views
respectively. After that, we can obtain the final alignment constraint by integrating the view-
specific alignment constraints.

Lalign = α · Ls
align + β · La

align + γ · Lc
align, (10)

where α, β, γ denote the weight of constraint.

4.6 Patent classification

Following the above procedure, the fused representations are feed to two consecutive fully
connected hidden layers to classifying patents, whose activation functions are sigmoid and
ReLU respectively. The final predicted probability ŷij of pi for the j -th label is formulated
as follows:

ŷij = ReLU
(
WT

2 · σ
(
W1

T · P ∗
i

))
, (11)

where WT
i is the trainable parameters. Finally, since we focus on multi-label patent clas-

sification task, we apply binary cross entropy (BCE) loss as the objective function as
follows:

Lbce = − 1

N

N∑

i=1

t∑

j=1

[
yij log

(
ŷij

) + (
1 − yij

)
log

(
1 − ŷij

)]
, (12)

where N is the number of training examples and t is the number of categories, yij is the
ground truth label.

Combining the classification loss with alignment constraint, we can get the final
objective as follows:

L = Lbce + λ · Lalign. (13)

where λ denotes the balance coefficient of alignment constraint. By jointly optimizing this
loss function, we can obtain the representation of each patent and perform classification.

5 Experiments

In this section, we evaluate the performance of our proposed framework Patent2Vec on
patent classification task. Specifically, we first introduce the dataset, baselines, evalu-
ation metrics and implementation details. Subsequently, we quantitatively analyze the
performance of our Patent2Vec through experiment results comparing, ablation study and
parameter sensitivity analysis. Finally, we qualitatively validate the effectiveness of our
Patent2Vec by analyzing the contributions of different views and visualizing the learned
patent representations.
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5.1 Experiment settings

5.1.1 Dataset

Our dataset is retrieved from the USPTO database, which contains about 7 million patents
originally. For time efficiency, we sample a subset of the whole database as our dataset.
Furthermore, we remove patents that have no inventors nor assignee and eliminate assignee
possessing less than 50 patents. In total, we got 614 943 patents, 82 977 inventors, 6
859 assignees and 126 988 words. For notation convenience, we name our dataset as
USPTO-600K. We split the data into training and testing set in the ratio of 80% and 20%.
Statistics of our dataset is illustrated in Table 2. The classification system we utilized is
CPC(Cooperative Patent Classification), which is a three-level hierarchical classification
system. The first level, i.e. main class level, has 9 classifications. The second and third lev-
els are subclass level and group level respectively. For example, main class “G” represents
“Physics”, subclass “G06” represents “COMPUTING; CALCULATING; COUNTING”
and group “G06F” means “ELECTRIC DIGITAL DATA PROCESSING”. In general, each
patent is assigned to several CPC codes.

5.1.2 Evaluation metrics

Patent classification is a multi-label classification task since each patent may belong to mul-
tiple categories. Therefore, we employ the rank-based metric including P@k(Precision@K),
R@K(Recall@K) and NDCG@K(Normalized Discounted Cumulative Gain), which are
widely used in the multi-label classification task. The definitions of these metrics are
illustrated as follows:

Precision@k = T P@k

T P@k + FP@k
, (14)

Recall@k = T P@k

T P@k + FN@k
, (15)

DCG@k =
k∑

i=1

2reli − 1

log2(i + 1)
, (16)

NDCG@k = DCG@k

IDCG@k
, (17)

Table 2 Statistics of multi-view
patent graphs Graph type Link type # Links

Semantic-View patent-word 46 270 156

word-word 4 404 738

Cooperative-View patent-inventor 1 199 167

patent-patent 6 380 514

Assignee-View patent-company 628 167

patent-patent 638 0514
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where reli denotes the relevance of result and IDCG represents the ideal results. In our
paper, we set K = 1, 3, 5 respectively.

5.1.3 Baselines

In order to demonstrate the performance of our Patent2Vec, we compare it with state-of-the-
art methods from three aspects. The first is the representative methods in multi-label text
classification field, such as FastXML [30], FastText [15] PfastreXML [14], and recently
state-of-the-art methods including DeepPatent [22] and PatentBert [21]. The second is the
network representation learning methods, i.e. Deepwalk [29] , Node2vec [9], LINE [36]
and GCN [17]. Besides, different from above methods which can only utilize single view
of representation, we further use widely used multi-view learning mechanism including
Autoencoder and attention-based fusion, which can fuse multi-view representations and
then predict patent labels. The details of these baselines are illustrated as follows:

– FastXML [30] : FastXML is a tree-based classifiers, are inspired by the ideas of
decision tree and build decision trees based on a instances by recursively splitting
internal nodes.

– PFastreXML [14] : PFastreXML is an extension of FastXML, it prioritizes pre-
diction of tail labels and handles missing labels by proposing the propensity
scored loss.

– BiLSTM: Here we employ 512 hidden neurons for BiLSTM which takes word
embedding as input, and utilize softmax and binary cross entropy loss to make
the prediction.

– FastText [15] : FastText is an efficient and competitive learning algorithm for
word representations and text classification.

– DeepPatent [22] : DeepPatent employs convolution and pooling operation on
word embedding matrix to extract textual features and then to utilize a fully
connected layer to classify documents.

– PatentBert [21] : PatentBert applys the pre-trained BERT model(bert-base-
uncased) and fine-tune it to perform patent classification.

– Deepwalk [29] : Deepwalk takes the truncated random walks for each node to
generate the training corpus of node sequences, and then learns the node embed-
ding via maximizing the likelihood of context node prediction from the center
nodes.

– Node2vec [9] :Different from DeepWalk, it designs a biased truncated random
walks to efficiently explore diverse neighborhood and utilize skip-gram model to
learn node embedding.

– LINE [36] : It learns the node embedding by preserving the first-order proximity
or second-order proximity of the network structure separately.

– GCN [17] : It obtains node embeddings by aggregating node features on graph.
Here we use semantic features learned from word2vec as the input feature of each
node, and GCN is conducted on citation graph.

– AutoEncoder : We employ a two layer Autoencoder and the the inputs are con-
catenation of single view representations. We extract hidden layer values as fused
representation to make predictions.

– Attention-Fusion: Attention-Fusion can calculate single view attention value and
then fuse multiple views representations to a refined embedding, which is then
utilized to perform classification.
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5.1.4 Implementation details

We implement our model based on the PyTorch framework. In the view-specific embedding
stage, we set the representation size d as 256 for each view. The number of hidden layers
of GraphSAGE is two and the neighbor sample size of each layer is 15 and 10 respectively.
As for the assignee view, we set walking length to 40 and walks per node 500. For the
cooperative view, we set walking length to 40 and walks per node 50. We set dimension
reduction r is to 8 in view enhancement part and fusion dimension as 256 in multi-view
fusion stage. The weight of different types of alignment α, β, γ are set to 1.0, 0.2, 0.2
respectively. In the prediction part, the number of hidden units is 1024 and the align loss
coefficient is set to 0.01. For model optimization, we set batch size as 128 and the number
of epoch 50. We initialized our learning rate as 0.00025 and use an exponential learning rate
scheduler to decay the learning rate to 1e-5 until 20 epoch.

5.2 Quantitative analysis

5.2.1 Experimental results

In this part, we first compare our model with the state-of-art methods and illustrate exper-
imental results in Table 3. And we utilize bold-faced to highlight the best experimental
results. From Table 3, we can obtain the following observations: First compared with all
the baselines, Patent2vec model consistently achieves significant improvements on multiple
evaluation metrics. It demonstrates that the patent representations learned by our Patent2vec
framework can effectively be utilized to classify patents. Second, we can find that the
text-based methods outperform graph-based approaches. It demonstrates that semantic
information is more important when predicting patent categories. Third, by comparing
single-view and multi-view learning methods, we can observe that multi-view learning
can dramatically improve classification accuracy. Furthermore, our method achieves the

Table 3 Overall performance on patent classification

Features Methods Precision@K Recall@K NDCG@K

1 3 5 1 3 5 1 3 5

Text only FastXML 0.7795 0.4508 0.3102 0.5296 0.7844 0.8567 0.7795 0.7877 0.8117

PfastreXML 0.7811 0.4514 0.3113 0.5309 0.7857 0.8594 0.7811 0.7889 0.8136

Bi-LSTM 0.7960 0.4457 0.3074 0.5456 0.7813 0.8526 0.7960 0.7916 0.8151

FastText 0.8092 0.4574 0.3137 0.5494 0.7962 0.8673 0.8092 0.8056 0.8285

DeepPatent 0.7890 0.4407 0.3068 0.5361 0.7811 0.8536 0.7890 0.7834 0.8083

PatentBert 0.8249 0.4535 0.3093 0.5775 0.8009 0.8675 0.8249 0.8178 0.8391

Graph-based Deepwalk 0.7110 0.3922 0.2724 0.5014 0.7277 0.8064 0.7110 0.7188 0.7495

Node2vec 0.7204 0.3954 0.2740 0.5082 0.7326 0.8100 0.7204 0.7255 0.7554

LINE 0.6341 0.3558 0.2501 0.4303 0.6283 0.7035 0.6341 0.6314 0.6583

GCN 0.7938 0.4443 0.3075 0.5417 0.7804 0.8557 0.7938 0.7880 0.8138

Multiple
views

AutoEncoder 0.8261 0.4596 0.3174 0.5625 0.8051 0.8806 0.8261 0.8156 0.8412

Attention-
Fusion

0.8370 0.4673 0.3223 0.5697 0.8150 0.8895 0.8370 0.8269 0.8518

Patent2Vec 0.8625 0.4871 0.3314 0.5875 0.8367 0.9084 0.8625 0.8516 0.8747
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best result among all multi-view methods, this shows that our methods can better utilize
multi-view information.

5.2.2 Ablation study

In order to demonstrate the effectiveness of each part in patent2vec, we remove each compo-
nent of our framework and obtain three variants of our models, namely Patent2vec-Enhance,
Patent2vec-Fusion and Patent2vec-Align. For Patent2vec-Enhance, we remove the view
representation enhancement part and the input of fusion module is directly the every spe-
cific view representation, i.e. P s

i , P a
i and P c

i . For Patent2vec-Fuse, we directly output the
enhanced representation as a long vector and perform predictions. Finally, for Patent2vec-
Align, we remove the alignment constraint part and train our model only by optimizing the
classification loss. The performance results of these variants are illustrated in Table 4.

We can obtain the following conclusions: First, compared with Patent2vec, Patent2vec-
Enhance achieves better performance on P@k, which proves the effectiveness of our view
enhancement part. Second, from the comparison results of Patent2vec and Patent2vec-
Fuse, we can illustrate that the proposed attention fusion module can effectively model
the weighting relationships of multiple view representations. Third, patent2vec outper-
form Patent2vec-Align, which can be explained by that the alignment constraint makes the
patents with different view aspects closer in the latent vector space. Besides, we can infer
the reason for classification according to the weighting distribution obtained by the atten-
tion network, which can enhance the interpretability of the embedding learning algorithm.
We will illustrate learned weight values and integrate them into the model’s interpretable
part in the following part.

In order to investigate the effectiveness of each view, we conduct experiments from dif-
ferent types of view combinations, e.g. semantic + assignee and semantic+cooperative. We
report results in Figure 5, from which we can notice that combing the assignee and the
cooperative view information can boost the performance to a great degree, which is consis-
tent with the assumption in preliminaries. Besides, we can observe that the assignee view
and cooperative view hold similar importance. We can achieve about 0.80 P@1 only with
semantic view information while about 0.83 with the help of assignee view or cooperative
view information. Furthermore, we obtain the best performance when utilizing all of the
views. Through the above ablation experiments, we demonstrate the effectiveness of the
multi-view learning approach.

5.2.3 Parameter sensitivity

In this section, we study the sensitivity of our model parameters. Specifically, we mainly
evaluate how the embedding size d and balance coefficient λ affect the performance. As

Table 4 Performance of variants of Patent2Vec on patent classification

Methods P@1 P@3 P@5 R@1 R@3 R@5 NDCG@1 NDCG@3 NDCG@5

Patent2vec 0.8625 0.4871 0.3314 0.5875 0.8367 0.9084 0.8625 0.8516 0.8747

Patent2vec-Fuse 0.8573 0.4807 0.3321 0.5842 0.8426 0.9220 0.8573 0.8514 0.8784

Patent2vec-Enhance 0.8438 0.4974 0.3391 0.5569 0.8272 0.8908 0.8438 0.8487 0.8598

Patent2vec-Align 0.8426 0.4713 0.3240 0.5735 0.8202 0.8928 0.8426 0.8326 0.8564
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Figure 5 Ablation studies on effect of each views. P@k and NDCG@k results with respect to different types
of view combinations

for dimension size d, we set d from 64 to 1024 by multiplication of 2, and present the
P@1, R@3, NDCG@3 on patent classification task in Figure 6. It can be observed that
the performance increases as the representation size d grows, which could be reason-
able as more dimensions can encode more information. However, there is no significant
improvement when d is more than 256, which explains why we set d as 256 in our overall
experiments to keep the balance between effectiveness and efficiency. In terms of balance
coefficient λ, we scale it from 0.0001 to 0.5 and the result is illustrated in Figure 6. As
we can see, the performance increases when the coefficient rate climbs. However, the per-
formance decreases when λ continuously increases. The reason is that too large λ may
introduce more extra bias and noises which will reduce the performance. Therefore, we set
λ as 0.01, which can balance the BCE loss and alignment constraint.

5.3 Qualitative analysis

5.3.1 Analysis of view contribution

In order to investigate each view’s contribution when predicting patent’s labels, we now
focus on the multi-view fusion part. As we previously mentioned, the component aims at
fusing multi-view embeddings to a single comprehensive representation. To analyze differ-
ent views importance, we specify the attention values as view weights, which denote the
contributions to the final embeddings. Furthermore, we randomly select some categories

Figure 6 Parameter sensitivity w.r.t the embedding size d and balance coefficient λ
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and illustrate the average view weights of each category in Figure 7, from which we can
obtain the following observations. First, semantic view accounts for the most contribution
of about 40% overall in these categories while cooperative view 30% and assignee view
30%. It demonstrates that semantic features are the most important factor when predict-
ing the classification of patents, which is consistent with observations in ablation studies
on the effect of each view in Figure 5. Second, different views play various roles in differ-
ent categories. In some cases, the assignee view is more important while the cooperative
view is more important in other cases, which reflects the different features of various
categories. For example, for main class A, cooperative view contributes relatively larger
than other classes, since main class A refers to “HUMAN NECESSITIES”, which is typi-
cally more related to the cooperative view than assignee view. Through this analysis, we
can observe the contribution of various views more intuitively, so as to better explain our
decision basis.

5.3.2 Visualization

Visualization is an important application of network representation learning. Typically, it’s
done by projecting the original embeddings to a two-dimensional space, so that we can
intuitively observe the relevance between nodes in the network. To visualize the generated
patent embeddings, we randomly select some patents of several categories and map their

Figure 7 Contribution of different views. The horizontal axis denotes the patent categories from A to H and
the vertical axis denotes view importance
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Figure 8 TSNE visualization of patent representations

representations to a two-dimensional space by t-SNE [49]. We present patent embeddings
of each category in different colors and annotate the corresponding label at the center of
each category’s node embedding. From Figure 8, we can observe that there is an obvious
distance between different categories’ embeddings. It demonstrates that the patent repre-
sentations learned by our model are discriminative so that they can represent different types
of patents in a variety of categories. Meanwhile, there is a small coverage between cate-
gory embeddings. This result can illustrate there is a certain correlation between category
embeddings.

To visualize patent embedding of various companies, we further select several companies
from different fields, including information technology, automobile industry, oil industry,
and photography industry. Similar to the former one, we also present patents embeddings
of each company in different colors and annotate the corresponding company label at the
center of the company patents embedding. From Figure 9, we can observe that there is an
obvious distance between different field’s patent embeddings. Besides, there is a big overlap
between General Motors and Toyota. Both companies are in the automobile industry and
there exist a lot of patents in common categories. Through Figures 8 and 9, we can further

Figure 9 TSNE visualization of company representations
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validate the effectiveness of our proposed multi-view representation learning framework
and explain the internal mechanism of classifying patents.

6 Conclusion

In this paper, we proposed a novel framework named patent2vec for patent classification
in a multi-view network embedding perspective. Considering the unique characteristics of
patent data, we built multi-view patent graphs and further designed a sophisticated multi-
view enhancement module, which could enrich single view representation by capturing the
interactions between different views. Furthermore, we fused multi-view representations and
designed an alignment constraint component to preserve latent relational information. Our
model could perform patent classification and yield patent representation simultaneously.
Compared with state-of-the-art baselines, patent2vec achieved significant performance
improvement, which proved the potential of multi-view graph analysis on patent classi-
fication task. Extensive experimental discussions and case studies showed a significant
improvement in accuracy and interpretability of our model. We hope our work will lead to
more future studies in the patent mining field.
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